

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño Gonzalo.vacacastano@ucf.edu

2

Administrative details

• Homework 1 issues ?

Questions?

Robot Vision

3. Image Filtering

Credits

- Some slides comes directly from:
 - Yogesh S Rawat (UCF)
 - Noah Snavely (Cornell)
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Mubarak Shah (UCF)
 - S. Seitz
 - James Tompkin
 - Ulas Bagci

Outline (next 2 weeks)

Image as a function

- Linear algebra
- Extracting useful information from Images
 - Histogram
 - Noise
 - Filtering (linear)
 - Smoothing/Removing noise
 - Convolution/Correlation
 - Image Derivatives/Gradient
 - Edges
- Colab Notes/ homeworks
- Read Szeliski, Chapter 3.
- Read/Program CV with Python, Chapter 1.

From last class

What is an image?

- We can think of a (grayscale) image as a function, f, from R² to R:
 - -f(x,y) gives the **intensity** at position (x,y)

3D view

 A digital image is a discrete (sampled, quantized) version of this function

Image transformations

 As with any function, we can apply operators to an image

 Today we'll talk about a special kind of operator, convolution (linear filtering)

Basic Linear Algebra

Linear Algebra basics

- Vectors
 - Operations
- Matrix
 - Operations

Linear Algebra basics Vector

- Scalar: $x \in \mathbb{R}$
- Vector: $x \in \mathbb{R}^N$
 - Row Vector $\mathbf{v} \in \mathbb{R}^{1 \times n}$

$$\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

• Column vector
$$\mathbf{v} \in \mathbb{R}^{n \times 1}$$
 : $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$

• Transpose

Linear Algebra Basics Vectors - use

- Store data in memory
 - Feature vectors
 - Pixel values
 - Any other data for processing
- Any point in coordinate system
 - Can be n dimensional
- Difference between two points

 $\begin{bmatrix} x_1 - y_1 & x_2 - y_2 & x_3 - y_3 \end{bmatrix}$

- Norm size of the vector
- p-norm
- Euclidean norm

• L1-norm

• L-infinity

$$\|x\|_{p} = \left(\sum_{i} |a_{i}|^{p}\right)^{\frac{1}{p}} \qquad p \ge 1$$
$$\|x\|_{2} = \left(\sum_{i} |a_{i}|^{2}\right)^{1/2}$$
$$\|x\|_{1} = \left(\sum_{i} |a_{i}|\right)$$
$$\|x\|_{\infty} = \max_{i} |x_{i}|$$

- Inner product (dot product)
 - Scalar number
 - Multiply corresponding entries and add

$$\boldsymbol{x}^T \boldsymbol{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{k=1}^n x_k y_k$$

• Inner product (dot product)

 $\mathbf{x}_{i}^{T}\mathbf{x}_{i} = \sum_{k}^{n} (\mathbf{x}_{k}^{i})^{2}$ = squared norm of \mathbf{x}_{i}

x.y is also |x||y|cos(angle between x and y)

• If B is a unit vector, A.B gives projection of A on B

• Outer product

$$\boldsymbol{x}_{i} \boldsymbol{x}_{j}^{T} = \begin{bmatrix} x_{1}^{i} x_{1}^{j} & x_{1}^{i} x_{2}^{j} & \cdots & x_{1}^{i} x_{n}^{j} \\ x_{2}^{i} x_{1}^{j} & x_{2}^{i} x_{2}^{j} & \cdots & x_{2}^{i} x_{2}^{j} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}^{i} x_{1}^{j} & x_{n}^{i} x_{2}^{j} & \cdots & x_{n}^{i} x_{m}^{j} \end{bmatrix}$$
(a matrix)

Linear Algebra Basics Matrix

- Array $A \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
 - m rows and n columns

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- A row vector is a matrix with single row
- A column vector is a matric with single column

Linear Algebra Basics Matrix - use

- Image representation grayscale
 - One number per pixel
 - Stored as nxm matrix

Linear Algebra Basics Matrix - use

- Image representation RGB
 - 3 numbers per pixel
 - Stored as nxmx3 matrix

• Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

• Both matrices should have same shape, except with a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 2 = \begin{bmatrix} a+2 & b+2 \\ c+2 & d+2 \end{bmatrix}$$

