9 CAP 4453
Robot Vision

Credits

* Some slides comes directly from:
e Yogesh S Rawat (UCF)
 Noah Snavely (Cornell)

loannis (Yannis) Gkioulekas (CMU)

Mubarak Shah (UCF)

S. Seitz

James Tompkin

Ulas Bagci

L. Lazebnik

Short Review
from last class

lmage segmentation

* Image segmentation partitions an image into regions called segments.

SCWTYTTTYY T)
! 74

S Segment 1 Segment 4

Segment 3

Segment 2 Segment 5

Segment 6

* Image segmentation creates segments of connected pixels by analyzing some
similarity criteria:
* intensity, color, texture, histogram, features

CAP4453 4

Image segmentation methods

Machine Region Based

Learning methods (
based region

methods growing, ..)

Image
Segmentation
methods Clustering

Energy
minimization (K-means,

methods(MRF,..) meanshift)

Shape based Graph-based
methods methods
(level set, (graph-cut,

active random walk,
contours) ..)

CAP4453 5

Otsu thresholding

* Definition: The method uses grey-value histogram of the given image |
as input and aims at providing the best threshold (foreground/background)

* Otsu’s algorithm selects a threshold that maximizes the between-
class variance o;. or minimize within-class variance

Option 1: maximum of:

o (t) = wi(t)wa(t)[p1(t) — pa(t)]?

pa(t) = iy o wi(t) = iy P(i)

yi .
Y P(i) wa(t) = > i P(3)
palt) =D e ‘::-gf:f'} -

Otsu thresholding

* Definition: The method uses grey-value histogram of the given image |
as input and aims at providing the best threshold (foreground/background)

e Otsu’s algorithm:zselects a threshold that maximizes the between-

class variance % , : : : o
Ofotar = W1(t)ai (t) + wy()oz(t) + wi(®)wa(t)(uz(t) — uy(t).

Option 2: minimum of:

y 9 9 between-class variance
0 (t) = wi(t)oy(t) + wa(t)os(t) within-class variance

'ﬂ’l(f) - Zf:lP(f') P{'ﬁ) _ ni l
wa(t) = 31y 41 Pi) Minimize Maximize

2 Y . 19 P(i)
71 (T) - Zf:l[i - Hl(f)_ u'lfia‘-.}

2 Y - 12 P(i)
‘72(” — Z£=a‘.+l[.'r' o ,u.g(f)_ z:'gfia‘.-}

Robot Vision

8. Segmentation |l

CAP4453 8

(e) (f)

Figure 5.1 Some popular image segmentation techniques: (a) active contours (Isard and
Blake 1998) © 1998 Springer: (b) level sets (Cremers, Rousson, and Deriche 2007) @©
2007 Springer: (c) graph-based merging (Felzenszwalb and Huttenlocher 2004b) © 2004
Springer: (d) mean shift (Comaniciu and Meer 2002) © 2002 IEEE; (e) texture and interven-
ing contour-based normalized cuts (Malik. Belongie, Leung et al. 2001) © 2001 Springer:
(f) binary MRF solved using graph cuts (Boykov and Funka-Lea 2006) (¢) 2006 Springer.

Energy-Based methods

Background
terminal

Background
terminal

Ohbject
terminal

[a) ibl

Objec
terminal

CAP4453 11

Outline

* Image segmentation basics
* Thresholding based

* Binarization
* Otsu

* Clustering based
e K-means (SLIC)

* Region based
* Merging
 Splitting

Image segmentation methods

Machine Region Based

Learning methods (
based region

methods growing, ..)

Image
Segmentation
methods Clustering

Energy
minimization (K-means,

methods(MRF,..) meanshift)

Shape based Graph-based
methods methods
(level set, (graph-cut,

active random walk,
contours) ..)

CAP4453 13

What is Clustering?

* Organizing data into classes such that:
* High intra-class similarity
* Low inter-class similarity

* Finding the class labels and the number of classes directly from the
data (as opposed to classification tasks)

What is a natural grouping ?

CAP4453 15

What is a natural grouping ?

Simpson’s family School employees capass3 Females 16

What is similarity ?

CAP4453 17

What is similarity ?
=

" ; >
- 1 ,..J ‘i'

CAP4453 18

Distance metrics

A ﬁ Peter Piotr
2 & !

a Y
3

. g 4

4
0.23 342.7

CAP4453 19

Outline

* Clustering based
* K-means
e Superpixels (SLIC)

K-means

* Most well-known and popular clustering algorithm:

e Start with some initial cluster centers

* |terate:
 Assign/cluster each example to closest center
* Recalculate centers as the mean of the points in a cluster

K-means

CAP4453 22

Step O:

K_m ea nS - Pick number of classes

- Pick seeds for those classes

CAP4453 23

lterate:

K‘ | | | e a n S Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster

CAP4453 24

lterate:

K‘ m e a n S Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

CAP4453 25

lterate:

K‘ | | | e a n S Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster

CAP4453 26

lterate:

K‘ m e a n S Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

CAP4453 27

lterate:

K‘ | | | e a n S Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster

CAP4453 28

lterate:

K‘ m e a n S Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

CAP4453 29

lterate:

K‘ m e a n S Assign/cluster each example to closest center

Recalculate centers as the mean of the points in a cluster

No changes: Done

CAP4453 30

K-means

lterate:

* Assign/cluster each example to closest center
* Recalculate centers as the mean of the points in a cluster

How do we do this?

CAP4453 31

K-means

Iterate:
= Assign/cluster each example to closest center

iterate over each point:
- get distance to each cluster center
- assign to closest center (hard cluster)

= Recalculate centers as the mean of the points in a cluster

O
o @&) O
OQ o

CAP4453 32

K-means

Iterate:
= Assign/cluster each example to closest center

iterate over each point:
- get distance to each cluster center
- assign to closest center (hard cluster)

= Recalculate centers as the mean of the points in a cluster

40/

O
o @& ®
O

e et

What distance.measure.should we use? .

Distance measures

e
® - — P P
d= |) G2y e W, (Zhr) e

l . 1/2
\ e Euclidean norm]

* L1-norm
b, =(Sl

K-means

Iterate:
 Assign/cluster each example to closest center
* Recalculate centers as the mean of the points in a cluster

. How do we calculate these?

CAP4453 35

K-means

Iterate:
* Assign/cluster each example to closest center
* Recalculate centers as the mean of the points in a cluster

0 = Ziiyz:j Li
j =
ZiiinJ 1

CAP4453 36

K-means loss function

K-means tries to minimize what is called the “k-means” loss function:

n
loss = Z d?(x;, ty,), where u;, is the cluster center for x;
i=1

that is, the sum of the squared distances from each point to the
associated cluster center

K-means: initialization

What would happen here?

Seed selection ideas?

4444444 38

Seed choice

Results can vary drastically based on random seed selection

Some seeds can result in poor convergence rate, or
convergence to sub-optimal clusterings

Common heuristics
* Random centers in the space

Randomly pick examples

Points least similar to any existing center (furthest centers
heuristic)

Try out multiple starting points
Initialize with the results of another clustering method

CAP4453 39

Choosing the Appropriate Number of
Clusters

1.The elbow method
2.The silhouette coefficient

K-Means Clustering in Python: A Practical Guide — Real PythoncApr44s3 40

https://realpython.com/k-means-clustering-python/

Choosing the Appropriate Number of
Clusters

* run several k-means,
* increment k with each iteration

* record the sum of the squared error (SSE)

* The SSE is defined as the sum of the squared Euclidean distances of each
point to its closest centroid

400
Elbow point
300

(W]
A 200

100

1.The elbow method 1 2 3 4 5 6 7 8 9 10

Number of Clusters a1

https://en.wikipedia.org/wiki/Residual_sum_of_squares

Choosing the Appropriate Number of
Clusters A

=
o
o

E 0.55 M : t 3
* run several k-means, e frmym
= o
* increment k with each iteration S 0as
5
* Pick max silhouette coefficient g%
1. How close the data point is to other points in the cluster N 035
2. How far away the data point is from points in other clusters 2 3 4 5 6 7 & 9 10
Number of Clusters
35+
* (b-a)/max(a, b). Where, Sl e ot
a: intra-cluster distance %1 o
b: distance between a sample and) ponoesnam)
the nearest cluster that the sample is not a part of. *; % 0 I
10
: . . Jo L NSy b e, |
2. The silhouette coefficient Capanss ¢ h ety

T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html

Segmenting an image with K-means

* Example:

