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Robot Vision




Administrative details

* Issues submitting homework



Credits

e Slides comes directly from:
* loannis (Yannis) Gkioulekas (CMU)
Kris Kitani.
Fredo Durand (MIT).
James Hays (Georgia Tech).
e Yogesh S Rawat (UCF)
 Noah Snavely (Cornell)



Short Review
from last class




Warping with different transformations

translation affine pProjective (homography)




View warping

original view synthetic top view
| v

What are these black areas near the boundaries?



Virtual camera rotations

synthetic
rotations

original view




Image rectification

two
original
images

rectified and stitched



Image warping
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Recap: Two Common Optimization Problems

" Problem statement Solution A
minimize |Ax —bH2 X :(ATA)‘lATb
least squaressolution o AX =b xyzesid sank s - np.linslg.iscsa(a,b)
\ /
/~ Problem statement Solution N

minimize X' A'Ax st xX'x=1
[v,2]=eig(A' A)
A <A, iX=V,

Q)n - trivial Isq solution to Ax =0 /




Affine transformations

* Matrix form
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Solving for homographies
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Defines a least squares problem:  minimize ||Ah — 0]|?

e Since h is only defined up to scale, solve for unit vector fl
e Solution: h = eigenvector of AT A with smallest eigenvalue
e Works with 4 or more points



Recap: Two Common Optimization Problems

" Problem statement Solution A
minimize |Ax —bH2 X :(ATA)‘lATb
least squaressolution o AX =b xyzesid sank s - np.linslg.iscsa(a,b)
\ /
/~ Problem statement Solution N

minimize X' A'Ax st xX'x=1
[v,2]=eig(A' A)
A <A, iX=V,

Q)n - trivial Isq solution to Ax =0 /




l/mage warping

How do we find point correspondences automatically?



Robot Vision

11. Feature points detection
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Outline

* Motivation

* Detecting key points
* Harris corner detector
* Blob detection



Location Recognition




Robot Localization




Image matching
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Structure from motion
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3D photosynth

II Microsoft Pix
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Image matching



Matching
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NASA Mars Rover images

Where are the corresponding points?






Application: KeyPoint Matching

1. Find a set of
distinctive key-points

2. Define a region
around each key-point

3. Extract and normalize
the region content

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors

d(f,fz)<T
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Finding interest points



The aperture problem

* Individual pixels are ambiguous
* |dea: Look at whole patches!




Pick a point in the image.
Find it again in the next image.

What type of feature would you select?



Pick a point in the image.
Find it again in the next image.

What type of feature would you select?



Pick a point in the image.
Find it again in the next image.

What type of feature would you select?
a corner




What is an interest point?




Properties of interest points algorithm

* Detect all (or most) true interest points

* No false interest points

* Well localized

* Robust with respect to noise

* Efficient detection

* Detect points that are repeatable and distinctive



Outline

* Motivation

* Detecting key points
* Harris corner detector
* Blob detection



Corner detection: Possible approaches

e Based on brightness of images
* Usually image derivatives

* Based on boundary extraction
* First step edge detection
e Curvature analysis of edges



Corner Detection: Basic Ildea

« We should easily recognize the point by looking
through a small window

 Shifting a window in any direction should give a
large change in intensity

“flat” region: “edge”: ‘corner’;

no change in no change significant

all directions along the edge change in all
direction directions

Source: A. Efros



Harris corner detector

A COMBINED CORNER AND EDGE DETECTOR

Chris Harris & Mike Stephens

Plessey Rescarch Roke Manor, Usised Kiagdom
© The Plessey Company pic., 1985

Constptency of image ¢m[\um 1 of prime iporiasce
Jor 3D imserpresation of & € Jequences wiing fleature
Tracking algorithms To caser for image regiost conksiming
texture and isclated featares. a combined cormer and edge
detecwor bused on the local auio-correlation function is
wilised. aad i is shown 10 perform with good conslateacy
on naseral bmagery

INTRODUCTION

The problem we are addoossing in Alvoy Project MMI &9
is that of usng computer vision to eaderstand the
usconstraiaed 30D world, s which the viewed sceacs will
in geneeal contiin %0 1 wide a diversity of objects lur wop-
down ' o work, For nple, we
desire 10 obtin = anﬂmg of nstural soenes,
containing roods, balkdiags, trees, bushes, eoc., as fypified
bymlwfm-alrmaww-xrwl
The sal 10 this problem Sat we are p g is 0
unn:ompnzrmunmmammamm:s
of 8 monocular image sequeace from a mobiie camera. By
extraction and tracking of image featsses, mpmen.n:m
of the 3D snalogues of Bose fetures can bo

they are discrete, reliable and meaningful?, However, the
lack of connectivity olralum-pum nnnn.nfhmm
in our ob g Ngher level & sech s swrfaces
and objects. We mni e richer urlovnu-m that &
available from adpes®.