• Same with subtraction

Scaling

$$s \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} s \times a & s \times b \\ s \times c & s \times d \end{bmatrix}$$

• Hadamard product

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \odot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} axe & bxf \\ cxg & dxh \end{bmatrix}$$

- Matrix Multiplication
 - Compatibility?
 - mxn and nxp
 - Results in mxp matrix

• Transpose

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\boldsymbol{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Inverse

• Given a matrix A, its inverse A⁻¹ is a matrix such that

 $AA^{-1} = A^{-1}A = I$

- Inverse does not always exist
 - Singular vs non-singular
- Properties
 - (A⁻¹) ⁻¹ = A
 - (AB) ⁻¹ = B⁻¹A⁻¹

Linear Algebra Basics

MORE WILL BE INTRODUCED DURING THE COURSE AS IT IS NEEDED

Question: Noise reduction

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

Question: Noise reduction

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

CAP4453

Thresholding !

$$g(m,n) = \begin{cases} 255, \ f(m,n) > A \\ 0 \quad otherwise \end{cases}$$

Question: Noise reduction

• This is not a gray scale image

Outline

- Image as a function
 - Linear algebra
- Extracting useful information from Images
 - Histogram
 - Noise
 - Filtering (linear)
 - Smoothing/Removing noise
 - Convolution/Correlation
 - Image Derivatives/Gradient
 - Edges
- Colab Notes/ homeworks
- Read Szeliski, Chapter 3.
- Read/Program CV with Python, Chapter 1.

Image noise

- Light Variations
- Camera Electronics
- Surface Reflectance
- Lens
- Noise is random,
 - it occurs with some probability
 - It has a distribution

Additive Noise

 $I_{observed} (x, y) = I_{original}(x, y) + n(x, y)$

True pixel value at x,y

Noise at x,y

Multiplicative Noise

 $I_{observed}(x, y) = I_{original}(x, y) \times n(x, y)$

True pixel value at x,y

Noise at x,y

Gaussian Noise

Gaussian function

$$g(x) = rac{1}{\sigma\sqrt{2\pi}} \exp{\left(-rac{1}{2}rac{(x-\mu)^2}{\sigma^2}
ight)}.$$

Salt and pepper noise

 Each pixel is randomly made black or white with a uniform probability distribution

→

Salt-pepper

Uniform distribution

Noise implementation

```
#Parameters
±____.
#image : ndarray
     Input image data. Will be converted to float.
#mode : str
     One of the following strings, selecting the type of noise to add:
     'gauss'
                 Gaussian-distributed additive noise.
     'poisson'
                 Poisson-distributed noise generated from the data.
     's&p'
                 Replaces random pixels with 0 or 1.
     'speckle'
                 Multiplicative noise using out = image + n*image, where
                 n, is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
    if noise typ == "gauss":
        row,col,ch= image.shape
        mean = 0
        var = 1
        sigma = var**0.5
        gauss = np.random.normal(mean, sigma, (row, col, ch))
        gauss = gauss.reshape(row,col,ch)
        noisy = image + gauss
        return noisy
    elif noise typ == "s&p":
        row,col,ch = image.shape
        s vs p = 0.5
        amount = 0.004
        out = image
        # Salt mode
        num salt = np.ceil(amount * image.size * s vs p)
        coords = [np.random.randint(0, i - 1, int(num salt))
                 for i in image.shape]
        out[coords] = 1
        # Pepper mode
        num pepper = np.ceil(amount* image.size * (1. - s vs p))
        coords = [np.random.randint(0, i - 1, int(num pepper))
                  for i in image.shape]
        out[coords] = 0
        return out
    elif noise typ == "poisson":
        vals = len(np.unique(image))
        vals = 2 ** np.ceil(np.log2(vals))
        noisy = np.random.poisson(image * vals) / float(vals)
        return noisy
    elif noise typ =="speckle":
        row,col,ch = image.shape
        gauss = np.random.randn(row,col,ch)
        gauss = gauss.reshape(row,col,ch)
        noisy = image + image * gauss
        return noisv
```

CEA

39

```
CAP4453
```


Outline

- Image as a function
- Extracting useful information from Images
 - Histogram
 - Noise
 - Filtering (linear)
 - Smoothing/Removing noise
 - Convolution/Correlation
 - Image Derivatives/Gradient
 - Edges
- Colab Notes/ homeworks
- Read Szeliski, Chapter 3.
- Read/Program CV with Python, Chapter 1.

