9 CAP 4453
Robot Vision

Administrative details

* Homework 1 issues ?

Questions?

Robot Vision

3. Image Filtering

CAP4453 4

Credits

* Some slides comes directly from:
e Yogesh S Rawat (UCF)
 Noah Snavely (Cornell)

loannis (Yannis) Gkioulekas (CMU)

Mubarak Shah (UCF)

S. Seitz

James Tompkin

Ulas Bagci

Outline (next 2 weeks)

s tmageasafunction
e Linear algebra

* Extracting useful information from Images
* Histegram

Noise

Filtering (linear)

Smoothing/Removing noise

Convolution/Correlation

Image Derivatives/Gradient

Edges

e Colab Notes/ homeworks
e Read Szeliski, Chapter 3.
e Read/Program CV with Python, Chapter 1.

From last class

What is an image?

 We can think of a (grayscale) image as a
function, f, from R? to R:

— /(x,p) gives the intensity at position (x,))
S, p)

3D view

— A digital image is a discrete (sampled, quantized)
version of this function

Image transformations

* As with any function, we can apply operators
to an image

 Today we’ll talk about a special kind of
operator, convolution (linear filtering)

Basic Linear Algebra

Linear Algebra basics

* Vectors
* Operations

* Matrix
* Operations

Linear Algebra basics

Vector

e Scalar: x € R

« Vector: x € RN
* Row Vector v € R1*"

X = [x1 X9 s xn]

s Column vectorv € R™1 : x

* Transpose

CAP4453

11

Linear Algebra Basics
Vectors - use

 Store data in memory
* Feature vectors
* Pixel values
* Any other data for processing

* Any point in coordinate system
* Can be n dimensional

* Difference between two points

[X1 = Y1 X2—Y, X3 — Y3

CAP4453

X3]

12

Linear Algebra Basics
Vector operations

* Norm — size of the vector

L
+penorm o, =[Sl)

* Euclidean norm Ve
b, (o |

e L1-norm
b, =(e

e L-infinity

| x]|e = max ||

CAP4453

13

Linear Algebra Basics
Vector operations

* Inner product (dot product)
* Scalar number
* Multiply corresponding entries and add

e
y
:2 =Yk Xx Vi

| Vn |

Dot Product (mathsisfun.com)

CAP4453 14

https://www.mathsisfun.com/algebra/vectors-dot-product.html

Linear Algebra Basics
Vector operations

* Inner product (dot product)

N2
x] x; = Yr(xk) = squared norm of x;

* x.yis also | x| |y|cos(angle between x and y) /

|A| cosB

* |f B is a unit vector, A.B gives projection of Aon B

CAP4453 15

Linear Algebra Basics
Vector operations

» Quter product

PR i) i)
X1X1 X1Xy ot XqXp
i] i) i]
x;xj =|[*2*1 *2% X2%X2 | (a matrix)
i) iJ iJ
XnX] XpX, v XpXp,

CAP4453 16

Linear Algebra Basics
Matrix

e Array A € R™*" of numbers with shape m by n,
* m rows and n columns

a1 Qg t Aqn
z1 Q22 = Q2n
A= : : . :
Am1 Am2 ° Amnl

* A row vector is a matrix with single row
* A column vector is a matric with single column

CAP4453

17

Linear Algebra Basics
Matrix - use

* Image representation — grayscale
* One number per pixel
* Stored as nxm matrix

CAP4453

MEEAEAAEFEG
AEOACEEFD
FOMNOEEEDE
FEHNHNOEEEE
AEEORNEEEE
Lrlle]lellz]le]lel[e][=]10]
DEENEOEE

DEOEREEEEL
NEERAREEE

18

Linear Algebra Basics
Matrix - use

* Image representation—RGB -~~~ g 2
* 3 numbers per pixel ~ S Hio aoRanioio/aja/o/no

* Stored as nxmx3 matrix N OEEEEOER O6 FEEGE
IDEDEEEEE B EEC
AR EIE] EEIEEEEIERE

I | | =]