* Vector: (coordinates i, coordinate j, Color L, Color a, Colorb) : 5 dims

e Distance: Euclidean distance

Number of clusters: 10

Seeds selected randomly

Kmeans function from scratch

ort numpy as np
1 scipy.spatial.distance import cdist
c matplotlib.pyplot as plt

T ocwd

temp _cent = x[point idx].m
centroids.append(temp cent)

centroids = np.vstack{centroids)

cdist(x, centroids ,°’ idean ")
.array([np.argmin(i) for i in distances])

CAP4453 44

Calling Kmeans

imFile "C:\\Wsers\\gonza\ \OneDrive\ \Teaching | \CAP445.
im = cv2.imread(imFile)

LabImg = cv2.cvtColor(im,cv2.COLOR_BGR2LAE)

np.linspace(@, LabImg.s 1, LabImg.shape[@]}.
np.linspace(®, LabImg. _h ap 1, LabImg.shape[1]}.
yv = np.meshgrid(i, j)

numpoints = xv.ravel().shape[@]
LabImg[xv.ravel(),yv.ravel(),@]. Ft_hdettﬂumleﬂt_

LabImg[xv.ravel(),yv.ravel(),1]. I{numpﬂint;
LabImg[xv.ravel(),yv.ravel(},2].re

_x e — Lbmoome % 00 -y
points kmeans (X, 18,58)

newImg[xv.ravel(),yv.ravel() oints
iml=plt.imshow(newImg, cmap="'jet"); plt.colorbar(iml, cmap="jet

newImg = np.zeros((im.shape[@],im.shape[1])})
]=

CAP4453

); plt.show()

45

Results

0 9
-8

50
-7

100
- b

150

200

250

300

0 100 200

CAP4453

46

Outline

* Clustering based
* K-means
e Superpixels (SLIC)

Superpixels

* They carry more information than
pixels.

e Superpixels have a perceptual
meaning since pixels belonging to a
given superpixel share similar visual
properties.

* They provide a convenient and
compact representation of images that
can be very useful for computationally
demanding problems.

Superpixels and SLIC. What is a Superpixel? | by Darshita Jain |
Medium

CAP4453 48

https://darshita1405.medium.com/superpixels-and-slic-6b2d8a6e4f08#:~:text=SLIC%20%28Simple%20Linear%20Iterative%20Clustering%29%20Algorithm%20for%20Superpixel,color%20space%20and%20xy%20is%20the%20pixel%20position.

SLIC (Simple Linear Iterative Clustering)

SLIC (Anchanta et. al. TPAMI 2012)

Input:
 adesired number of approximately
equally-sized superpixels K

Features:

five-dimensional [labxy] space,
* [lab] is the pixel color vector
in CIELAB color space

N | Number of pixels in the input image
. . . .

K Number of Superpixels used to segment the Xy 15 the plxel pOSItIOﬂ.

input image
N/K Approximate size of each superpixel Dista nces
§ = +/N/K | Forroughly equally sized superpixels there

would be a superpixel centre at every grid

| intarval S

-Elr!ﬂl. = ".'.-"r|_|r.|_ — |r.._:"I + I:.ri'I:l. - ..rr;]3 -+ [!'I_|__. — Ir.ill; _|2

_ ..Il] B '-_i‘ I- _|
I-lrJ':-' — ¥ l."! e — L) T I'--i:lr':-' - -I:’I-'-:

i
n, = I'|r_r.-Jr_ + ?i’-ll_l-" :

CAP4453 49

https://en.wikipedia.org/wiki/CIELAB_color_space

SLIC (Simple Linear Iterative Clustering)

SLIC (Anchanta et. al. TPAMI 2012)

1. Get Features: Lab color, x-y position

2. Initialize cluster centers on pixel grid in
steps S

3. Move centers to position in 3x3 window
with smallest gradient

4. Compare each pixel to cluster center within
2S pixel distance and assign to nearest

5. Recompute cluster centers as mean

+ Fast 0.36s for 320x240

color/position of pixels belonging to each §itagilarsupapEils
cluster + Superpixels fit boundaries

. . - May miss thin objects
6. Stop when residual error is small - Large number of superpixels

CAP4453 50

SLIC Example

|. Convert the RGB 1mage to CIELAB color space.

CAP4453 51

http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

SLIC Example

2. Initialize cluster centers C, = [/, a,; b,,; x;; y,]7 by sampling
pixels at regular grid steps S.

number of pixels
in the image

N/[(:S

I

desired number
of superpixels

CAP4453 52
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

'JJ

SLIC Example

Move cluster centers to the lowest gradient position in a 3x3
neighborhood.

This is done to avoid placing them at
an edge and to reduce the chances of
choosing a noisy pixel

CAP4453 53
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

SLIC Example

3. Move cluster centers to the lowest gradient position in a 3x3
neighborhood.

G(x,y) = "l(X+ 1,y)—|(x—1,y)||2+||I(x,y+ 1)_|(xly_1)"2

* I(x,y) is the lab vector corresponding to the
pixel at position (x,y),

e |||l is the L2 norm.

CAP4453 54
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

SLIC Example

A 2D label matrix L as large as the input image will contain
the superpixel each pixel belongs to. L 1s initialized with -1

for all pixels.

(meaning that each pixel belongs to no superpixel in the beginning)

-1

Al -1]-1]-1]-1
A 1] 1] 1]
L= 4] -1] -1
11 -7

CAP4453
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

SLIC Example

A 2D distance matrix d as large as the input 1image will
contain the distance of each pixel to the centroid of its
superpixel. d 1s initialized with oo for all pixels.

(distance to superpixel centroid in the beginning)

2 2
o0 |00 | oo |00 00" dS:J(xj_xi) + () =)
CO|joO|CO |CO | T
d= [= [l do= (= 1) + (a— @)’ + (5~ b)’
cO | 00
o

CAP4453

56
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

SLIC Example

A 2D distance matrix d as large as the input image will
contain the distance of each pixel to the centroid of its
superpixel. d 1s initialized with oo for all pixels.

(distance to superpixel centroid in the beginning)

2
d
0 |oo oo |oo |oo D — (df)2+(?5) 2
o0 |oo|oo|or

controls the relative importance of
shape and color

n
lg]8]8]8

3

3

m large — favors more compact (lower area to
perimeter ratio) superpixels.

m small — favors more adherence to edges.

CAP4453

57
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

SLIC Example

0. repeat
for each cluster center C, do
for each pixel 7 in a 2S5 x2S region around C, do
Compute the distance D between C, and i.

if D < d(i) then
setd(i)=D
set L(i) =k
end if
end for
end for

compute new cluster centers.
compute residual error E.
until £ < threshold.

CAP4453 58
http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

Example 1: image size = 735%980 pixels
K = 1333 superpixels; m =40

CAP4453 59

More examples

'o

CAP4453 60

Outline

* Image segmentation basics
* Thresholding based

* Binarization
* Otsu

* Clustering based
e K-means (SLIC)

* Region based
* Merging
 Splitting

Image segmentation methods

Machine Region Based

Learning methods (
based region

methods growing, ..)

Image
Segmentation

Enerey methods

minimization
methods(MRF,..)

Shape based Graph-based
methods methods
(level set, (graph-cut,

active random walk,
contours) ..)

CAP4453 62

Region based segmentation

Region:
A group of connected pixels
with similar properties

Closed boundaries

Computation of regions is
based on similarity

Regions may correspond to Objects
in a scene or parts of objects

Spatial proximity + similarity
CAP4453 63

Region growing

* For segment generation in grey-level or color images, we may start at
one seed pixel (x,y,1(x,y)) and add recursively adjacent pixels that
satisfy a “similarity criterion” with pixels contained in the so-far
grown region around the seed pixel.

* Defining similarity criteria alone is not an effective basis for
segmentation

* It is necessary to consider the adjacency spatial relationship between
pixels

Region growing

* Algorithm

1. The absolute intensity difference between candidate pixel and the
seed pixel must lie within a specified range

2. The absolute intensity difference between a candidate pixel and the
running average intensity of the growing region must lie within a
specified range;

3. The difference between the standard deviation in intensity over a
specified local neighborhood of the candidate pixel and that over a
local neighborhood of the candidate pixel must (or must not) exceed a
certain threshold

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

N International Journal of Computer Vision 3%2), 167-181, 2004
(@) 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Graph-Based Image Segmentation

PEDRO F. FELZENSZWALB
Artificial Imtelligence Lab, Massachusetts Institute of Technology
pff@ainutedn

DANIEL F. HUTTENLOCHER
Computer Science Department, Cornell University
dphi@cs_cornelledu

Recerved September 24, 1999; Revised August 26, 2003; Accepred September 17, 2003

Abstract. This paper addresses the problem of segmenting an image into regions. We define a predicate for
measuring the evidence for a boundary between two regions using a graph-based representation of the image. We
then develop an efficient segmentation algorithm based on this predicate. and show that although this algorithm
makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image
segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results
with both real and synthetic images. The algorithm runs in time nearly linear in the number of graph edges and
is also fast in practice. An important characteristic of the method is its ability to preserve detail in low-variability
image regions while ignoring detail in high-variability regions.