Filters

- Filtering
 - Form a new image whose pixels are a combination of the original pixels
- Why?
 - To get useful information from images
 - E.g., extract edges or contours (to understand shape)
 - To enhance the image
 - E.g., to remove noise
 - E.g., to sharpen and "enhance image" a la CSI
 - A key operator in Convolutional Neural Networks

Linear shift-invariant image filtering

- Replace each pixel by a *linear* combination of its neighbors (and possibly itself).
- The combination is determined by the filter's *kernel*.
- The same kernel is *shifted* to all pixel locations so that all pixels use the same linear combination of their neighbors.

Filtering

Modify pixels based on some function of neighborhood

Image filtering

 Image filtering: compute function of local neighborhood at each position

> (kernel) h=output f=filter I=image $h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$ 2d coords=k,l 2d coords=m,n [] [] [] []

Image filtering

- Image filtering: compute function of local neighborhood at each position
- Enhance images
 - Denoise, resize, increase contrast, etc.
- Extract information from images
 - Texture, edges, distinctive points, etc.
- Detect patterns
 - Template matching

note that we assume that the kernel coordinates are centered

$$h[m,n] = \sum_{m{k},m{l}} g[k,m{l}] f[m+k,n+m{l}]$$
output filter image (signal)

ima	age			f[$\cdot, \cdot]$				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

 $\frac{1}{9}$

1

im	age	1		f[$\cdot, \cdot]$				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

image $f[\cdot,\cdot]$													τρι
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				0
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0		ſ		
0	0	0	0	0	0	0	0	0	0				

 $h[\cdot, \cdot]$

0	10				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output k,l filter image (signal)

im	age			f[·,·]					
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	age			f[$\cdot, \cdot]$					ou	tpu	t		$h[\cdot$,
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0		0	10	20		
0	0	0	90	90	90	90	90	0	0						
0	0	0	90	90	90	90	90	0	0						
0	0	0	90	0	90	90	90	0	0						
0	0	0	90	90	90	90	90	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						Ī
0	0	90	0	0	0	0	0	0	0						1
0	0	0	0	0	0	0	0	0	0						

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

im	age)		f[$\cdot, \cdot]$					ou	tpu	t		$h[\cdot$
0	0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0		0	10	20	30
0	0	0	90	90	90	90	90	0	0					
0	0	0	90	90	90	90	90	0	0					
0	0	0	90	0	90	90	90	0	0					
0	0	0	90	90	90	90	90	0	0					
0	0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0					
0	0	90	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0					

$$h[m,n] = \sum_{m{k},m{l}} g[k,m{l}] f[m+k,n+m{l}]$$
output image (signal)

image $f[\cdot, \cdot]$													
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	age			$f[\cdot]$	·,·]					ou	tpu	t
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0		0	
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			Ī
0	0	0	0	0	0	0	0	0	0			Ī

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	age			$f[\cdot]$	$\cdot, \cdot]$					_	ou	tpu	t
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0			0	
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

20 10

ima	age	-		f[$\cdot, \cdot]$				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

image $f[\cdot, \cdot]$													
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	age	_	_	$f[\cdot, \cdot]$					
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

- -

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	mage $f[\cdot, \cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	age								
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[·, ·]
<hr/>
h[·]
<hr/>

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

output filter image (signal)

ima	age			$f[\cdot,\cdot]$						
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	$\frac{f[\cdot,\cdot]}{mage}$											
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

out	output $h[\cdot, \cdot]$										
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30	50	80	80	90	60	30			
	0	30	50	80	80	90	60	30			
	0	20	30	50	50	60	40	20			
	0	10	20	30	30	30	20	10			
	10	10	10	10	0	0	0	0			
	10										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

ima	mage $f[\cdot, \cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

out	output $h[\cdot, \cdot]$									
	0	10	20	30	30	30	20	10		
	0	20	40	60	60	60	40	20		
	0	30	50	80	80	90	60	30		
	0	30	50	80	80	90	60	30		
	0	20	30	50	50	60	40	20		
	0	10	20	30	30	30	20	10		
	10	10	10	10	0	0	0	0		
	10	10	10	10	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

output filter image (signal)

... and the result is

ima	age			$f[\cdot,\cdot]$						
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

Correlation (linear relationship)

$$f \otimes h = \sum_{k} \sum_{l} f(k,l) h(k,l)$$

f =Image h =Kernel

Convolution

Correlation and Convolution

- Convolution is a filtering operation
 - expresses the amount of overlap of one function as it is shifted over another function
- Correlation compares the similarity of two sets of data
 - relatedness of the signals!