CAP4453

|
|
|
|
3| i | R
J
KIE
|[4
¢][c

5 f} 8

JLH_I | J\

H_JL| o[z

l_l_il
1] [e

Linear Algebra Basics
Matrix operations

e Addition

R IR AT e

* Both matrices should have same shape, except with a scalar

¢ a2 s 12 avdl

« Same with subtraction

CAP4453 20

Linear Algebra Basics
Matrix operations

* Scaling

sx[¢ gl =loe ol

* Hadamard product

e d eyl -

|

axe bxf
cxg dxh

Linear Algebra Basics
Matrix operation

* Matrix Multiplication B
* Compatibility?
* mxn and nxp
* Results in mxp matrix

I
=T
o) E
| |

CAP4453 22

Linear Algebra Basics

Matrix operation

m N

CAP4453 23

Linear Algebra Basics
Matrix operation

* Transpose

aAj1 Az 0 A
Az1 QAzz *° Qzp
A= : : . :
Am1 Am2 *° Amn
(A9 Qp1 Q|

AT o a,?_z a?Z T a??lz

A1n Ayn * Amnl

CAP4453 24

Linear Algebra Basics
Matrix operation

* Inverse
* Given a matrix A, its inverse A-1lis a matrix such that
AAl=AlA=]
* Inverse does not always exist
* Singular vs non-singular

* Properties
+ (A1) 1= A
- (AB)-1=B1A1

CAP4453 25

Linear Algebra Basics

MORE WILL BE INTRODUCED DURING
THE COURSE AS IT IS NEEDED

4444444

Question: Noise reduction

 Given a camera and a still scene, how can
you reduce noise?

Take lots of images and average them!

Source: S. Seitz

Question: Noise reduction

 Given a camera and a still scene, how can
you reduce noise?

o.

200 A .

YT

400' .o.
;A ,'.
il °9 S S
d s 3‘4
0 4453
1000 A

1200 -

1400 A

0 250 500 750 1000

Take lots of images and average them!

28

Can we something else? CAP4453 :
Source: S. Seitz

Thresholding |

255, f(m,n) > A
glm.n) = { 0 otherwise

Question: Noise reduction

* This is not a gray scale image

jonZas Un

matplotlikb.pyplot as plt

r fil in os.listdir(folder) if fil[-3:]="Jpg’
n enumerate (list _dir):

cv2.imread(folder 4+ fname)
sumFile.astype (np.float)

sumFile + cvZ.imread(folder + fname).astype(np.float)

sumFileflen(list dir)

1=255

D import cvz
import o=
import numpy as np
200 - o’ import
A00 A L | folder="0C: er=/g
w \ list dir = [fil fo
- —
600 1 - . for iFile, fname i
’ f‘ if iFile = 0O:
a . : =
A0 - ‘i' } sumFile =
il sumFile =
else:
1000 1 sumFile =
IEGD i sumFile =
sumFile[sumFile>a0
14ﬂﬂ sumFile[sunFile<=90]=0

250 500 750 1000

CAP4453

plt.imshow({sumFile.astype (np.uintd))

30
Source: S. Seitz

Outline

s tmageasafunction
+—Linearalgebra

Extracting useful information from Images
* Histegram

Noise

Filtering (linear)

Smoothing/Removing noise

Convolution/Correlation

Image Derivatives/Gradient

Edges

Colab Notes/ homeworks
Read Szeliski, Chapter 3.
e Read/Program CV with Python, Chapter 1.

Image noise

* Light Variations
 Camera Electronics
 Surface Reflectance
* Lens

* Noise is random,
* it occurs with some probability
* |t has a distribution

Additive Noise

Iopservea (X,¥) = Ioriginal(x: y) +n(x,y)

True pixel value at x,y \

Noise at x,y

CAP4453 33

Multiplicative Noise

Iobservea (X,¥) = Ioriginal (x,y) X n(x,y)

True pixel value at x,y \

Noise at x,y

CAP4453 34

Gaussian Noise

—112

n(x,y)~ g(n)=e>’

09t
08t
o7t
06
g(n) | =
D4t
03t
02+

LR

Probability Distribution
n is a random variable

CAP4453 35

Gaussian function

11 I | I | I I | I | | I I
: U=, 672032, ——
. p=0, €%=10,— -
P=0, =50~ . (@) L o 1 (z—p)’
. = xp| —=———).
i f=-2, G3=05,— - N = o 2 o2
= 0B
= 1 i
=
== 04
n2
0o
|] |] | |] |] |
=5 -4 -3 =2 -1 i 1 i 3 4 B

CAP4453 36

Salt and pepper noise

* Each pixel is randomly made black or white with a uniform probability
distribution

Salt-pepper

CAP4453 37

Uniform distribution

0 a b X

CAP4453 38

#Parameterﬁ

$image : nd
Input image data. Will be converted to float.
fmode @ str
¥ Cne of the following strings, selecting the type of noise to add:
[] ° []
m m # 'gauss' Gaussian-distributed additive noise.
O I S e I e e n a I O n # 'poisson’ Poisson-distributed nolse generated from the data.