Keywords: image segmentation, clustering, perceptual organization, graph algorithm

CAP4453 66

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

Qriginal Image Incorrect Segmentation Correct Segmentation

CAP4453 67
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

*Grid Graph: Each pixel is only connected with surrounding
neighbors (8 other cells in total). The edge weight is the
absolute difference between the intensity values of the
pixels.

*Nearest Neighbor Graph: Each pixel is a point in the
feature space (x, v, r, g, b), in which (x, y) is the pixel
location and (r, g, b) is the color values in RGB. The weight
is the Euclidean distance between two pixels’ feature

vectors.

CAP4453 68
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

smallest
8 @ WE%
combine cnmpunents next edge

@G) ®@ @® %
o0

o0

combine components no more edges that satisfy the

S5 He

Image Segmentation With Felzenszwalb’s Algorithm ' Analvt|cs Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

00 “Feo%
0o 00

@G) @@ @@ %
O/ ®e

combine components no more edges that satisfy the

5% H6
00 >

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.

2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviy) < MInt{C* %, 1); otherwise do nothing.

P4453 70

CA
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

Original Image Incorrect Segmentation Correct Segmentation
S @ @ ,
Too Fine Neither Too
Coarse nor Too Coarse
Too Fine

P4453 71
Image Segmentation With Felzenszwalb’s Algorithm ' Analvt|cs Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

Internal difference: Int(C) = max.cpmstcgwie) , where MST is
the minimum spanning tree of the components. A
component ‘C’ can still remain connected even when we
have removed all the edges with weights < Int(C). In other
words, Internal Difference is the maximum edge weight that
connects two nodes of the same component.

72

CAP4453
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

Difference between two components

The difference between the two components is the minirmum weight edzge that connects a2 node v, in

component C4 to node v; in Cs.

*Dif (C1,C2)=min;cc vieca, wiviee W(Vi,vi) and Dif(C1,C2)=co if
there is no edge in-between. this can also be understood as
the difference between two components. The difference
between the two components is the minimum weight the
edge that connects a node v;in component C, to node v;in C,.

CAP4453 73
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

Minimum Internal Difference

| @ MInt(C1,C2) = min(Int(C1) + T(C1), Int(C2) + T(C2))
y o where t(C)=k/|C|.

True if Dif(Cy,Cs) > MInt(Cy,Cs)

Stop merging criteria
False otherwise

D(Cy,C5) = {

CAP4453 74
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.

Pedro F. Felzenszwalb, Daniel P. Huttenlocher

MInt(C1,C2) = min(Int(C1) + T(C1), Int(C2) + t(C2))

olf k is large, it causes a preference for larger objects. _
e k does not set a minimum size for components. where T(C)=k/|C].

PP

@ small k large k

True if Dif(Cy,Cs) > MInt(Cy,Cs)

Stop merging criteria
False otherwise

D(Cy,C5) = {

CAP4453 75
Image Segmentation With Felzenszwalb’s Algorithm ! - Analytics Vidhya

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/
http://cs.brown.edu/people/pfelzens/papers/seg-ijcv.pdf

Efficient Graph-Based Image Segmentation.
Example (4x4 image)

CAP4453 76

Efficient Graph-Based Image Segmentation.
Example (4x4 image)

~_ ~
-
~
>< Ry
P - |
~ - ~

~ T~ -1
NPT - ~_ .-

< 1 S 1 ~ 1
-<q >J Pras

- TR SO

o
[N - ~
\ ~_-"
~.
17!
-
')

~

1
1
-

Build a graph

CAP4453 77

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

Build a graph

Z P
1 ~ -
-
1 - 1
~ -
1 ~ <& 1
S
! J
~< I
1 \\N 1
.~

CAP4453

78

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

Build a graph

~ - !
~ - 1
1 - 1
~ -
1 ~< 1
P
1 ~< 1
~ 1
SS
~< |

56

-
-
- 1
-
-
- 1
-
1
~o]
~o |
~
~
~ |

- I
-
P
- I -
. _
< >.<
~ Pt
~
~o ,
Mg -
~ | -

61!

=~
- ~
- ~
- I ~
-
-
- 1
el 6 X
~
S
S
~o 1
Sa -7

=TS
PESEIS
- ~
- 1 ~
-~ S
~ - ~
~ - ! ~ -
~.- =2
->< _-
S -
S i’
~o [
= L=
=~

- [
-
-
- 1
-
- 1
-
~ 62'
~ I
~
~o |
~
~
~ 1

CAP4453

79

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

Pra sy 3 —= T
< - 1 ~< 1
~o - 1 ~o - 1
~ -~ ~ -
~, - 1 ~< 1
”\ -~<
- ~ ! - ~< 1
- ~< 1 _-- hES 1
7 RN L 9 - !
- T~ P
1 S~ - 1
~o P 9 -~
~ - 1 ~o _- 1
g | ~c |
PR ><
- ~ - EN
-~ ~< 1 _- ~< 1
SS ! - ~ !
~ - ~
<~ - 69 ~ 1
;3 PEA IS ;6 - 1
- ~ -
~o - ! S< - !
- ~
~o _- 1 ~o - 1
~,.- -
> ~>3 1
- ~ - ~
- ~o _- ~ 1
~
-~ ~ 1 ‘,’ S 1
~
S~ L S~ o1
=

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V|=n, |E|=m. Where |V/| is the number of

vertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,008m.
2. Initially, each pixel stays in its own component, so we start with n components.
3. Repeat for k=1,....m:

* Thesegmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek=(v;, vj).

Ifv; and V; belong to the same component, do nothing and thus §¢=5"1,

If v; and v; belong to two different components C*"* and C*~* as in the segmentation of 5" we want to
merge them into one if wiviv;) <M Int[C-“'L.Cj“'"lj; otherwise do nothing.

CAP4453 80

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~__ 8 8
~ -
| ~o - H
~ - ~ -
1 ~ - ~ -
~ - | ~ -
~o_~- ~ -
1 s< ~_-
>< | >
1 PRI } ->Z
- ~ - ~
~
1 _-" S~o | Pis ~
- ~
~ <~ 7
=
o~ o PR
~ - ~ -
1 ~ - ~ -
~ - 1 ~ -
1 ~ - M ~< -
< -
- <
P2
56: gab 52 - .
~ - ~
! Ple ~o | - ~<
~
-7 S I/
= 63
" 68
S 73
TS -1
| ~< 1
So -~ ~So -
] - 1 ~ -
“~_- ~ -
o~ h ~ -
1 =< >
- >
~
1 - ~So - S<
X - ~< h _- ~o
- 63
_— s : 1
= 7

3 -~ \
1
<2 - M
S
~<” 1
<
PRl
_- ~ 1
- SS 1
9 h !
/"I
. 1
< -
<~ - 1
~ -
Ssc |
><
-~ S~ 52I
- ~
_- S~ .
<
69 =
;6 - I
- 1
S~o s 1
~ -~
> 1
->Z
- ~
- ~ I
- ~
~ |
S

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

W(”i; vj) =0 Mint(C1,C2) = min(Int(C1) + T(C1), Int(C2) + t(C2))

where T(C)=k/|C|.

CAP4453 81

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

e 8 -T s 3 -7
\\\ - So -
~o -~ | ~o |
~. -7 1 ~<” 1
- ~ PR
- S ! - ~ 1
- S~ ! - S~ !
Pl 7 < 1 - 9 ~o |
< T~ =
SS SS -~
-
<3 _- 1 N ¢ . 1
~ P S -
~ 1 < - 1
< S ”
PRk I > 1
-~ ~ I -7 < I
- \\ /’ \\
- ~ 1 - 1
N
- 70 ~So0 - 69 ~o
~ ;3 PEA MRS ;6 -]
~o _
1 - 1
< - < -
< - ~
~< - | < - 1
- ~_-
~,- > \
- >>Z
>=J - <~
_- - - ~ 1
- ~ - ~
.- < \ < |
-
- 1 - - ~
7 = .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

W(”i; vj) =0 Mint(C1,C2) = min(Int(C1) + T(C1), Int(C2) + t(C2))

where T(C)=k/|C|.

