

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño
Gonzalo.vacacastano@ucf.edu

Administrative details

- Homework 1 issues ?

Questions?

Robot Vision

3. Image Filtering

Credits

- Some slides comes directly from:
- Yogesh S Rawat (UCF)
- Noah Snavely (Cornell)
- Ioannis (Yannis) Gkioulekas (CMU)
- Mubarak Shah (UCF)
- S. Seitz
- James Tompkin
- Ulas Bagci

Outline (next 2 weeks)

- Image as a function
- Linear algebra
- Extracting useful information from Images
- Histogram
- Noise
- Filtering (linear)
- Smoothing/Removing noise
- Convolution/Correlation
- Image Derivatives/Gradient
- Edges
- Colab Notes/ homeworks
- Read Szeliski, Chapter 3.
- Read/Program CV with Python, Chapter 1.

What is an image?

- We can think of a (grayscale) image as a function, f, from R^{2} to R :
$-f(x, y)$ gives the intensity at position (x, y)

snoop

3D view

- A digital image is a discrete (sampled, quantized) version of this function

Image transformations

- As with any function, we can apply operators to an image

- Today we'll talk about a special kind of operator, convolution (linear filtering)

Basic Linear Algebra

Linear Algebra basics

- Vectors
- Operations
- Matrix
- Operations

Linear Algebra basics Vector

- Scalar: $x \in \mathbb{R}$
- Vector: $\boldsymbol{x} \in \mathbb{R}^{N}$
- Row Vector $\mathrm{v} \in \mathbb{R}^{1 \times n}$

$$
\boldsymbol{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]
$$

- Column vector $\mathrm{v} \in \mathbb{R}^{n \times 1}: \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$
- Transpose

Linear Algebra Basics
 Vectors - use

- Store data in memory
- Feature vectors
- Pixel values
- Any other data for processing
- Any point in coordinate system
- Can be n dimensional
- Difference between two points

$$
\left[\begin{array}{lll}
x_{1}-y_{1} & x_{2}-y_{2} & x_{3}-y_{3}
\end{array}\right]
$$

Linear Algebra Basics Vector operations

- Norm - size of the vector
- p-norm

$$
\|x\|_{p}=\left(\sum_{i}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}} \quad p \geq 1
$$

- Euclidean norm

$$
\|x\|_{2}=\left(\sum_{i}\left|a_{i}\right|^{2}\right)^{1 / 2}
$$

- L1-norm

$$
\|x\|_{1}=\left(\sum_{i}\left|a_{i}\right|\right)
$$

- L-infinity

$$
\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

Linear Algebra Basics Vector operations

- Inner product (dot product)
- Scalar number
- Multiply corresponding entries and add

$$
\boldsymbol{x}^{T} \boldsymbol{y}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{k}^{n} x_{k} y_{k}
$$

Linear Algebra Basics
 Vector operations

- Inner product (dot product)

$$
\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i}=\sum_{k}^{n}\left(x_{k}^{i}\right)^{2}=\text { squared norm of } \boldsymbol{x}_{i}
$$

- $x . y$ is also $|x||y| \cos ($ angle between x and $y)$

- If B is a unit vector, $A . B$ gives projection of A on B

Linear Algebra Basics Vector operations

- Outer product

$$
\boldsymbol{x}_{i} \boldsymbol{x}_{j}^{T}=\left[\begin{array}{cccc}
x_{1}^{i} x_{1}^{j} & x_{1}^{i} x_{2}^{j} & \cdots & x_{1}^{i} x_{n}^{j} \\
x_{2}^{i} x_{1}^{j} & x_{2}^{i} x_{2}^{j} & \cdots & x_{2}^{i} x_{2}^{j} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{i} x_{1}^{j} & x_{n}^{i} x_{2}^{j} & \cdots & x_{n}^{i} x_{m}^{j}
\end{array}\right] \text { (a matrix) }
$$

Linear Algebra Basics Matrix

- Array $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
- m rows and n columns

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

- A row vector is a matrix with single row
- A column vector is a matric with single column

