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Administrative details

• Homework 1 issues ?
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Questions?



Robot Vision
3. Image Filtering

4CAP4453



Credits

• Some slides comes directly from:
• Yogesh S Rawat (UCF)

• Noah  Snavely (Cornell)

• Ioannis (Yannis) Gkioulekas (CMU)

• Mubarak Shah (UCF) 

• S. Seitz 

• James Tompkin

• Ulas Bagci
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Outline (next 2 weeks)

• Image as a function
• Linear algebra

• Extracting useful information from Images
• Histogram
• Noise
• Filtering (linear)
• Smoothing/Removing noise
• Convolution/Correlation
• Image Derivatives/Gradient
• Edges

• Colab Notes/ homeworks

• Read Szeliski, Chapter 3.

• Read/Program CV with Python, Chapter 1.
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From last class
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Basic Linear Algebra
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Linear Algebra basics
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Linear Algebra basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Dot Product (mathsisfun.com)

https://www.mathsisfun.com/algebra/vectors-dot-product.html


Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics
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Linear Algebra Basics

CAP4453 26

MORE WILL BE INTRODUCED DURING 
THE COURSE AS IT IS NEEDED
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Question: Noise reduction
• Given a camera and a still scene, how can 

you reduce noise?

Take lots of images and average them! 

Source: S. Seitz
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Question: Noise reduction
• Given a camera and a still scene, how can 

you reduce noise?

Take lots of images and average them! 

Can we something else?
Source: S. Seitz



Thresholding !



CAP4453 30

Question: Noise reduction
• This is not a gray scale image

Source: S. Seitz



Outline
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• Image as a function
• Linear algebra

• Extracting useful information from Images
• Histogram
• Noise
• Filtering (linear)
• Smoothing/Removing noise
• Convolution/Correlation
• Image Derivatives/Gradient
• Edges

• Colab Notes/ homeworks

• Read Szeliski, Chapter 3.

• Read/Program CV with Python, Chapter 1.



Image noise

• Light Variations

• Camera Electronics

• Surface Reflectance

• Lens 

• Noise is random, 
• it occurs with some probability

• It has a distribution
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Additive Noise
𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑥, 𝑦 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑥, 𝑦 + 𝑛(𝑥, 𝑦)
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Noise at x,y
True pixel value at x,y



Multiplicative Noise
𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑥, 𝑦 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑥, 𝑦 × 𝑛(𝑥, 𝑦)
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Noise at x,y
True pixel value at x,y
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Gaussian function
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Noise implementation
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Outline

• Image as a function
• Extracting useful information from Images

• Histogram
• Noise
• Filtering (linear)
• Smoothing/Removing noise
• Convolution/Correlation
• Image Derivatives/Gradient
• Edges

• Colab Notes/ homeworks
• Read Szeliski, Chapter 3.
• Read/Program CV with Python, Chapter 1.

CAP4453 40



41

Filters

• Filtering

– Form a new image whose pixels are a combination 
of the original pixels

• Why? 

– To get useful information from images

• E.g., extract edges or contours (to understand shape)

– To enhance the image

• E.g., to remove noise

• E.g., to sharpen and “enhance image” a la CSI

– A key operator in Convolutional Neural Networks
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Linear shift-invariant image filtering

• Replace each pixel by a linear combination of its neighbors (and possibly itself).

• The combination is determined by the filter’s kernel.

• The same kernel is shifted to all pixel locations so that all pixels use the same linear 
combination of their neighbors.



CAP4453 43



CAP4453 44

(kernel)
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Box filter
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kernel

shift-invariant: 
as the pixel 

shifts, so does 
the kernel
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Key properties of linear filters
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More properties
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Average: mean
• Dividing the sum of N values by N
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Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example: 
box filter

What is the rank of this filter matrix?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example: 
box filter

What is the rank of this filter matrix?

Matrix rank is 1 for separable filters

s = svd(G); 
sum(s > eps('single'))

image processing - How to Prove a 2D Filter Is Separable? - Signal Processing Stack Exchange

https://dsp.stackexchange.com/questions/35190/how-to-prove-a-2d-filter-is-separable#:~:text=For%20this%20reason%2C%20as%20soon%20as%20G%20%28x%2C,a%20kernel%20is%20separable%2C%20just%20check%20the%20rank%3A


Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example: 
box filter

Why is this important?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  
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1 1 1

*

column

row
example: 
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the 
“column” and “row” filters).



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  
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*

column

row
example: 
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the 
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  

=
1
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1 1 1

1 1 1
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1 1 1

*

column

row
example: 
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the 
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter? M2 x N2

• What is the cost of convolution with a separable filter?



Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.  

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example: 
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the 
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter? M2 x N2

• What is the cost of convolution with a separable filter? 2 x N x M2



The Gaussian filter

• named (like many other things) after 
Carl Friedrich Gauss

• kernel values sampled from the 2D 
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to 
some maximum distance

Any heuristics for selecting where to truncate?



The Gaussian filter

• named (like many other things) after 
Carl Friedrich Gauss

• kernel values sampled from the 2D 
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to 
some maximum distance

Any heuristics for selecting where to truncate?
• usually at 2-3σ

1 2 1

2 4 2

1 2 1

1
16

kernel

Is this a separable filter?



The Gaussian filter

• named (like many other things) after 
Carl Friedrich Gauss

• kernel values sampled from the 2D 
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to 
some maximum distance

Any heuristics for selecting where to truncate?
• usually at 2-3σ

1 2 1

2 4 2

1 2 1

1
16

kernel

Is this a separable filter?    Yes!



The Gaussian Filter
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Gaussian filters

= 30 pixels= 1 pixel = 5 pixels = 10 pixels



93



94



95



CAP4453 96



Filtering Examples – 8
Sharpening
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• do nothing for flat areas
• stress intensity peaks

input filter output

-



Filtering Examples – 8
Sharpening
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• do nothing for flat areas
• stress intensity peaks

input filter output

-

Accentuates differences with local average



Sharpening
• What does blurring take away?

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ 

(This “detail extraction” operation 
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/


Sharpening
• What does blurring take away?

original smoothed (5x5)

–

sharpened

=

original detail

+ 

(This “detail extraction” operation 
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/


Sharpening
• What does blurring take away?

original

smoothed

–

sharpened

=

original

+ 

(This “detail extraction” operation 
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

original

2 times original Smoothed

-

https://www.flickr.com/photos/geezaweezer/16089096376/


Sharpening
• What does blurring take away?

original

smoothed (5x5)

–

sharpened

=

original

+ 

(This “detail extraction” operation 
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

original

https://www.flickr.com/photos/geezaweezer/16089096376/


Sharpening examples
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Median of {0,0,0,0, 90, 90,90,90,90}
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• Great to deal with salt and pepper noise !
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Copy edge Reflect across edge 
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Questions?