Let’s make k=100
CAP4453 82

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

=T 8 —=v<T 3 —=T
S ! < 1
- -
<. _- | <. |
~.- 1 ~<” 1
- ~ PN
- S ! - ~ 1
.- S~ ! -~ S~ !
Pis 7 <~ ! .- 9 ~o |
< T~ =7
SS SS -~
-
~ _- 1 ~L _ 1
~ - S -
~ 1 ~ - 1
< S
Pk I > 1
-~ AR 6I ”’ \\\ !
- ~ 5 - ~
- 1 - 1
~
- 70 ~So0 - 69 ~o
~ ;3 PEA MRS ;6 -]
~ -
~ 1 - 1
~ - ~ -
~ P ~
~ - | ~ - 1
~ - ~,-
~,- > |
> ->Z
>3 - ~
_- - - ~ 1
- ~ - ~
_- ~ | < |
-
=7 7| ~. L= S~ 1
~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

W(”i; vj) =0 MInt(C1,C2) = min(Int(C1) + t(C1), Int(C2) + t(C2))
100
T(Cl) =
Let’s make k=100 1(1)0
CAP4453 T(C2) = 1 83

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

e 8 - 8
~ -
| ~o - H
~ - ~ -
1 ~ - ~ -
~ - 1 ~ -
~o_~- ~ -
1 s< ~_-
>< | >
| PRI \ ->Z
- ~ - ~
~
1 _-" S I - ~
- ~
- ~ | 7
=
o~ PR
~ - ~ _
1 ~ - ~ -
~ - 1 ~ -
1 ~ - M ~< -
< -
- <
P2
56! -l 52 -0 .
~ - ~
! Ple ~o | - ~<
~
- S I/
L= 63 =
" 68
S 73
TS -1
| ~< 1
~o - ES -
1 Pis | ~< -
~ -
1 ~ | S=Z
- ~o -7~
1 - ~So - S<
X - ~< h _- ~o
- 63
P S 1
= 7

3 -~ \
1
<2 - M
S
~<” 1
<
PRl
_- ~ 1
- SS 1
9 h !
/"I
. 1
< -
<~ - 1
~ -
Ssc |
><
-~ S~ 52I
- ~
_- S~ .
<
69 =
;6 - I
- 1
S~o s 1
~ -~
> 1
->Z
- ~
- ~ I
- ~
~ |
S

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 0 < Mint(C1,C2)=100

100

T(Cl) =

Let’s make k=100 1(1) 0
CAP4453 T(C2) = —

1 84

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

e 8 Sahh 3 -7
\\\ - So -
~o -~ | ~o |
~. -7 1 ~<” 1
- ~ PR
- S ! - ~ 1
- S~ ! - S~ !
Pl 7 < 1 - 9 ~o |
< T~ =
SS SS -~
~ - 1 ~ 1
~ _ S
~ P S -
~ 1 < - 1
< S ”
PRk I > 1
-~ ~ I -7 < I
- \\ /’ \\
- ~ 1 - 1
N
- 70 ~So0 - 69 ~o
~o ;3 PEA MRS ;6 -]
<
~ - ! ~ - !
< - ~
~< - | < - 1
- ~_-
~,- > \
- >>Z
>=J - <~
_- - - ~ 1
- ~ - ~
.- < \ < |
-
- 1 - - ~
7 = .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 0 < Mint(C1,C2)=100

(C,) = 100 MERGE THEM !
Let’s make k=100 1(1) 0
CAP4453 T(C2) = —

1 85

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

=T 8 —=v<T 3 —=T
S ! < 1
- -
~< - 1 ~< 1
~ ~ -
~,- 1 ~< 1
> >
->Z PRalN
- S ! - ~ 1
.- S~ ! - S~ !
Pis 7 <~ ! .- 9 ~o |
< T~ =7
SS SS -~
~ -~ 1 ~ 1
< - X
~ - S -
~ 1 ~ - 1
< ~ -
e 1 >< 1
PRt <
- ~ 1 - ~ 1
- S - S
- ~ 1 - 1
~
- 70 ~So0 - 69 ~o
~o ;3 PEA MRS ;6 -]
S - ! ~ - !
~ P ~
~o - | ~ - 1
- ~,-
~,- >
> 1
->Z
PO - ~
~ - ~ 1
Phg ~ - ~
_- ~ | < |
-
P ~. L~ |
;1 ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 0 < Mint(C1,C2)=100

(C,) = 100 MERGE THEM !
Let’s make k=100 1(1) 0
CAP4453 T(C2) = —

1 86

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

=T 8 —=v<T 3 —=T
S ! < 1
- -
~< - 1 ~< 1
~ ~ -
~,- 1 ~< 1
> >
->Z PRalN
- S ! - ~ 1
.- S~ ! - S~ !
Pis 7 <~ ! .- 9 ~o |
< T~ =7
SS SS -~
~ -~ 1 ~ 1
< - X
~ - S -
~ 1 ~ - 1
< ~ -
e 1 >< 1
PRt <
- ~ 1 - ~ 1
- S - S
- ~ 1 - 1
~
- 70 ~So0 - 69 ~o
~o ;3 PEA MRS ;6 -]
S - ! ~ - !
~ P ~
~o - | ~ - 1
- ~,-
~,- >
> 1
->Z
PO - ~
~ - ~ 1
Phg ~ - ~
_- ~ | < |
-
P ~. L~ |
;1 ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 1 < Mint(C1,C2)=100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 87

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~__- ~ ~ -
1 s< | ~,- 1 S< 1
>< > P
| PRGN ->< | PRl h
- ~< | _- ~< _- ~
| - S~ I .- S< | - S< |
1 _- 3 ~ol .- 7 - 1 _- 9 ~< |
=
o~ o PEARS T o~o PEaN]
1 S s - SS - 1 N - 1
~ 1 ~ - >
N - ~ - S -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
1 ~T < 1 >< 1
< PRalS ><
| -7 S 52I - ~ 1 -7 S~ 52|
- ~ 1 -~ ~ - ~
1 - = -~ R 1 - = 1
V- ~o - ~ ~~_
-~ ~ ~ 69 <
b ;3 7
1 So PR PN - 1
- ~
1 ~< - 1 ~< _ 1 - - 1
~o - ~ - ~ -
| - | ~ - 1 ~ - 1
“~_- ~ - ~.-
. W S=Z il 1
1 PRars > ->Z
~ ->3 - ~
- ~ - ~ - ~ |
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
-
- Y P s L= S~ o1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 1 < Mint(C1,C2)=100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 88

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~__- ~ ~ -
1 s< | ~,- 1 S< 1
>< > P
| PRGN ->< | PRl h
- ~< | _- ~< _- ~
| - S~ I .- S< | - S< |
1 _- 3 ~ol .- 7 - 1 _- 9 ~< |
=
o~ o PEARS T o~o PEaN]
1 S s - SS - 1 N - 1
~ 1 ~ - >
N - ~ - S -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
1 ~T < 1 >< 1
< PRalS ><
| -7 S 52I - ~ 1 -7 S~ 52|
- ~ 1 -~ ~ - ~
1 - = -~ R 1 - = 1
V- ~o - ~ ~~_
-~ ~ ~ 69 <
b ;3 7
1 So PR PN - 1
- ~
1 ~< - 1 ~< _ 1 - - 1
~o - ~ - ~ -
| - | ~ - 1 ~ - 1
“~_- ~ - ~.-
. W S=Z il 1
1 PRars > ->Z
~ ->3 - ~
- ~ - ~ - ~ |
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
-
- Y P s L= S~ o1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 1 < Mint(C1,C2)=100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 89

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~< 1 - ~ -
1 _-- ~<o | _-- ~< 1 - ~< |
Lo 3 edeetT g R e
=
o~ PEARS T o~o PEaN]
h ~o - ~< - h ~< - H
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
h ~ pRS | ~c |
3 PRaS ><
' PRy 5 ZI - - M PRIl 5 !I
- ~ 1 -~ ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
= = = 69 =
b 3 6
S 7
I~ < o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > ->Z
- ~ - ~ - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ - ~
1 - ~o ! - ~ o < |
- ~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 1 < Mint(C1,C2)=100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 90

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~< 1 - ~ -
1 _-- ~<o | _-- ~< 1 - ~< |
Lo 3 edeetT g R e
=
o~ PEARS T o~o PEaN]
h ~o - ~< - h ~< - H
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
h ~ pRS | ~c |
3 PRaS ><
' PRy 5 ZI - - M PRIl 5 !I
- ~ 1 -~ ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
= = = 69 =
b 3 6
S 7
I~ < o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > ->Z
- ~ - ~ - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ - ~
1 - ~o ! - ~ o < |
- ~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 2 < Mint(C1,C2) =100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 91

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~< 1 - ~ -
1 _-- ~<o | _-- ~< 1 - ~< |
Lo 3 edeetT g R e
=
o~ PEARS T o~o PEaN]
h ~o - ~< - h ~< - H
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
h ~ pRS | ~c |
3 PRaS ><
' PRy 5 ZI - - M PRIl 5 !I
- ~ 1 -~ ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
= = = 69 =
b 3 6
S 7
I~ < o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > ->Z
- ~ - ~ - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ - ~
1 - ~o ! - ~ o < |
- ~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 2 < Mint(C1,C2) =100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 92