Linear Algebra Basics Matrix - use

- Image representation - grayscale
- One number per pixel
- Stored as nxm matrix

Linear Algebra Basics Matrix - use

- Image representation - RGB
- 3 numbers per pixel
- Stored as nxmx3 matrix

0								0							7	6		8	\bigcirc	3	2		5	7	-	-	
3	-	-	2	${ }^{3}$	4	5	-	\square	-	3.	1	1	2	3	4	5	-	\square	3	0	1	2	2	4	5	.	
2	1	0	3	2	${ }^{5}$	4	7	-	5	2	0	0	3	2	5	4	7		$\frac{1}{2}$	1	0	${ }^{3}$	2	5	4	17	\square°
5	${ }^{2}$	3	0	,	${ }^{2}$	${ }^{3}$	4	5	5	$5{ }^{2}$	3	3	-	1	2	3	4	5	5	2	3	0	\square^{1}	${ }^{2}$	3^{3}	4	
4	3	2	1	0	${ }^{3}$	2	5	4		$4{ }^{3}$	2	2	1	0	3	2	5	5^{4}	4	${ }^{3}$	2	1	0	${ }^{3}$	2		54
7	4	5	2	3	0	\square	2	23		7	5	5	2	3	0	\square	2	2	7	4	5	2	2^{3}	0°	1	2	2
\bigcirc	5	4	3	2	1	0	3	2	0	05		4	3	2	1	0		3	-	${ }^{5}$	${ }^{4}$	3	2	1	0		
\bigcirc	${ }^{\circ}$	7	4	5	2	${ }^{3}$	0		\square	$\square^{\circ} 6$		7	4	5	2		-	-	\bigcirc	6	7	4	\square^{5}	2	${ }^{3}$	0	\square^{1}
	7	6	5	4	${ }^{3}$					$8 \cdot$		6		4					8		6		54	3	2		

Linear Algebra Basics Matrix operations

- Addition

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right]
$$

- Both matrices should have same shape, except with a scalar

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+2=\left[\begin{array}{ll}
a+2 & b+2 \\
c+2 & d+2
\end{array}\right]
$$

- Same with subtraction

Linear Algebra Basics
 Matrix operations

- Scaling

$$
s \times\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
s \times a & s \times b \\
s \times c & s \times d
\end{array}\right]
$$

- Hadamard product

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \odot\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a x e & b \times f \\
c \times g & d \times h
\end{array}\right]
$$

Linear Algebra Basics Matrix operation

- Matrix Multiplication
- Compatibility?
- mxn and nxp
- Results in mxp matrix

Linear Algebra Basics

Matrix operation

Linear Algebra Basics Matrix operation

- Transpose

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \\
\boldsymbol{A}^{T} & =\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
\end{aligned}
$$

Linear Algebra Basics
 Matrix operation

- Inverse
- Given a matrix A, its inverse A^{-1} is a matrix such that

$$
A A^{-1}=A^{-1} A=I
$$

- Inverse does not always exist
- Singular vs non-singular
- Properties
- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$

Linear Algebra Basics

MORE WILL BE INTRODUCED DURING
 THE COURSE AS IT IS NEEDED

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

Thresholding !

$$
g(m, n)=\left\{\begin{array}{cc}
255, & f(m, n)>A \\
0 & \text { otherwise }
\end{array}\right.
$$

Question: Noise reduction

- This is not a gray scale image


```
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt
folder='C:/Users/gonza/OneDrive/Teaching/CAP4453/class3/'
list_dir = [fil for fil in os.listdir(folder) if fil[-3:]=='jpg']
for iFile, fname in enumerate(list_dir):
    if iFile == 0:
        sumFile = cv2.imread(folder + fname)
        sumFile = sumFile.astype(np.float)
    else
    sumFile = sumFile + cv2.imread(folder + fname).astype(np.float)
sumFile = sumFile/len(list_dir)
sumFile[sumFile>90]=255
sumFile[sumFile<=90]=0
plt.imshow(sumFile.astype(np.uint8))
```


Outline

- Image as a function
- Linear algebra
- Extracting useful information from Images
- Histogram
- Noise
- Filtering (linear)
- Smoothing/Removing noise
- Convolution/Correlation
- Image Derivatives/Gradient
- Edges
- Colab Notes/ homeworks
- Read Szeliski, Chapter 3.
- Read/Program CV with Python, Chapter 1.