Key properties of linear filters

Linearity:

 $filter(f_1 + f_2) = filter(f_1) + filter(f_2)$

Shift invariance: same behavior regardless of pixel location filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)

Filtering Examples - 1

8	0	0	0	
	0	1	0	=
	0	0	0	

Filtering Examples - 2

	Ŭ	v	U I	
8	1	0	0	=
	0	0	0	

Example: box filter

What does it do?

• Replaces each pixel with an average of its neighborhood

Average: mean

• Dividing the sum of N values by N

 $*\frac{1}{9}$

10 10 10 10 10 10			
1	1	1	
1	1	1]=
1	1	1	

Example: box filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

A 2D filter is separable if it can be written as the product of a "column" and a "row".

What is the rank of this filter matrix?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

column

*

 $G = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}$

What is the rank of this filter matrix?

Matrix rank is 1 for separable filters

s = svd(G);sum(s > eps('single')) Separable Linear 2D Operator is defined as operator which can be composed by Outer Product of 2 vectors.

Looking at the SVD Decomposition of G we can conclude that G is separable operator if and only if $\forall i > 1$ $\sigma_i = 0$ and it is given by:

$$G = \sigma_1 u_1 v_1^T$$

Usually LPF 2D Linear Operators, such as the Gaussian Filter, in the Image Processing world are normalized to have sum of 1 (Keep DC) which suggests $\sigma_1 = 1$ moreover, they are also symmetric and hence $u_1 = v_1$ (If you want, in those cases, it means you can use the Eigen Value Decomposition instead of the SVD).

So basically, to prove that a Linear 2D Operator is Separable you must show that it has only 1 non vanishing singular value.

image processing - How to Prove a 2D Filter Is Separable? - Signal Processing Stack Exchange

A 2D filter is separable if it can be written as the product of a "column" and a "row".

Why is this important?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

• What is the cost of convolution with a non-separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter? \longrightarrow M² x N²
- What is the cost of convolution with a separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter?
- What is the cost of convolution with a separable filter?

 $\longrightarrow M^2 \times N^2$ $\longrightarrow 2 \times N \times M^2$

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

usually at 2-3σ

Is this a separable filter?

kernel

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

usually at 2-3σ

Is this a separable filter? Yes!

kernel

The Gaussian Filter

Gaussian filters

 \equiv

Gaussian Smoothing

Gaussian Smoothing

Smoothing by Averaging

After additive Gaussian Noise After Averaging

After Gaussian Smoothing

Filtering Examples – 8 Sharpening

(Note that filter sums to 1)

- do nothing for flat areas
- stress intensity peaks

Filtering Examples – 8 Sharpening

(Note that filter sums to 1)

- do nothing for flat areas
- stress intensity peaks

Sharpening

OF CENTRAL HO

Let's add it back:

(This "detail extraction" operation is also called a *high-pass filter*)

Sharpening

OF CENTRAL HO

• What does blurring take away?

• What does blurring take away?

2 times original

Smoothed

Sharpening

• What does blurring take away?

(This "detail extraction" operation is also called a *high-pass filter*)

Sharpening examples

Median Filter

• A **Median Filter** operates over a window by selecting the median intensity in the window.

Image filtering - median

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			ŝ			

Image filtering - median

0	10	20	30	30		
			90			

Median of {0,0,0,0, 90, 90,90,90,90}

Median Filter

• A **Median Filter** operates over a window by selecting the median intensity in the window.

• Great to deal with salt and pepper noise !

Median Filter

Image Boundary Effect

The filter window falls off at the edge of image.

Practical matters

What about near the edge?

- The filter window falls off the edge of the image
- Need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner

Questions?