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~< 1 - ~ -
1 _-- ~<o | _-- ~< 1 - ~< |
Lo 3 edeetT g R e
=
o~ PEARS T o~o PEaN]
h ~o - ~< - h ~< - H
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
h ~ pRS | ~c |
3 PRaS ><
' PRy 5 ZI - - M PRIl 5 !I
- ~ 1 -~ ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
= = = 69 =
b 3 6
S 7
I~ < o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > ->Z
- ~ - ~ - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ - ~
1 - ~o ! - ~ o < |
- ~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 2 < Mint(C1,C2) =100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 93

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~< 1 - ~ -
1 _-- ~<o | _-- ~< 1 - ~< |
Lo 3 edeetT g R e
=
o~ PEARS T o~o PEaN]
h ~o - ~< - h ~< - H
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
h ~ pRS | ~c |
3 PRaS ><
' PRy 5 ZI - - M PRIl 5 !I
- ~ 1 -~ ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
= = = 69 =
b 3 6
S 7
I~ < o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > ->Z
- ~ - ~ - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ - ~
1 - ~o ! - ~ o < |
- ~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to

merge them into one if wiviv;) = MInt{C* 'L.Cj“" 1): otherwise do nothing.

W(vi: vj) — 2 < Mint(C1,C2) =100

(C,) = 100 MERGE THEM !
with k=100 1(1) 0
CAP4453 T(C2) = —

1 94

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 1% 8 - ~ - !
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~ - ~ - ~ -
1 s< | ~.- 1 S< 1
>< > P
| PRGN T~ 1 RS 1
g ~o 1 Pl ~ -
| - S~ I .- S< | - S< |
1 _- 3 ~.1 .- 7 - 1 _- 9 ~< |
=
o~ PEARS T o~o PEaN]
h S~ o - ~< - h ~< - h
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
| <~ pRS | ~c |
3 PRaS ><
. PRy 5 ZI - - M PRIl 5 !I
- ~ 1 - ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
-~ ~ ~ 69 ~
b 3 6
EES 7
RS o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > -><
- ~ - ~ - ~
- ~ - ~ - ~ 1
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- ~ - - ~
- - S L ~_1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =2 <MInt(C2,C3) = min(Int(C2) + T(C2), Int(C3) + T(C3)) = 51

100
T(CZ) = T =50

100
T(Cz) = T = 50

with k=100 Int(C,) = 1

CAP4453

Int(C;) =1

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 1% 8 - ~ - !
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~ - ~ - ~ -
1 s< | ~.- 1 S< 1
>< > P
| PRGN T~ 1 RS 1
g ~o 1 Pl ~ -
| - S~ I .- S< | - S< |
1 _- 3 ~.1 .- 7 - 1 _- 9 ~< |
=
o~ PEARS T o~o PEaN]
h S~ o - ~< - h ~< - h
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
| <~ pRS | ~c |
3 PRaS ><
. PRy 5 ZI - - M PRIl 5 !I
- ~ 1 - ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
-~ ~ ~ 69 ~
b 3 6
EES 7
RS o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > -><
- ~ - ~ - ~
- ~ - ~ - ~ 1
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- ~ - - ~
- - S L ~_1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =2 <MInt(C2,C3) = min(Int(C2) + T(C2), Int(C3) + T(C3)) = 51
MERGE THEM !!

100
T(CZ) = T =50

100
T(Cz) = T = 50

with k=100 Int(C,) = 1

CAP4453

Int(C;) =1 °

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 1% 8 - ~ - !
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~ - ~ - ~ -
1 s< | ~.- 1 S< 1
>< > P
| PRGN T~ 1 RS 1
g ~o 1 Pl ~ -
| - S~ I .- S< | - S< |
1 _- 3 ~.1 .- 7 - 1 _- 9 ~< |
=
o~ PEARS T o~o PEaN]
h S~ o - ~< - h ~< - h
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
| <~ pRS | ~c |
3 PRaS ><
. PRy 5 ZI - - M PRIl 5 !I
- ~ 1 - ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
-~ ~ ~ 69 ~
b 3 6
EES 7
RS o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > -><
- ~ - ~ - ~
- ~ - ~ - ~ 1
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- ~ - - ~
- - S L ~_1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =2 <MInt(C2,C3) = min(Int(C2) + T(C2), Int(C3) + T(C3)) = 51
MERGE THEM !!

100
with k=100 7(C;) = ——= 50 Int(C,) =1
100
CAP4453 () =—=50 Int(C;)=1 9

2

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 1% 8 - ~ - !
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~ - ~ - ~ -
1 s< | ~.- 1 S< 1
>< > P
| PRGN T~ 1 RS 1
g ~o 1 Pl ~ -
| - S~ I .- S< | - S< |
1 _- 3 ~.1 .- 7 - 1 _- 9 ~< |
=
o~ PEARS T o~o PEaN]
h S~ o - ~< - h ~< - h
S - 1 N - N -
1 ~ - ~ 1 ~ - 1
~ - 1 ~ -
| <~ pRS | ~c |
3 PRaS ><
. PRy 5 ZI - - M PRIl 5 !I
- ~ 1 - ~ - ~
1 - ~ - SS 1 -~ S~ 1
1 P So I,’ ~ 1 ~ 1
-~ ~ ~ 69 ~
b 3 6
EES 7
RS o < PE N / PR
| ~ < _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
~_- ~ - ~.-
o~ (] ~ - kd 1
1 ~ > -><
- ~ - ~ - ~
- ~ - ~ - ~ 1
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- ~ - - ~
- - S L ~_1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =3 <MInt(Ci,C4) = min(Int(Ci) + T(Ci) , Int(C4) + T(C4)) = 52

100
T(Ci) = T = 100

100
T(C4) = T = 50

ITlt(Ci)

Il
o

with k=100

CAP4453

Int(C,) =2 °

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~
-

56! el

| - S~

L="" 63

b

IR

1 S~ _-

1 S~L_-"
61 R

1 _-- ~<

1 Pis

L--""63

=

~c
>
- <
- ~
<
69 =
;6 - !
- I
S~o - 1
~ -~
- i
>>Z
- <
- < ,
- ~
- \
<
~ 1

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
e take the k-th edge in the order, ek=[v;, v;.

L]
T
kil
o
=
-
[
[}
L
5
i
ih
=
=}
-
i
=
=
i
=
T
=
=]
[X5)
)
o
i
X
k]
o |
P
iy
~
]
L
o
L
=
o
=
im
o
ey
=
ih
=
=]
¥]
o
o
=
=3
L]
-
i
X
-
=
¢
-
=
[o¥]
=}
=}
i
[}

with k=100

CAP4453

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~ - ~ - ~ -
1 s< | ~, - 1 ~< 1
>< > P
| ~75< -7~ 1 [SEREN 1
- ~ | - -
- ~o - ~o - ~
! Pid ~o 1 - ~ 1 < |
1 _- 3 ~.1 .- 7 - 1 _- 9 ~o |
IR PIARTS IS P
1 S s - SS - 1 N - 1
~ - 1 ~ - ~ -
~ ~ - ~ -
1 - ~ 1 ~ - 1
~_ .- 1 <. S~ ”
1 S sy 1 >< 1
kY 1 PRES
1 - ~ - ~ 1 - ~ 1
- ~ | - ~ - ~
h - ~ _- ~o h _- s h
1 P S I,’ ~ 1 ~ 1
-~ ~ - 69 ~
b 3
EES 7 < 7
~
1 ~ PR PN - 1
~ -
| ~ - 1 ~o _ 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
~_- ~ - ~, -
- \ ~.- > 1
1 PRars > ->Z
~ ->< - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- ~ - - ~
- (I S L =1
= g ~ g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =3 <MInt(Ci,C4) = min(Int(Ci) + T(Ci) , Int(C4) + T(C4)) = 52
MERGE THEM !!