THE EDGE TRACKING FROBLEM

Muxching between edge images on 8 plael-dy-pixel basia
workx for siereo, because of B knows epi-polar camen
peometcy, Nmmfa:hompo&ul.wum
Camers MOton s walk problem pe
ummnmnum-wummu
overcome by soiviag for e motion beforetand, bet we
are st faced with the task of uacking each individeal edge
pixel sad estimsating its 3D locatson from., for example,
Kalman ﬁmm. This qopm.ch it umanractive is
the edgels iato edge
mmu‘m%-m-mm

Now, (be wconstrained imagery we shall be congidering
will costain both curved edges and texture of varioos
kalu anlu\in; odges as a set of straight line

To cnable explich wacking of image features %0 be
perfommed, (he image feanwres must be discrere, and oot
foem 3 corginuam Lke textare, of edge pisels (edgels). For
1his resson, o carlicr work! has concontrated om the
oxtraction and trackang of frature-points or cormers, sisce

A, and asing them as our descrete (atures will de
wmmﬂlmnﬂumedmlmu
expecied 0 fragment diffcrenddy om cach image of the
sequeoce, and so be uantrackablc, Because of ill-

%, e use of d curves (op. circular
arcs) casnnt be expected  provide the solution, especially
with seal imagery

Figwre | Par of images from an osidoor seguence
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Harris Detector

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

1. Compute x and y derivatives of image

[ =G =1 [,=Gg =1

2. Compute products of derivatives at every pixel

I,=1-1, I,=1-1, I, =I-I

Y

3. Compute the sums of the products of derivatives at
each pixel

S2=G.*12 S2=GO'*]2 S =G.*]
X o X y y Xy o Xy



Harris Detector

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

4. Define the matrix at each pixel

So(x6y) S,(xy)
Sxy (x,¥) Sy2 (x,)

5. Compute the response of the detector at each pixel

R=detM - k(traceM )2

M(xay) =

6. Threshold on value of R; compute non-max suppression.



Corner Detection: Basic Ildea

« We should easily recognize the point by looking
through a small window

 Shifting a window in any direction should give a
large change in intensity

“flat” region: “edge”: ‘corner’;

no change in no change significant

all directions along the edge change in all
direction directions

Source: A. Efros



Corner detection the math

* Consider shifting the window W,
by (u,v)
e how do the pixels in W change?
e Write pixels in window as a vector:

¢o = [1(0,0),1(0,1),...,1(n,n)]
o1 = 1(0+u,04+v),I(0+u,14+v),...,I(n+un+v)

E(u,v) = [|¢o — 1|3



Corner detection: the math

Consider shifting the window W by (u,v)
e how do the pixels in W change?

e compare each pixel before and after by W
summing up the squared differences (SSD)

e this defines an SSD “error” E(u,v):
E(u,v)

= 2 [I(x+u,y+v)—1(x7y)]
(x,y)EW

e We want E(u,v) to be as high as possible
forallu, v!




Small motion assumption

Taylor Series expansion of /:

I(z4u,y+v) = I(xz,y) g Fhigher order terms

If the motion (u,v) is small, then first order approximation is good

I(z 4+ u,y +v) = I(z,y) + Gru+ Ghv

~ I(z,y) + [Iz Iy] [ ,U]

shorthand: I, = gi

Plugging this into the formula on the previous slide...



Corner detection: the math

Consider shifting the window W by (u,v)

w
e define an SSD “error” E(u,v):
E(u,v) = Z Iz +u,y+v)—I(x, y)]z
(z,y)eW
~ Z L(x,y)+ Lyu+ Lv—I(x, y)]2
(x,y)eW

&

Z Lu+ Iyz)]Q

(z,y)eW



Corner detection: the math

Consider shifting the window W by (u,v)

e define an “error” E(u,v):

E(u,v) =~ Z Lou+ Iv]°
(x,y)eW

Au? 4+ 2Buv + Cv?