Image noise

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens
- Noise is random,
- it occurs with some probability
- It has a distribution

Additive Noise

$$
I_{\text {observed }}(x, y)=I_{\text {original }}(x, y)+n(x, y)
$$

True pixel value at x, y
Noise at x, y

Multiplicative Noise

$$
I_{\text {observed }}(x, y)=I_{\text {original }}(x, y) \times n(x, y)
$$

True pixel value at x, y
Noise at x, y

Gaussian Noise

$$
n(x, y) \approx g(n)=e^{\frac{-n^{2}}{2 \sigma^{2}}}
$$

Probability Distribution n is a random variable

Gaussian function

$$
g(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right) .
$$

Salt and pepper noise

- Each pixel is randomly made black or white with a uniform probability distribution

Uniform distribution

Noise implementation

\# Input image data. Will be converted to float
\#mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussian-distributed additive noise
's\&p'
Multiplicative noise using out $=$ image $+n *$ image, where
mport numpy as np
import os
import cv2
def noisy (noise_typ, image) :
if noise_typ == "gauss":
row, col, ch= image.shape
mean $=$
sigma $=$ var**0.5
gauss $=\mathrm{np}$. random.normal (mean, sigma, (row,col,ch))
gauss $=$ gauss.reshape (row, col, ch)
noisy $=$ image + gauss
return noisy
elif noise_typ == "s\&p":
row, $\mathrm{col}, \mathrm{ch}=$ image.shape
s_vs_p $=0.5$
mount $=0.004$
out $=$ image

* Salt mode
num_salt = np.ceil (amount * image.size * s_vs_p) coords $=$ [np.random.randint (0, i - 1, int(num_salt)) for 1 in image.shape]
out [coords] = 1
* Pepper mode
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p)) coords $=$ [np.random.randint(0, i - 1, int(num_pepper))
in image.shape]
out [coords] $=0$
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals $=2$ ** np.ceil(np.log2(vals))
noisy $=\mathrm{np}$. random.poisson(image $*$ vals) / float(vals) return noisy
elif noise typ =="speckle":
row, col, ch $=$ image.shape
gauss $=\mathrm{np}$. random. randn (row, col, ch $)$
gauss $=$ gauss.reshape (row,col,ch)
oisy $=$ image + image * gauss
return noisy

Outline

- Image as a function
- Extracting useful information from Images
- Histogram
- Noise
- Filtering (linear)
- Smoothing/Removing noise
- Convolution/Correlation
- Image Derivatives/Gradient
- Edges
- Colab Notes/ homeworks
- Read Szeliski, Chapter 3.
- Read/Program CV with Python, Chapter 1.

Filters

- Filtering
- Form a new image whose pixels are a combination of the original pixels
- Why?
- To get useful information from images
- E.g., extract edges or contours (to understand shape)
- To enhance the image
- E.g., to remove noise
- E.g., to sharpen and "enhance image" a la CSI
- A key operator in Convolutional Neural Networks

Linear shift-invariant image filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.

Filtering

- Modify pixels based on some function of neighborhood

10	30	10				
20	11	20				
11	9	1	$\xrightarrow{f(p)}$			
:---	:---	:---				
	5.7					

Image filtering

- Image filtering: compute function of local neighborhood at each position

$$
\begin{array}{cc}
\substack{\text { h=output } \\
h[m, n]=} & \begin{array}{c}
\text { (kernel) } \\
\text { f=filter }
\end{array} \\
\begin{array}{c}
\text { I=image } \\
2 \mathrm{~d} \text { coords }=\mathrm{k}, 1
\end{array} & 2 \mathrm{~d} \text { coords }=\mathrm{m}, \mathrm{n}
\end{array}
$$