100
T(Ci) = T = 100

100
T(Cy) = — =

ITlt(Ci)

Il
o

with k=100

CAP4453

50 Int(C,) =2 10

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - 1 ~ - ~
~o_- ~ - ~o _-
1 s<) ~.- 1 ~< 1
>< > <
1 - ~ T~ 1 - ~ 1
- ~ \ - ~ - ~
- ~o - ~o - ~
! - ~o 1 - ~ 1 N 1
Lo 3 i R e
=
o~ PEARTS T o~< P
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - 1 ~ - & -
~ ~ - < -
1 - ~ 1 ~ - 1
~ - 1 ~ -
I <~ < 1 Sz 1
N PRl ><
1 R ' - = 56' -7t !
- -
, _- S< 1 s S~ | -7 S~ 1
- -
. = 63 = I” 0 e = 69 \\\I
b 3
1 So PR ; PN ; - 1
~ - ~ -
| < - 1 ~< - 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - > 1
1 ~ - ->Z
- ~ -~ - ~
~ - - ~ 1
| - ~ -~ S - ~
1 - ~\\ 1 - ~ 1 _ ~ 1
- ~ - - ~
C - 1~ T = 1
= . = .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) = 3 < MInt(C1,C4) = min(Int(C1) + ©(C1), Int(C4) + T(C4)) = 36.3
MERGE THEM !!

100
T(Cl) = T =50

100
T(C4) = 5

with k=100 Int(C;) =0

CAP4453

=333 Int(C,) = 3.

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

< 8 =~ PSS = T
~ - - ~ -
| ~ - - | ~ - |
~ 1 ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ - 1
~ - | ~ - ~ -
~o_~- ~ - ~ -
1 s< | ~,- 1 S< 1
>< > <
PR ->< ~
1 _- ~o | _ - 1 _- ~< 1
1 - ~So I - ~SNo 1 - ~o 1
1 - SS ~ 1 z ~ 1
- ~ | 7 ~ - ~
[N PIARTS - [T -
~ - ~ - ~ -
1 ~ ~ - 1 ~ 1
< 1 ~ - X -
N - ~ - S -
! ~ -~] ~ - 1 ~o - 1
1 ST s 1 >< 1
56 s | T 56 -~ 52
- -
| -7 S~ ! ~ S~ | -7 S~ |
- So 1 ~ - ~
- ~J- ~ - ~
| -~ ~ 0 - <~
~ 6
S 73
I o~ P T ~< 7 — T
| ~ - 1 - | ~o |
< _ < -
~o _ - _- ~o -
1 - | ~ - 1 ~ - 1
~ - ~
S, S, - =z
1 b2 | > ->Z 1
- ~ - ~ - ~
- ~ - ~ - ~]
1 - - ~
- S - ~ -, ~
| - ~ 1 - ~ 1 - ~ 1
- So ~ - ~
- I s L ~_1
= ~

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

If v; and v: belong to the same component, do nothing and thus gk=gx1,

v; and v; belong to two different components C"* and C*~* as in the segmentation of S*"* we want to

em into one if wiviy;) <M Int[C-“'L,Cj“" 1): otherwise do nothing.

DO NOTHING !!

CAP4453 102

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - 1 ~ - ~
~o_- ~ - ~o _-
1 s<) ~.- 1 ~< 1
>< > <
1 - ~ T~ 1 - ~ 1
- ~ \ - ~ - ~
- ~o - ~o - ~
! - ~o 1 - ~ 1 N 1
Lo 3 i R e
=
o~ PEARTS T o~< P
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - 1 ~ - & -
~ ~ - < -
1 - ~ 1 ~ - 1
~ - 1 ~ -
I <~ < 1 Sz 1
N PRl ><
1 R ' - = 56' -7t !
- -
, _- S< 1 s S~ | -7 S~ 1
- -
. = 63 = I” 0 e = 69 \\\I
b 3
1 So PR ; PN ; - 1
~ - ~ -
| < - 1 ~< - 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
o~ (] ~ - > 1
1 ~ - ->Z
- ~ -~ - ~
~ - - ~ 1
| - ~ -~ S - ~
1 - ~\\ 1 - ~ 1 _ ~ 1
- ~ - - ~
C - 1~ T = 1
= . = .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =5 < MInt(Ci,C1) = min(Int(Ci) + ©(Ci) , Int(C1) + T(C1)) = 24
MERGE THEM !!

100
with k=100 7(C) = — =100 Int(C;) =0
100
CAP4453 T(Cl) — — 20

- Int(Cy) = 4 103

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~ | - -
- S - N - ~
! P ~< 1 _- ~ 1 < |
1 _- 3 ~ol .- 7 - 1 _- 9 ~< |
=
! \\\ 58 -7 \\\ 68 ! \\\ "’I
1 ~ - ~ -~ 1 ~ 1
~o - 1 S - NS -
1 - ~ 1 ~ - 1
~ - 1 ~ -
- pRS ~c
1 ~ P 1 < 1
RS 1 PralS
1 - ~ -7 So 1 - So 1
. - ~< 1 - ~ 1 -~ ~ 1
- -
V- ~o - ~ ~<_
-~ ~ ~ 69 <
b 3
S 7 =T 7
~
1 ~ PR PN - 1
~ -
| ~ _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
~ | S=Z > 1
1 PRy > ~><
~ ->3 - ~
- ~ - ~ - ~ 1
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- <~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =5 < MInt(Ci,C1) = min(Int(Ci) + ©(Ci) , Int(C1) + T(C1)) = 24
MERGE THEM !!

100
with k=100 7(C) = — =100 Int(C;) =0
100
CAP4453 T(Cl) — — 20

- Int(Cy) = 4 1o

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

T < <
e 8 -7 15~ 8 - =~ - .
1 ~ - 1 1
~ | ~
~ - ~ - ~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_~- ~ - ~ -
1 s< | ~.- 1 S< 1
>< > <
| PRGN T~ 1 RS 1
- ~ | - -
- S - N - ~
! P ~< 1 _- ~ 1 < |
1 _- 3 ~ol .- 7 - 1 _- 9 ~< |
=
! \\\ 58 -7 \\\ 68 ! \\\ "’I
1 ~ - ~ -~ 1 ~ 1
~o - 1 S - NS -
1 - ~ 1 ~ - 1
~ - 1 ~ -
- pRS ~c
1 ~ P 1 < 1
RS 1 PralS
1 - ~ -7 So 1 - So 1
. - ~< 1 - ~ 1 -~ ~ 1
- -
V- ~o - ~ ~<_
-~ ~ ~ 69 <
b 3
S 7 =T 7
~
1 ~ PR PN - 1
~ -
| ~ _ 1 ~< _ 1 - - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
“~_- ~ - ~.-
~ | S=Z > 1
1 PRy > ~><
~ ->3 - ~
- ~ - ~ - ~ 1
1 - - ~
- S - ~ - ~
| - ~o ! - ~ [~ 1
- <~ - - ~
- - s L ~_1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =5 < MInt(Ci,C1) = min(Int(Ci) + T(Ci) , Int(C1) + T(C1)) = 24.6
MERGE THEM !!

100
T(Ci) = T = 100

100
T(Cl) = T = 16.6

with k=100 Int(C;) =0

CAP4453

Int(C,) = 81

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

=~ 8 =< 8 =T =
N - PEAIS -
1 ~o - 1 - 1 - 1
1 N - ~ - 1 ~ -]
~ - I ~ - ~
~ - ~ .- ~—-
1 sz | ~,- 1 ~< 1
>< ~ >
| B PR | Bty |
- S~ I - ~ -
1 _-" S~o 1 -~ RS 1 - S< 1
T | RS 7 ~.L--" 9 S !
=
IS PEARTS [IRRES P
R - -~ - RN -~
~ - 1 ~ P > -
N - < - < -
1 ~ - ~ 1 ~ - 1
- 1 ~ -
~ - < Sz
1 >3 PRaS 1 >< 1
- ~ | - ~
1 ~ -~ ~ 1 - ~ 1
-7 So 1 - ~So - ~<
1 P ~ | ~ 1 - N 1
. = 63 \\y’ ;0 RN z 69 RN
3 3 6
== / /
1 o~o _- 1 PEI IS = T
1 S S ~ 1 - _ 1 - -~ 1
~So - ~ - ~ -
] - 1 ~ - 1 ~ - 1
- ~ .- <.
o~ ~ - >
(|
| ~ > -7~
- ~ -0~ - ~
, .- - AR - - |
. -~ .- - - N
V- < - ~ v - i
-
Vo ~ .l <~ L~ |
= . S .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =5 < MInt(Ci,C1) = min(Int(Ci) + T(Ci) , Int(C1) + T(C1)) = 24.6
MERGE THEM !!