A= Z Ii B = Z I, C= Z I’j

(x,y)eW (z,y)eW (z,y)eW

X

e Thus, E(u,v) is locally approximated as a quadratic error function



A more general formulation

* Maybe all pixels in the patch are not equally important
* Consider a “window function” w(x, y) that acts as weights
*E(,v) = Xoepyew WO MU (x +u,y +v) — 1(x,y)]

* Case till now:
* w(x,y) =1 inside the window, 0 otherwise



Using a window function

* Change in appearance of window w(x,y) for the shift [u,v]:

E(u,v)=> w(x, Y)[I(X+u,y+Vv)—1(x, y)]2

Window Shifted
function intensity

Window function W(X,Y) = [ P—

CIntensity)

1 in window, O outside Gaussian

Source: R. Szeliski



Redoing the derivation using a window
function

E(u,v) = Z w(x,y) [[(x+wy + 1) —1(x,)]?
x,yew

~ Z W(x,y)[l(x,y)+u1x(x,y)+v’y(x'3’)—’(x’y)]2
x,yeWw

= Z W(X,y)[UIx(X,:Y)+v1y(ny)]2

xX,yeW

_ 2 wx, ) [U2L(x, ¥)? + v2L, (x, ¥)? + 2uvl, (x, )L, (x, )]
xX,yeW



Redoing the derivation using a window
function

E(uv) = Z w(x, Y)[u?l, (x, ¥)* + vl (x,y)* + 2uvl, (x, y)1,(x, y)]
xX,yEW
= Au? + 2Buv + Cv?

A= z w(x, )L (x, y)?

X,YyEW

B = z w(x, V)1 (x, )L, (x, )

X,yEW

C= ) Wiyl y)?

xX,yEW



The second moment matrix

E(u,0) ~ [ u v]{g gHH

Y
M

M _ ’UJ(.CE‘ y) _ Ix(xvy)Q Ix(w,y)fy(a?,y)_
N L (2, y) 1y (2, y) I(x,y)?

x,yecW - =

— ~— /)

Second moment matrix



The second moment matrix

E(u,0) ~ [ u v]{g gHH

\ J

M
3 I(z,y)° L (z,y) I, (2, y)
M= ), wi@y) T (z,y) Ly (2, y) I,(z,y)”

V

Second moment matrix

Recall that we want E(u,v) to be as large as possible
for all u,v

What does this mean in terms of M?



M i _
0 O
M__O 0
U 0
[y =10
E(u,v) =0 Vu,v

Flat patch: [, = ()

I, =0



Vertical edge: Iy — O






What about edges in arbitrary orientation?




-
-

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance



u

E(u,v)~| u v |M y

Solutions to Mx = 0 are directions for which E
is 0: window can slide in this direction
without changing appearance

For corners, we want no such directions to

R
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C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

Harris Detector

1. Compute x and y derivatives of image 4. Define the matrix at each pixel
[, =Gl I =G)x*I M5, )= S.(x,y) S,(xy)
’ Sy (%:3) 5, (x,)

2. Compute products of derivatives at every pixel

[.=1-1, I,=I,11,=I-1

5.  Compute the response of the detector at each

pixel R =det M — k(traCGM)2

3. Compute the sums of the products of derivatives

at each pixel
S,=G._*1,
y © y 6. Threshold on value of R; compute non-max
S, =Gy *1,

_ suppression.
sz —Go.u*lxz pp
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NAVANVAVANANAN

N

= Constant



Visualization as an ellipse

0
0 A,

Since M is symmetric, we have M =R™ R

We can visualize M as an ellipse with axis lengths determined by the
eigenvalues and orientation determined by R

direction of the fastest
change

Ellipse equation:

y direction of the
slowest change
[uv]M[

= const
\%



SVD

A=UZ V" Z=

L - For a square symmetric matrix

U, V = orthogonal matrix — v=v"

* U,V becomes Rotation Matrix R

g. = /ﬂ o= SingUIar value « Diagonal matrix has eigenvalues of A
I ' )\ = eigenvalue of AtA



Compute eigenvalues and eigenvectors

eigenvalue
i
i

Me = e (M — Al)e =0

‘\\ ;/

eigenvector



Compute eigenvalues and eigenvectors

eigenvalue

l
Me = Xe (M —X)e=0
N/

eigenvector




Compute eigenvalues and eigenvectors

eigenvalue

l
Me = Xe (M —X)e=0
N/

eigenvector




Compute eigenvalues and eigenvectors

eigenvalue

l
Me = Xe (M —X)e=0
N/

eigenvector




Eigenvalues & Eigenvector computation
example
2

* Compute eigenvalues, eigenvectors of
* determinant of the matrix (A — Al) equals zero are the eigenvalues

|A—Aﬂ=‘2 Lt ”‘z
12 0 1

H
I
—

2— A 1 ‘
1 2—A

=3 —4X+ M.