Image filtering

- Image filtering: compute function of local neighborhood at each position
- Enhance images
- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching

Let's run the box filter

Box filter

note that we assume that the kernel coordinates are centered
$f[, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$h[\cdot, \cdot]$

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} g \underset{\text { filter }}{ } g[k, l] \underset{\text { image (signal) }}{ } f[m+k, n+l]
$$

Let's run the box filter

$$
h \underset{\text { output }}{[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f} \underset{m+k, n+l]}{k}
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{k, l]} \underset{\sim}{k}[m+n+l]
$$

Let's run the box filter

$$
h \underset{\text { output }}{[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

$$
h \underset{\text { output }}{[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output $h[\cdot, \cdot]$

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{k, l]} \underset{\sim}{k}[m+n+l]
$$

Let's run the box filter

Let's run the box filter

$g[\cdot, \cdot]$		
kernel		
1	1	1
$\frac{1}{9}$	1	1
	1	

$$
h \underset{\text { output }}{[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{k, l]} \underset{\sim}{k}[m+n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{g, l]} \underset{\text { finn }}{k, n+l]}[m+k
$$

Let's run the box filter

Let's run the box filter

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output $\quad h[\cdot, \cdot]$

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{g, l]} \underset{\text { ime }}{f(m+n+l]}
$$

Let's run the box filter

image $f[\cdot, \cdot]$											output $h[$										
0	0	0	0	0	0	0	0	0	0												
0	0	0	0	0	0	0	0	0	0			0	10	20	30	30	30	30	20	10	
0	0	0	90	90	90	90	90	0	0			0	20								
0	0	0	90	90	90	90	90	0	0												
0	0	0	90	0	90	90	90	0	0												
0	0	0	90	90	90	90	90	0	0												
0	0	0	0	0	0	0	0	0	0												
0	0	0	0	0	0	0	0	0	0												
0	0	90	-	0	0	0	0	0	0												
0	0	0	0	0	0	0	0	0	0												

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f[m+k, n+l]}
$$

Let's run the box filter

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

output

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g} \underset{\text { image (signal) }}{k, l]} \underset{\sim}{k}[m+n+l]
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f[m+k, n+l]}
$$

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f[m+k, n+l]}
$$

Let's run the box filter

$g[\cdot, \cdot]$

kernel
1 1 1 1 1 1 1 1 1

$$
\text { image } \quad f[\cdot, \cdot]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$h[\cdot, \cdot]$

	0	10	20	30	30	30	20	10
	0	20	40	60	60	60	40	20
	0	30	50	80	80	90	60	30
	0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10
	10	10	10	10	0	0	0	0
	10							

$$
\underset{\substack{\text { output }}}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f} \underset{m+k, n+l]}{k}
$$

Let's run the box filter

$g[\cdot, \cdot]$
kernel
$\frac{1}{9}$

$$
\text { image } \quad f[\cdot, \cdot]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$h[\cdot, \cdot]$

	0	10	20	30	30	30	20	10
	0	20	40	60	60	60	40	20
	0	30	50	80	80	90	60	30
	0	30	50	80	80	90	60	30
0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10
	10	10	10	10	0	0	0	0
	10	10	10	10	0	0	0	0

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f}[m+k, n+l]
$$

... and the result is

Correlation (linear relationship)

$$
f \otimes h=\sum_{k} \sum_{l} f(k, l) h(k, l)
$$

$$
\begin{aligned}
& f=\text { Image } \\
& h=\text { Kernel }
\end{aligned}
$$

f
f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} $\mathrm{f}_{9}$$\quad \otimes$$\mathrm{h}_{1}$ $\mathrm{~h}_{2}$ $\mathrm{~h}_{3}$ $\mathrm{~h}_{4}$ $\mathrm{~h}_{5}$ $\mathrm{~h}_{6}$ $\mathrm{~h}_{7}$ $\mathrm{~h}_{8}$ $\mathrm{~h}_{9}$$\quad$$\quad f \otimes h=f_{1} h_{1}+f_{2} h_{2}+f_{3} h_{3}$ $+f_{4} h_{4}+f_{5} h_{5}+f_{6} h_{6}$ $+f_{7} h_{7}+f_{8} h_{8}+f_{9} h_{9}$