100
T(Ci) = T = 100

100
T(Cl) = T = 16.6

with k=100 Int(C;) =0

CAP4453

Int(C,) = 810

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

=~ 8 =< 8 =T =
N - PEAIS -
1 ~o - 1 - 1 - 1
1 N - ~ - 1 ~ -]
~ - I ~ - ~
~ - ~ .- ~—-
1 sz | ~,- 1 ~< 1
>< ~ >
| B PR | Bty |
- S~ I - ~ -
1 _-" S~o 1 -~ RS 1 - S< 1
T | RS 7 ~.L--" 9 S !
=
IS PEARTS [IRRES P
R - -~ - RN -~
~ - 1 ~ P > -
N - < - < -
1 ~ - ~ 1 ~ - 1
- 1 ~ -
~ - < Sz
1 >3 PRaS 1 >< 1
- ~ | - ~
1 ~ -~ ~ 1 - ~ 1
-7 So 1 - ~So - ~<
1 P ~ | ~ 1 - N 1
. = 63 \\y’ ;0 RN z 69 RN
3 3 6
== / /
1 o~o _- 1 PEI IS = T
1 S S ~ 1 - _ 1 - -~ 1
~So - ~ - ~ -
] - 1 ~ - 1 ~ - 1
- ~ .- <.
o~ ~ - >
(|
| ~ > -7~
- ~ -0~ - ~
, .- - AR - - |
. -~ .- - - N
V- < - ~ v - i
-
Vo ~ .l <~ L~ |
= . S .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =5 < MInt(Ci,C5) = min(Int(Ci) + t(Ci) , Int(C5) + T(C5)) = 52
MERGE THEM !!

100
T(Ci) = T = 100

100
T(C5) = T = 50

ITlt(Ci)

Il
o

with k=100

CAP4453

Int(Cs) =2 107

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~—'8 —= 8 = —
~ - - ~ -
1 ~< - | - 1 - 1
1 N - ~ - 1 ~ -]
~ - 1 ~ - ~
~o_~- ~ - ~ -
1 s< | ~, - 1 ~< 1
>< > T
1 -~ S - 1 -7 S~ 1
- ~ 1 - ~o - -
| _-" S I Phe ~ 1 - ~ |
T | S 7 ~.L--7 9 S
=
T~ PEALI RE —=
1 S s - SS - 1 N - 1
~ - 1 ~ - ~ -
~ - ~ - ~ -
1 - ~ 1 ~ - 1
N~ " 1 < Sse”
1 s PRals 1 >< 1
RS 1 PR
1 ~ - ~ | - ~ I
- S 1 - ~< - ~<
| - ~ | ~ | - < |
L= 63 —=" 70 =t 270 69
b 3
1 o~ oo~ ; PEANERS 7 -]
| ~< - 1 < _ 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
-~_- ~ - ~, -
o~ ~ - >
\ 1
1 ~ - ->Z
- ~ - ~ - ~
. _- < - ~o - ~ 1
_ ~o - < - -
| _- <o 1 - ~ o ~ |
. ~. <~ L~ |
= g = g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =5 < MInt(Ci,C5) = min(Int(Ci) + T(Ci) , Int(C5) + T(C5)) = 52
MERGE THEM !!

100
T(Ci) = T = 100

100
T(C5) = T = 50

ITlt(Ci)

Il
o

with k=100

CAP4453

Int(Cs) = 2 108

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~—'8 —= 8 = —
~ - - ~ -
1 ~< - | - 1 - 1
1 N - ~ - 1 ~ -]
~ - 1 ~ - ~
~o_~- ~ - ~ -
1 s< | ~, - 1 ~< 1
>< > T
1 -~ S - 1 -7 S~ 1
- ~ 1 - ~o - -
| _-" S I Phe ~ 1 - ~ |
T | S 7 ~.L--7 9 S
=
T~ PEALI RE —=
1 S s - SS - 1 N - 1
~ - 1 ~ - ~ -
~ - ~ - ~ -
1 - ~ 1 ~ - 1
N~ " 1 < Sse”
1 s PRals 1 >< 1
RS 1 PR
1 ~ - ~ | - ~ I
- S 1 - ~< - ~<
| - ~ | ~ | - < |
L= 63 —=" 70 =t 270 69
b 3
1 o~ oo~ ; PEANERS 7 -]
| ~< - 1 < _ 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
-~_- ~ - ~, -
o~ ~ - >
\ 1
1 ~ - ->Z
- ~ - ~ - ~
. _- < - ~o - ~ 1
_ ~o - < - -
| _- <o 1 - ~ o ~ |
. ~. <~ L~ |
= g = g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =7 < MInt(Ci,C1) = min(Int(Ci) + ©(Ci) , Int(C1) + T(C1)) = 22.3
MERGE THEM !!

100
T(Ci) = T = 100

100
T(Cl) = T = 14.3

with k=100 Int(C;) =0

CAP4453

Int(C,) = 81

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~—'§ —= 8 —= —
~ - - ~ -
1 ~< - | - 1 - 1
1 N - ~ - 1 ~ -]
~ - 1 ~ - ~
~o_~- ~ - ~ -
1 s< | ~, - 1 ~< 1
>< > T
1 -~ S - 1 -7 S~ 1
P ~ 1 P ~o P -
| _-" S I Phg ~ 1 - ~ |
T | RS 7 ~.L--" 9 S !
=
o~ PEARTS T o~ PN
1 S s - SS - 1 N - 1
~ - 1 ~ - ~ -
~ - ~ - ~ -
1 - ~ 1 ~ - 1
N~ " 1 < Sse”
1 ~ P 1 < 1
RS 1 PR
1 ~ - ~ | - ~ I
- ~< 1 - S~ - S~
| - ~ | ~ | - < |
. = 63 \\y’ ;0 RN z 69 RN
- 73 7
1o ~o -7 PEA MRS - 1
| ~< - 1 ~ _ 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
-~_- ~ - ~, -
o~ ~ - >
\ 1
1 ~ - ->Z
- ~ - ~ - ~
. _- ~ - ~< - ~ 1
_ ~o - < - -
| _- <o 1 - ~ o ~ |
. ~. <~ L~ |
= g = g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =7 < MInt(Ci,C1) = min(Int(Ci) + ©(Ci) , Int(C1) + T(C1)) = 22.3
MERGE THEM !!

100
T(Ci) = T = 100

100
T(Cl) = T = 14.3

with k=100 Int(C;) =0

CAP4453

Int(C,) = 81

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~—'§ —= 8 —= —
~ - - ~ -
1 ~< - | - 1 - 1
1 N - ~ - 1 ~ -]
~ - 1 ~ - ~
~o_~- ~ - ~ -
1 s< | ~, - 1 ~< 1
>< > T
1 -~ S - 1 -7 S~ 1
- ~ ! - ~o - ~
! _-" S~o | - ~ 1 P ~ 1
T | S 7 ~.L--7 9 S
=
o~ PEARTS T o~ PN
1 S s - SS - 1 N - 1
~ - 1 ~ - ~ -
~ - ~ - ~ -
1 - ~ 1 ~ - 1
N~ " 1 < Sse”
1 ~ P 1 < 1
RS 1 PR
1 ~ - ~ | - ~ I
- ~o 1 - ~o - S<
| - ~ | ~ | - < |
L' 63 —=="__70 =t 277 69
b 3
1o ~o -7 ; PEA MRS ; - 1
~ -
1 ~ - 1 ~ - 1 < - 1
~o - ~ - ~ -
1 - | ~ - 1 ~ - 1
-~_- ~ - ~, -
o~ ~ - >
1 ~ | - ->Z 1
- ->Z ~
~ -
. _- ~ - ~< - ~ |
_ ~o - < - -
| _- <o 1 - ~ o ~ |
. ~. <~ L~ |
= g = g

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.

2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =7 < MInt(Ci,C5) = min(Int(Ci) + ©(Ci) , Int(C5) + T(C5)) = 38.3
MERGE THEM !!
0
=100

7(C;) T

100
T(Cs) =

with k=100 Int(C;) =0

CAP4453

=333 Int(Ce) =5

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~— 8 — 8 — —
N - - ~ -
1 ~< - | - 1 - 1
1 N - ~ - 1 ~ -]
~ - 1 ~ - ~
h ~o_- ~ - ~ -
se) ~.- 1 ~< 1
>< > <
h PREES ->< | RS 1
- S< 1 - ~ -
1 _-- Sl | P ~< 1 - ~~ 1
T | S 7 ~.L--7 9 S
=
R 58 -t 68 v 63 -
< - ~ - ~ -
! =~ -~ 1 N - ! S ¥ - !
~ - ~ - ~ -
1 - ~ 1 ~ - 1
~_ -~ 1 - ~ -
1 S LR 1 >< 1
-
RS 1 - - PEIalNy 5:2
1 _- Seo | - ~< ! - ~< !
1 - ~o h ~ 1 - < 1
- < < N
- -~ ~ 0 - 69 <
~ 3 6
== 7 7
TR PE —-T~< = T
H Ny - | | -~ 1
- ~
~o - ' -~ _- ! ~< - '
1 - - _- ~. _-
N -
1 << ! S=Z ->Z 1
- ~ - ~ - ~
- ~ - ~ - ~]
1 - ~ - S< - ~
| _- So 1 - ~ 1 ~ 1
- So - ~
- - 1 ~ L ~ 1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

Ifv; and v, belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) =7 < MInt(Ci,C5) = min(Int(Ci) + ©(Ci) , Int(C5) + T(C5)) = 38.3
MERGE THEM !!
0
=100

7(C;) T

100
T(Cs) =

with k=100 Int(C;) =0

CAP4453

=333 Int(Ce) =5 22

Efficient Graph-Based Image Segmentation.
Example (4x4 image)

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.