 Setting the characteristic polynomial equal to zero, it has roots at A=1
and A=3, which are the two eigenvalues of A.




Eigenvalues & Eigenvector computation
example
2

* Compute eigenvalues, eigenvectors of

H
I
—

* Fori=1 For A=3
1 17w 0 -1 1] [w 0
A—I —1 = = IIA—EI}V;;;]:I: ][ ]:[]
( JVasi [1 1] ['U:::] L}] L —1lle 0

~1v; + 1vy = 0;

lvy + 1vg =0 li:‘i B l: — 0

Any nonzero vector with vl = v2 solves this
equation. Therefore,

=[5 ][4 o= [2]-[]

"

* Any nonzero vector with vl = -v2 solves this equation.

68



Eigenvalues and eigenvectors of M

U
U

E(u,v)~| u v |M

min
M ZTmax = /\Ina,xxmax

max )
Lmin — )\min Lmin

Eigenvalues and eigenvectors of M
e Define shift directions with the smallest and largest change in error

e X.. = direction of largest increase in E

* A, = @amount of increase in direction x__,
* X, = direction of smallest increase in E

e A, = amount of increase in direction x,,,




Interpreting the eigenvalues

Amin

Amaxr Amin @re small;

E is almost 0 in all

directions

Flat patch

Edge

)lmax > Aminr /1min ~ 0
E remains close to O

along x,,in

Amax




Use threshold on eigenvalues to detect corners

Think of a function to
score ‘cornerness’




Use threshold on eigenvalues to detect corners

strong corner

Think of a function to
score ‘cornerness’




Use threshold on §igenvalues to detect corners

(a function of)

corner

Use the smallest eigenvalue as
the response function

R = IIliIl()\lj )\2)




Corner response function
R = min(Aq, Ao)

Amin

Edge

|
|IR| = 0 —

Flat patch




Use threshold on §igenvalues to detect corners

(a function of)

corner

Eigenvalues need to be
bigger than one.

R = )\1)\2 — H}()\l + )\2)2

Can compute this more efficiently...




Corner response function
R=det(M) - trace(M)? =LA — a(ﬂl+ﬂz)

Amm

Edge
R<O

|
RI~0 [~

Flat patch




Use threshold on §igenvalues to detect corners

(a function of)

A
corner
R<O0 R>0
det M =AM,
trace M =\, +A,
R = det(M) — xtrace*(M) det ([a ZD — ad — be

trace([a b]) =a+d
c d




Harris & Stephens (1988)

Kanade & Tomasi (1994)

Nobel (1998)




C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

Harris Detector

1. Compute x and y derivatives of image 4. Define the matrix at each pixel
[, =Gl I =G)x*I M5, )= S.(x,y) S,(xy)
’ Sy (%:3) 5, (x,)

2. Compute products of derivatives at every pixel

[.=1-1, I,=I,11,=I-1

5.  Compute the response of the detector at each

pixel R =det M — k(traCGM)2

3. Compute the sums of the products of derivatives

at each pixel
S,=G._*1,
y © y 6. Threshold on value of R; compute non-max
S, =Gy *1,

_ suppression.
sz —Go.u*lxz pp



Final step: Non-maxima suppression

* Pick a pixel as corner if cornerness at patch centered on it >
cornerness of neighboring pixels

e And if cornerness exceeds a threshold



C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”1988.

Harris Detector

1. Compute x and y derivatives of image 4. Define the matrix at each pixel
[, =Gl I =G)x*I M5, )= S.(x,y) S,(xy)
’ Sy (%:3) 5, (x,)

2. Compute products of derivatives at every pixel

[.=1-1, I,=I,11,=I-1

5.  Compute the response of the detector at each

pixel R =det M — k(traCGM)2

3. Compute the sums of the products of derivatives

at each pixel
S,=G._*1,
y © y 6. Threshold on value of R; compute non-max
S, =Gy *1,

_ suppression.
sz —Go.u*lxz pp
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f value (red high, blue low)




Threshold (f > value)



Find local maxima of f




Harris features (in red)




Harris corner response IS
Invariant to rotation

™ ||‘ A
— S

Ellipse rotates but its shape
(eigenvalues) remains the same

- Corner response R Is Iinvariant to image rotation i




Harris corner response IS
invariant to intensity changes

Partial invariance to affine intensity change

1 Only derivatives are used => invariance to intensity
shiftl > 1+D

1 Intensity scale: | - a |
AN

YA VAVER

X (image coordinate) g x (image coordinate)



The Harris detector is not invariant to changes in ...