¥ "sip' Eeplaces random pixels with 0 or 1.
¥ 'speckle’ Multiplicative noise u g out = image + n*image,where
n,is uwniform noise with specified mean &

import numpy as np
import os
import cwv2

|def =« r(noise_typ,image) :
if noise_typ == "c =RH

row,col ,ch= image.shape
mean = 0
] var = 1
sigma = wvar¥*(Q,5
gauss = np.random.normal {(mean,sigma, (row,col,ch))
gauss = gauss.reshape (row,col,ch)
noisy = image + gauss
retorn noisy
1 elif noise typ = "s4&]
row,col,ch

s vs p=2=0
amount = 0.

out = image
$# Salt mode
num salt = np.ceil (amount * image.size * s_vs p)
1 coords = [np.random.randint(0, i - 1, int(num salt))
for i in image.shape]
out [coords] = 1

Pepper mode

num pepper = np.cell (amount* image.size * (1. - s _vs_p))
| coords = [np.random.randint(0, i - 1, int(num pepper))
for i in image.shape]
out [coords] = 0

retarn out
] elif noise_typ — "poi
wvals = len(np.unigue {(image))

wvals = 2 %% np.ceil(np.log2(vals))
noisy = np.random.poisson(image * wals) J/ float(vals)
retonrn noisy

| elif noise_typ ="
row,col,ch = image.shape

gauss = np.random.randn{row,col,ch)

CAP4453 gauss = gauss.reshape (row,col,ch) 39
noisy = image + image * gauss
return noisy

Outline

s lmageasafunction
e Extracting useful information from Images
* Histegram
* Neoise
* Filtering (linear)
* Smoothing/Removing noise
e Convolution/Correlation

Image Derivatives/Gradient
Edges

* Colab Notes/ homeworks
* Read Szeliski, Chapter 3.
* Read/Program CV with Python, Chapter 1.

Filters
* Filtering

— Form a new image whose pixels are a combination
of the original pixels

e Why?
— To get useful information from images

e E.g., extract edges or contours (to understand shape)

— To enhance the image
* E.g., to remove noise
e E.g., to sharpen and “enhance image” a la CSI

— A key operator in Convolutional Neural Networks

Linear shift-invariant image filtering

Replace each pixel by a linear combination of its neighbors (and possibly itself).

The combination is determined by the filter’s kernel.

The same kernel is shifted to all pixel locations so that all pixels use the same linear
combination of their neighbors.

Filtering

* Modify pixels based on some function of neighborhood

10 |30 (10

200 |11 |20 ——— 5.7
1 (9 |1

CAP4453 43

Image filtering

* Image filtering: compute function of local neighborhood at
each position

(kernel)
h=output f=filter I=image

hm,n)=>" flk,[11[m+k,n+I]

2d coords=k, 1 2d coords=m,n

I

CAP4453 44

Image filtering

* Image filtering: compute function of local neighborhood at
each position

* Enhance images
* Denoise, resize, increase contrast, etc.

e Extract information from images
* Texture, edges, distinctive points, etc.

* Detect patterns
* Template matching

CAP4453 45

Let’s run the box filter
i Al]

image output

Box filter

0 o fo lo fo |o Jo |o |o

g[-,] 0 o fo lo fo |o Jo |o |o D
kernel 0 0 f90 |90 |90 |90 |90 o [o
NEHENE 0 0 90 |90 |90 |90 |90 |0 [o
—Ih 1 1 0 |o o |90 o |90 |90 |90 |0 |o
9111 o |o |o [90]90 |90 |90 |90 |o |o
0o lo Jofo oo o o]o |o
0o lo Jlofo oo o [o]o |o
0o o |9ofo [o Jo |o [o o |o
oo oo oo oo]o |o

note that we assume that
the kernel coordinates are h[m, n] — Z g[k, l]f[m T k: n + l]

centered output k.l filter image (signal)