Convolution

$$
f^{*} h=\sum_{k} \sum_{l} f(k, l) h(-k,-l)
$$

$$
f=\text { Image }
$$

$$
h=\text { Kernel }
$$

h_{7}	$\mathrm{~h}_{8}$	$\mathrm{~h}_{9}$				
$\mathrm{~h}_{4}$	$\mathrm{~h}_{5}$	$\mathrm{~h}_{6}$				
$\mathrm{~h}_{1}$	$\mathrm{~h}_{2}$	$\mathrm{~h}_{3}$	\quad X - flip	h_{1}	$\mathrm{~h}_{2}$	$\mathrm{~h}_{3}$
:---	:---	:---				
$\mathrm{~h}_{4}$	$\mathrm{~h}_{5}$	$\mathrm{~h}_{6}$				
$\mathrm{~h}_{7}$	$\mathrm{~h}_{8}$	$\mathrm{~h}_{9}$				

c
f
f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8} f_{9}

$*$| h_{9} | $\mathrm{~h}_{8}$ | $\mathrm{~h}_{7}$ |
| :--- | :--- | :--- |
| $\mathrm{~h}_{6}$ | $\mathrm{~h}_{5}$ | $\mathrm{~h}_{4}$ |
| $\mathrm{~h}_{3}$ | $\mathrm{~h}_{2}$ | $\mathrm{~h}_{1}$ |

$$
\begin{aligned}
f^{*} h= & f_{1} h_{9}+f_{2} h_{8}+f_{3} h_{7} \\
& +f_{4} h_{6}+f_{5} h_{5}+f_{6} h_{4} \\
& +f_{7} h_{3}+f_{8} h_{2}+f_{9} h_{1}
\end{aligned}
$$

Correlation and Convolution

- Convolution is a filtering operation
- expresses the amount of overlap of one function as it is shifted over another function
- Correlation compares the similarity of two sets of data
- relatedness of the signals!

Key properties of linear filters

Linearity:

filter $\left(f_{1}+f_{2}\right)=$ filter $\left(f_{1}\right)+$ filter $\left(f_{2}\right)$
Shift invariance: same behavior regardless of pixel location
filter(shift(f)) = shift(filter(f))
Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: $a^{*} b=b^{*} a$
- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality
- Associative: $a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$
- Often apply several filters one after another: $\left(\left(\left(a * b_{1}\right) * b_{2}\right) * b_{3}\right)$
- This is equivalent to applying one filter: a ${ }^{*}\left(b_{1} * b_{2}{ }^{*} b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right)$
- Scalars factor out: $k a^{*} b=a * k b=k(a * b)$
- Identity: unit impulse $e=[0,0,1,0,0]$, $a^{*} e=a$

Filtering Examples - 1

Filtering Examples - 2

0	0	0
1	0	0
0	0	0

Filtering Examples - 2

Example: box filter

What does it do?

- Replaces each pixel with an average of its neighborhood

Average: mean

- Dividing the sum of N values by N

$\frac{1}{4} \frac{1}{9}$| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Filtering Examples - 3

Filtering Examples - 3

Example: box filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

$$
\mathrm{g}[\cdot, \cdot]
$$

Filtering Examples - 4

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1		1	$=$		1		1	1		1
1	1		1			1	*	row			
1	1		1			1					

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1
1	1	1
1	1	1

column
What is the rank of this filter matrix?
Matrix rank is 1 for separable filters
$s=\operatorname{svd}(\mathrm{G})$;
sum(s >eps('single'))