2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.

If v; and v: belong to the same component, do nothing and thus gk=gx1,
If v; and v; belong to two different components C*~* and C** as in the segmentation of S * we want to
e them into one if wiviy;) < MInt(C* 'L,Cj“" 1): otherwise do nothing.

DO NOTHING !!

CAP4453

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~— g — 8 —= —
N - - ~ -
| ~ - | ~ - |
~
~ 1
N - ~ - <~ -
1 ~ - ~ - 1 ~ 1
~ - | ~ - ~
~o_- ~ - ~ -
1 se) ~, - 1 ~< 1
>< > <
1 -~ S - 1 PRGN 1
- < 1 - ~o - -
| .- ~ | - ~ 1 - < |
1 - SS 1 Phg ~ 1
- ~ | 7 ~ - ~
=
—~~-58 -~~2_68 P T~-.63 -7
< - ~ - ~ -
1 ~ - ~ - 1 ~ 1
< _ 1 ~< - 3 -
1 ~ - ~ - 1 ~ - 1
~ - 1 ~ -
1 ST P 1 < 1
3 P ><
56I - =~ 5 ' s = ! - S~ 5 I
- 2 - 56 2
1 -7 RN ! - =~ 1 .7 =~ 1
- s~ ! ~ - S<
|- 63 ~— <1 - 69 <1
" 68 6
== 73 >T< 7
IR P PR Pis !
<
! S~ - ! N -~ ! N - !
~ -
| - | ~ - | ~ - 1
- N - ~, -
- ~_-
\ > 1
1 <~ - ->Z
- ~ - ~ - ~
- ~ - ~ - ~]
] - < - ~ - ~
- - ~ - ~
| - ~ 1 - ~ 1 - |
- So - ~
- | S~ L S~ 1
= o ~ o

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

» Thesegmentation snapshot at step k is denoted as Sk

* We take the k-th edge in the order, ek={v;, vj.

If v; and v: belong to the same component, do nothing and thus gk=gx1,
. |

merge them into one if wiviv;) =M Int[C-“'L,Cj“" 1): otherwise do nothing.

.and v; belong to two different components C*"* and C*~* as in the segmentation of S~ * we want to

DO NOTHING !!

CAP4453

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

< 8 =~ 8 T~ = T
~ - - ~ -
1 ~ - 1 - 1
~ 1
~ - ~ - ~ -
1 ~ - ~ - 1 ~ -]
~ - | ~ - ~ -
h ~ - S~ - | See” 1
s< | - -
>< > P
PRGN ->< ~
1 _- ~< | _ - 1 _- ~< 1
| .- S~] -~ SS | - S< |
| _- 3 S 7 ~_ .- 9 ~ < |
RES RS T o~ P
~< PLal B I _ SS -
! S - 1 N - ! S ¥ - !
- -
~ ~ - ~ -
1 - ~ 1 ~ - 1
~ - 1 < ~ -
1 ~T = 1 S< 1
-~ 1 - ~ <o
1 - S~ P ~o 1 - ~o 1
h - Ss o 1 - ~ | - ~ |
- ~ 1 ~
. = 63 b i ;0 RN z 69 RN
[N - = PEANERS ; - :
| ~ < _ 1 < _ 1 < -~ 1
~o - ~ - ~ -
- 1 ~ - | ~ 1
1 - < -
~ - ~_-
o~ ~ - kd
1 ~ | > ->Z 1
- ->< ~
- S - ~ -~ ~
1 - ~ 1
- SS - ~ - ~
| - ~ 1 - ~ 1 ~ 1
- SS - ~
- 1 S L ~_1
= g ~

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
take the k-th edge in the order, ek=[v;, v;).
If v; and v: belong to the same component, do nothing and thus gk=gx1,

If v; and ¥ belong to two different components C*~* and C*~* as in the segmentation of S*"* we want to

merge them'iato one if wiviv;) < MInt{C* 'L,Cj“" 1): otherwise do nothing.

DO NOTHING !!

CAP4453

Efficient Graph-Based Image Segmentation.

Example (4x4 image)

~— 8 —= 8 — —
< - - < -
1 ~< - | - 1 - 1
1 N - ~ - 1 ~ -]
~ - 1 ~ - ~
. ~__- ~. _- M ~o _- .
se) - c
>< > <
h PR ->< | RS 1
-~ S< I - ~ -~
1 - Seo | - ~< 1 - ~< 1
T | S 7 ~.L--7 9 S
=
R 58 -7 T~ 68 R 6 -7
~ ~ - ~ 3 -
1 ~ - ~ - 1 ~ 1
~ - 1 ~ - < -
~ ~ - S -
1 - ~ 1 ~ - 1
~ - 1 ~ -
I <~ g 1 ~- 1
P B 1 - ~ <
1 - ~ -7 So 1 - So 1
. _- Seo 1 - ~ , _- ~ ,
-~ ~o! ~ ~<
- 63 Ss- <~ _- 69 <
b 3
[-7 = ; PEIS ; - [
<3S - | | -~ 1
1 - - ~. _- ~< -
| ~ - | ~ - | ~ - 1
N ~. _- ~_-
1 -(\ (] e ”\ 1
- ~ - ~ - ~
- ~ - ~ - ~]
1 - ~ - ~ -
- < - <~ ~
\ _- ~o 1 - ~ o ~ |
. ~ . <~ L~ So 1
= . 71 = .

The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of

wertices(pixels) and |E| is the number of edges.

1. Edges are sorted by weisht in ascending order, labeled as e1.22,0008m.
2. Initially. each pixel stays in its own component, so we start with n components.
3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk
We take the k-th edge in the order, ek={v;, v;.
If v; and Vi belong to the same component, do nothing and thus §5=5"1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L.Cj“" 1): otherwise do nothing.

w(v;,v;) = 52 > MInt(C5,C1) = min(Int(C5) + T(C5), Int(C1) + T(C1)) =25.5

STOP MERGING!!
100
with k=100 7(Cs) = — =25 Int(Cs) =7

CAP4453

100
o(C) =—-=125 Int(Cy) = 13°

Efficient Graph-Based Image Segmentation.
Example (4x4 image)

1 5 1 2 1 7 1 The algorithm follows a bottom-up procedure. Given G=(V,E) and |V]=n, |E|=m. Where |V| is the number of
8 wertices(pixels) and |E| is the number of edges.
DI PPN PSS AN 3 PP
8i /,::x::\\ : /:\:’:':\ 4i /,\;""::\\ 13i 1. Edges are sorted by weight in ascending order, labeled as e1.e2,...2m.
= 3 e I/ et 9 0 —— 2. Initially, each pixel stays in its own component, so we start with n components.
1 F---- 5 4 1 }---- 8 __ 1 (1 1 3. Repeat for k="1.....m:

The segmentation snapshot at step kis denoted as Sk

We take the k-th edge in the order, ek={v;, v;.

If v; and v: belong to the same component, do nothing and thus gk=gx1,

If v; and v; belong to two different components C*~* and C** as in the segmentation of S~ * we want to
merge them into one if wiviyv;) =M Int[C-“'L,Cj“" 1): otherwise do nothing.

CAP4453

Efficient Graph-Based
Image Segmentation.

Pedro F. Felzenszwalb, Daniel P.
Huttenlocher

CAP4
Image Segmentation With Felzenszwalb’s Algorithm ! - A

https://www.analyticsvidhya.com/blog/2021/05/image-segmentation-with-felzenszwalbs-algorithm/

Region splitting and Merging Segmentation

* Region merging:
* Region merging is the opposite of splitting, and works as a way of avoiding
over-segmentation

 Start with small regions (2x2 or 4x4 regions) and merge the regions that have
similar characteristics (such as gray level, variance).

* Region splitting:
* Unlike region growing, which starts from a set of seed points, region

splitting starts with the whole image as a single region and subdivides it into
subsidiary regions recursively while a condition of homogeneity is not

satisfied.

Image segmentation methods

Machine
Learning
based
methods

Image
Segmentation
methods

Energy
minimization
methods(MRF,..)

Shape based Graph-based
methods methods
(level set, (graph-cut,

active random walk,
contours) ..)

CAP4453 120

Questions?