Let’s run the box filter
i Al]

image output

0o loJofJo oo o oo]o
g[-,-] o o lo o oo]o E

kernel o lo |o Joo |90 |90 |90 |90 |0 |o
1l]e o lo |o |90 |90 |90 |90 |90 |0 |o
— 11 |1 |1 0o lo |o |90 0 |20 |90 900 |o
9111 0o lo |o |90 |90 |90 |90 |90 |0 |o
0 lo oo oo o oo]o

0o lo o oo oo oo o

0o lo |9olo o |o |o [o |o o

0o lo oo oo o oo]o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output

0 o lo lo o |o
9[‘:'] 0 o lo |o |o 0 D&
kernel o fo 90 [90 |9 wn,\\ \
1+ 1 i — T E shift-invariant:
— |1 |1 |1 o |o 90 |90 |90 [0 |o ~t— . :
9 1 |1 |1 o o 90 {90 |90 |0 o as the pixel
o |o o lo oo lo o [o shifts, so does
o |o o lo o lo o |o [o the kernel
o lo |eofo [o Jo o |o o |o
oo o foloo oo oo

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image o output h[':]
0 0 |o
g[:] 0 o 0 |o 0
kernel 0 Jo 0 [0
R E 0 |o |o |90 |90 |90 |90 |90 |0 |o
— 11 1 |1 0 lo |o |90 |0 |20 |90 90 |0 |o
9111 0 lo |o |90 |90 |90 |90 |90 |0 |o
0o lo oo oo |o o o |o
0o lo Jo o oo |o o o |o
0 |o |90]o |o Jo o |o |o |o
oo oo oo oo |o|o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image fl output hl-]
0 lofJoloJofo [o o |o[o
gl] o |o o 0o oo 0 10D
kernel 0 |o Jo |90 |90f90 |90 |90 |o |o
1l]e 0 |o |o |90 90 |90 |90 |90 |o |o
— 11 |1 |1 o |o [o [90]o {90 |90 |90 |0 [o
9111 0o |o [o |90]90 |90 |90 f90 |0 o
0 loJoJoJo oo o |o o
0 loJoJoJo oo o oo
0 lo |90]o Jo |o [o |o |o [o
0 loJoJoJo oo o oo

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image fl output hl-]
o lofo fo]ofo |ofo oo
gl] o |o o lo o |o |o 0 |10
kernel 0o |o Jo |90 |sofjo0 |20 f90 o |o
T 0 lo |o |e0]90 |90 |90 |90 |0 |o
— 1 |1 |1 0o lo [o |90]o {20 |90 |90 |0 [o
9111 0o |o [o |90]90]90 |90 |90 |0 o
oo o fofoJofofo]olo
oo o fofoJofofo]o]o
0o lo [90fo Jo Jo |o o Jo |o
oo o fo]oJoofo]o o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
o [o |o o |o
g[-,] o [o |o o |o 0 |10 zoD
kernel 0 |0 |O (N [0
R E o |o |o o |o
— 11 1 |1 0o |o |o |900 |90 |90 |90 o |o
9111 o |o |o |90 |90 |90 |90 |20 |0 |o
0o lo Jofo oo o o]o |o
0o lo Jlofo oo o [o]o |o
0o o |9ofo [o Jo |o [o o |o
oo oo oo oo]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
0o o o |o
gl o [o |o o |o 0 |10 |20
kernel 0 |0 |O (N [0
1l]e 0o lo Jo o |o
—l1 1 1 0 lo |o 900 |90 |90 |90 |o |o
9111 0 |o |o |90 90 |90 |90 |90 |o |o
0 loJoJoJo o oo oo
0 loJoJoJo oo o |o o
0 lo |90]o Jo |o [o |o |o |o
0 loJoJoJo o oo |o o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
o |o |o o |o

gl] o lo |o o |o 0 |10 20|30
kernel 0 |0 |O (N [0
1l]e 0o o o o |o
—h 1 s o o |o |90 |0 |20 |90 |90 |0 [o
9111 o o |o 90|90 |20 |90 |90 |o |[o
oo oo o oo fo]o [o
oo oo o oo oo [o
o o |9o]o |o |o Jo o |o [o
oo oo o oo oo [o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter

image output h[':]
o lo |o o |o
gl] o lo |o o |o 0 10|20 |30 |30
kernel 0 |0 |O (N [0
T o lo |o o |o
—11 h | o lo o |90 fe Jo0 |90 |o0 [0 |o
9111 o lo |o |90 |90 |90 |90 |90 [0 |o
oo fo]o oo oo fo]o
oo fo]o oo oo fo]o
0o lo 90]o o Jo o |o |0 |o
oo fo]o oo oo fo]o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o o o |]o o [o o fjo
g[-,-] o [o |o |o Jo o o 0 |10]20 |30 |30 |30 |20
kernel 0 [o |o |90 |90 |90}90 [90 |o fo
L 0 [o |o |90 [90 |90 |90 (90 |0 |o
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo [o o |ofJo o |o
g[-,-] 0 [o |lofo [o]o |ofJo o |o 0 |10 |20 |30 |30 |30 |20
kernel 0 [o |o |90 [90 |90 |90f90 |o |o
L 0 [o |o |90 [90 |90 |90 (90 |0 |o
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo |o]o o [o]o |o
g[-,-] 0 [o |lo o [o Jo |o [o o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 90 {90 |90 |90 |90 |o |o E
L 0 [o |o J90 |90 |90 |90 |90 |o |o
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 |o 0 |o
g[-,'] o lo o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 0_|o ol 0 2°D
L 0 |o 0 |o
— 11 11 |1 0 |0 0 |0
) 1 |11 |1 0 |0 0 |0
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filte

I

image Il output Al]
0 |o 0 |o
g[-,'] o lo o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel o o 0 [0 0 |20
1l s 0 |o o |o
—1h 1 |1 0 |o o [o
9 1|11 1 o [o o [o
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o
0 |o 0 |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo |o]o o [o]o |o
g[-,-] 0 [o Jo fo [o |]o |o [o o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel o o |o 90 [90 |90 |90 [0 |o 0 |20 [40 |60 |60 |60 |40 |20
L o o |o 90 |90 |90 |90 [0 |o OD
ol FO O it o fo |o 0 90|90 |90 o |o
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
o oo fofofofofo oo
gl 0o JoJo oo fofofo oo 0 |10]2030 3030 |20 |10
kernel o fo |o 90 |90 |90 |90 [0 |o 0 |20 |40 |60 |60 |60 [40 |20
1] o fo |o 90 |90 |90 90 |o |o 0 30|
—1 1 |1 0 fo o 0 9090|900 [o
T T 0 |o |o [90]s0 |90 [0 |90 Jo |o
o oo fofofofofo oo
o oo fofofofofo oo
0 Jo |9ofo [o fo fo [o o |o
o oo fofofofofo oo

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

(Vo)
(@)

o[]

image output
0 [o o fo |o]o o [o]o |o
g[-,] 0 [o Jlofo [o]o |o [o]o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 0 [o |o |90 [90 |90 |90 (90 |o |o 0 |20 [40 |60 |60 |60 |40 |20
L 0 [o |o |90 [90 |90 |90 (90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
9111 0 |o [o 90|90 |90 |90 |90 |0 |o 0 |20 |30 |50 |50 |60 |40 |20
o [o |o 0 |o 0 |10 |20 |30 |30 |30 |20 |10
o fo |o o [o 10 |10 {10 |10 |0 Jo |o |o
o fo o [o
o fo o [o

0
0
0
0

o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

Let’s run the box filter
i Al]

image output
0 [o o fo |o]o o [o]o |o
g[-,] 0 [o Jlofo [o]o |o [o]o |o 0 |10 |20 |30 |30 |30 |20 |10
kernel 0 [o |o |90 [90 |90 |90 (90 |o |o 0 |20 [40 |60 |60 |60 |40 |20
L 0 [o |o |90 [90 |90 |90 (90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
ol FO O it 0 |o [o [90]@ |90 |90 |90 |0 |o 0 |30 |50 |80 |80 |90 |60 |30
9111 0 |o [o 90|90 |90 |90 |90 |0 |o 0 |20 |30 |50 |50 |60 |40 |20
0 |o o [o o |o oo |o o 0 |10 |20 |30 |30 |30 |20 |10
0 [o o fo [o]o |o fo o |o 10 |10 {10 |10 |0 Jo |o |o
0 [o |9ofo [o Jo |o fo |o |o 10101010000E
0 [o o fo o Jo o Jo Jo |o

him,n] =) " glk, || fim+ k,n+1]

output k,l filter image (signal)