*

row

Let's say our 2D Linear Operator is given by the Matrix $G \in \mathbb{R}^{n \times n}$.
Using the SVD Decomposition the operator can be written as:

$$
G=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}
$$

Separable Linear 2D Operator is defined as operator which can be composed by Outer Product of 2 vectors.
Looking at the SVD Decomposition of G we can conclude that G is separable operator if and only if $\forall i>1 \sigma_{i}=0$ and it is given by:

$$
G=\sigma_{1} u_{1} v_{1}^{T}
$$

[^0]
Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

$\left.$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |$=$| 1 |
| :--- | :--- | :--- |
| 1 |
| 1 |
| column |$\quad *$| 1 | 1 |
| :--- | :--- | \right\rvert\, | row |
| :--- |

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1		
1	1	1		
1	1	1	$=$	1
:---				
1				
1				
column				

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1		
1	1	1		
1	1	1	$=$	1
:---				
1				
1				
column				

*

column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1		
1	1	1		
1	1	1	$=$	1
:---				
1				
1				
column				

* row

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?

$$
\longrightarrow \mathrm{M}^{2} \times \mathrm{N}^{2}
$$

- What is the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1		
1	1	1		
1	1	1	$=$	1
:---				
1				
1				
column				

*

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?
- What is the cost of convolution with a separable filter?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Is this a separable filter?

kernel $\quad \underset{ }{1}$	16	2	1
2	4	2	
1	2	1	

Any heuristics for selecting where to truncate?

- usually at 2-3o

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel

Is this a separable filter? Yes!
kernel

$\frac{1}{16}$| 1 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

Any heuristics for selecting where to truncate?

- usually at 2-30

The Gaussian Filter

$$
\begin{aligned}
& \int(x)=e^{\frac{-x^{2}}{2 o^{2}}} \quad g(x, y)=e^{\frac{-\left(x^{2}+y^{2}\right)}{2 o^{2}}} \\
& g(x)=\left[\begin{array}{lllllll}
.011 & .13 & .6 & 1 & .6 & .13 & .011
\end{array}\right] \quad \sigma=1
\end{aligned}
$$

Gaussian filters

Filtering Examples - 5

Filtering Examples - 5

Gaussian Smoothing

Filtering Examples - 6

Gaussian Smoothing

Smoothing by Averaging

Filtering Examples - 7

After additive
Gaussian Noise

After Averaging

After Gaussian Smoothing

Filtering Examples - 8
 Sharpening

input
filter
output

0	0	0	$-\frac{1}{9}$	1	1	1	
0	2	0		1	1		
0	0	0		1	1		

- do nothing for flat areas
- stress intensity peaks

Filtering Examples - 8
 Sharpening

- do nothing for flat areas
- stress intensity peaks

Sharpening

- What does blurring take away?

Let's add it back:

(This "detail extraction" operation is also called a high-pass filter)

Sharpening

- What does blurring take away?

(This "detail extraction" operation is also called a high-pass filter)

Sharpening

- What does blurring take away?
2 times original

0	0	0
0	2	0
0	0	0

Sharpening

- What does blurring take away?
(This "detail extraction" operation is also called a high-pass filter)

Sharpening examples

Median Filter

- A Median Filter operates over a window by selecting the median intensity in the window.

Image filtering - median

$f[.,$.
$h[. .$.

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				
				2					

Image filtering - median

$f[.,$.

$$
h[., .]
$$

Median of $\{0,0,0,0,90,90,90,90,90\}$

Median Filter

- A Median Filter operates over a window by selecting the median intensity in the window.
- Great to deal with salt and pepper noise !

Median Filter

Image Boundary Effect

0

The filter window falls off at the edge of image.

Practical matters

What about near the edge?

- The filter window falls off the edge of the image
- Need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

zero

wrap

clamp
Copy edge

mirror
Reflect across edge

Questions?

[^0]: Usually LPF 2D Linear Operators, such as the Gaussian Filter, in the Image Processing world are normalized to have sum of 1 (Keep $D C$) which suggests $\sigma_{1}=1$ moreover, they are also symmetric and hence $u_{1}=v_{1}$ (If you want, in those cases, it means you can use the Eigen Value Decomposition instead of the SVD).

 So basically, to prove that a Linear 2D Operator is Separable you must show that it has only 1 non vanishing singular value.