... and the result is
f[:] h[':']

image output
0 [o o fo |o]o o [o]o |o
g[-,-] 0 [o Jlofo [o]o |o [o]o |o
kernel 0 [o |o |90 [90 |90 |90 (90 |o |o
L 0 [o |o |90 [90 |90 |90 (90 |0 |o
— |1 |1 | 00090.90909000
9111 0 |o [o 90|90 |90 |90 |90 |0 |o
0 [o o fo [o o o [o]o |o
0 [o Jlofo [o]o |o [o]o |o
0 [o |9ofo [o Jo |o [o o |o
0 [o o fo [o o o [o]o |o

him,n] =" glk, || f[m + k,n+]

output k,l filter image (signal)

Correlation (linear relationship)

f®h= ;Z £k, Dn(k,1)

f =Image

h = Kernel

/ h
£ | |f h, |h, |h S ®h=fih+ f,h, + fih,
£, |f. |f ® |n, |h |, | + fuh, + fhs + f R
£, | |6 h, |hg |h, + foh, + fohy + foh

CAP4453 67

f =Image
h = Kernel

Convolution

f*h= ;Zf(k,f)h(— k1)

oh [5 ~

Oﬂl_h

h
h, |hy |h X—ﬂlp h, |h, |h;
114 115 6 114 115 }]6
hl h2 h3 h’? 8 9
Y — flip
hy |hy |h S h= fihy+ frhs + f5h
hy |hs |hy [+ fahs + fshs + fh
hy |h, |h, + fohy + foh, + foh,

CAP4453

68

Correlation and Convolution

* Convolution is a filtering operation

» expresses the amount of overlap of one function as it is shifted over another
function

* Correlation compares the similarity of two sets of data
* relatedness of the signals!

CAP4453 70

Key properties of linear filters

Linearity:
filter(f, + f,) = filter(f,) + filter (f,)

Shift invariance: same behavior regardless of
pixel location
filter(shift(f)) = shift(filter(f))

Any linear, shift-invariant operator can be
represented as a convolution

CAP4453
Source: S. Lazebnik

71

More properties

e Commutative:a*b=b*a
— Conceptually no difference between filter and signal
— But particular filtering implementations might break this equality

e Associative:a*(b*c)=(a*b)*c
— Often apply several filters one after another: (((a * by) * b,) * b;)
— This is equivalent to applying one filter: a * (b, * b, * b,)

e Distributes over addition:a * (b+c¢)=(a * b)+ (a * ¢)

e Scalars factorout: ka *b=a *kb=k (a * b)

e |dentity: unit impulsee =10, 0, 1, O, 0],
a*e=a

72

Filtering Examples - 1

CAP4453 73

Filtering Examples - 2

an‘
0:?

0

0

0

CAP4453

74

Filtering Examples - 2

CAP4453 75

Example: box filter Average: mean

e Dividing the sum of N values by N

What does it do? gl]
e Replaces each pixel with an
average of its neighborhood 1 1| 1] 1
— 1 1 1

CAP4453 76

Filtering Examples - 3

77

Filtering Examples - 3

78

Example: box filter

What does it do?

e Replaces each pixel with an
average of its neighborhood

e Achieve smoothing effect
(remove sharp features)

79

Filtering Examples - 4

80

CAP4453

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

example:
box filter

What is the rank of this filter matrix?

Matrix rank is 1 for separable filters

s = svd(G);
sum(s > eps('single'))

column

Y4

11111

* row

Let's say our 20 Linear Operator is given by the Matrix G € B™*™,
Using the 5VD Decomposition the operator can be written as:

n
_ T
= E Tyl U,
i=1

Separable Linear 2D Operator is defined as operator which can be composed by Quier Product of 2

vectors.
Locking at the SWD Decomposition of (& we can conclude that (7 is separable operator if and only
f%i > 1 a; = 0and it is given by:

G = ;v
Usually LPF 20 Linear Operators, such as the Gaussian Filter, in the Image Processing world are
normalized to have sum of 1 (Keep DC) which suggests &y = 1 moreover, they are also symmetric
and hence »y = my (If you want, in those cases, it means you can use the Elgen Value
Decomposition instead of the SV,
So basically, to prove that a Linear 20 Operator is Separable you must show that it has only 1 non
vanishing singular value.

image processing - How to Prove a 2D Filter Is Separable? - Signal Processing Stack Exchange

https://dsp.stackexchange.com/questions/35190/how-to-prove-a-2d-filter-is-separable#:~:text=For%20this%20reason%2C%20as%20soon%20as%20G%20%28x%2C,a%20kernel%20is%20separable%2C%20just%20check%20the%20rank%3A

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
 Whatis the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
* What is the cost of convolution with a non-separable filter? ——> M?x N?
 Whatis the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

| 11111 1 11111
example:
11111 p— 1 k
box filter row
11111 1
column

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
* What is the cost of convolution with a non-separable filter? ——> M?x N?
 Whatis the cost of convolution with a separable filter? —> 2xNxM?

The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 452 ' I

fi,7) = e 20

Qro?

* weight falls off with distance from center pixel

e theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 4 52 1 I 1 X

fi,7) = e 20

Qro?

s this a separable filter?
e weight falls off with distance from center pixel P

e theoretically infinite, in practice truncated to 1 2
some maximum distance kernel 16 21412
11211

Any heuristics for selecting where to truncate?
e usually at 2-30

The Gaussian filter

 named (like many other things) after
Carl Friedrich Gauss

* kernel values sampled from the 2D
Gaussian function:

1 i2 4 52 1 I 1 X

fi,7) = e 20

Qro?

. . , s this a separable filter? Yes!
e weight falls off with distance from center pixel

e theoretically infinite, in practice truncated to 1 2
some maximum distance kernel 16 21412
11211

Any heuristics for selecting where to truncate?
e usually at 2-30

The Gaussian Filter

g(x)=[011 .13 6 1 .6 .13 .011]

Gaussian filters

(O =5 pixels (O =10 pixels (O =30 pixels

Filtering Examples - 5

93

Filtering Examples - 5

Gaussian Smoothing

94

Filtering Examples - 6

Gaussian Smoothing Smoothing by Averaging

95

Filtering Examples - 7

After additive After Averaging After Gaussian Smoothing
Gaussian Noise

CAP4453 96

Filtering Examples — 8
Sharpening

filter
0 0 1 1
0o[2]0]| " g 1
olo]o 11111

(Note that filter sums to 1)

* do nothing for flat areas
e stress intensity peaks

CAP4453

output

97

Filtering Examples — 8

Sharpening

CAP4453

Accentuates differences with local average

/

filter
0 0 1
01210 - 5
01010 1

1

1

(Note that filter sums to 1)

e do nothing for flat areas
e stress intensity peaks

output

98

Sharpening

 What does blurring take away?

= detail

(This “detail extraction” operation
is also called a high-pass filter)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

(This “detail extraction” operation
is also called a high-pass filter)

detail ‘_ \

el -

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

2 times original Smoothed
oflofo)
ofz2]o0 - =~
oflofo 1

/ \ (This “detail extraction” operation
is also called a high-pass filter)

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening

 What does blurring take away?

(This “detail extraction” operation
is also called a high-pass filter)

\ —
'
D giel. -

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpening examples

Median Filter

* A Median Filter operates over a window by
selecting the median intensity in the window.

104

Image filtering - median

/1] hl.,.]

CAP4453 105

Image filtering - median

/1]

Median of {0,0,0,0, 90, 90,90,90,90}

20

30

CAP4453

106

Median Filter

* A Median Filter operates over a window by
selecting the median intensity in the window.

* Great to deal with salt and pepper noise !

-
Q
o o

Median F

Gaussian Median

Mean

~
L
~

108

CAP4453

Image Boundary Effect

The filter window falls off at the edge of image.

109

Practical matters

What about near the edge?
* The filter window falls off the edge of the image

* Need to extrapolate P

* methods: ' “
* clip filter (black)
* wrap around

* copy edge
* reflect across edge

Source: S. Marschner

CAP4453 110

Zero wrap clamp mirror

Copy edge Reflect across edge

CAP4453 111

Questions?