The Harris corner detector is not invariant to ©
scale

edge!
corner!




Multi-scale detection



How can we make a feature detector scale-invariant?



How can we automatically select the scale?



Scale invariant detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum of
cornerness
* in both position and scale
* One definition of cornerness: the Harris operator



Intuitively...

Find local maxima in both position and scale

Image 1

f 4

| Image 2
N

|

|

|

Sy

1
1
1
1
| > >
S, region size region size



Automatic scale selection

Lindeberg et al., 1996

Slide from Tinne Tuytelaars















Automatic scale selection




Implementation

* Instead of computing f for larger and larger windows, we can
implement using a fixed window size with a Gaussian pyramid




Gaussian pyramid implementation

Inputimage (256 X 256)

Gaussian

Level O Output

CAP4453

Filter (256X 256)
Down sample Level 0 by 2 GhtGasTan Level 1 Output
Filter (128X 128)
Downsample Levellby2 Gaussian Level 2 Output
Filter (64X 64)

103



How would you implement scale selection?



implementation

For each level of the Gaussian pyramid

compute feature response (e.g. Harris, Laplacian)

For each level of the Gaussian pyramid
if local maximum and cross-scale

save scale and location of feature (1&3/15)



Blob detection






Corners and blobs

10N

Feature extract




Formally...
Laplacian filter

.' '.:*..
< 1| \

l |
1|
0| |
U

=20 -11

o
(]

Original signal

-20 -10 10 20 =20 =7 7 20 -20 -é 3 20 =20 -1 i

Convolved with Laplacian (o = 1)

Highest response when the signal has the
same characteristic scale as the filter



Another common definition of f

* The Laplacian of Gaussian (LoG)

2 82 g @2 g (very similar to a Difference of Gaussians (DoG) -
V g — -+ i.e. a Gaussian minus a slightly smaller Gaussian)




Laplacian of Gaussian

e “Blob” detector

minima

* Find maxima and minima of LoG operatofimspace
and scale



Scale-space blob detector: Example

sigma = 11.9912



22 e ——

, ()¢ e, - =
Y, eony.-" o™ Y a0 e
-.J o) ”: ®  AENeNe ow’s.au

‘,

-

N,
¥, .

Example

Scale-space blob detector



Scale selection

e At what scale does the Laplacian achieve a maximum response for a
binary circle of radius r?

| ?&“‘?‘%‘M L,

= . ,{J ; D A
2 ]

[}

image Laplacian



Characteristic scale

e We define the characteristic scale as the scale that produces peak of
Laplacian response

2000

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.



http://www.nada.kth.se/cvap/abstracts/cvap198.html




sigma=2.1

What happens if you apply different Laplacian filters?

sigma=4.2 sigma=6 sigma=9.8 sigma=15.5

sigma=17




sigma=2.1

jet color scale
blue: low, red: high



sigma=4.2

=]
x




sigma=6




sigma=9.8




sigma=15.5

'[' /
"IIZI




sigma=17

T
‘\-\‘O'fl',’l'll,’ /i
Wity

WXt

0
h
i _w\.'l,-’.',"




What happened when you applied different Laplacian filters?

Full size 3/4 size




-0.07 -

100

sigma=2.1




=4.2

sigma

=]
x




sigma=6




sigma=9.8

x10
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sigma=15.5

'[' /
"IIZI




sigma=17
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What happened when you applied different Laplacian filters?

Full size 3/4 size







maximum response




optimal scale

2.1 4.2 6.0 9.8 15.5

Full size image

2.1 4.2 6.0 9.8 15.5 17.0

3/4 size image

17.0




optimal scale

2.1 4.2 6.0 .
maximum
response
L4

Full size image

15.5 17.0

6.0

17.0

2.1 4.2 9.8 15.5
maximum
response

3/4 size image




local maximum

Cross-scale maximum local maximum

local maximum




Scale Invariant Detection

e Functions for determining scale f = Kernel # Image

Kernels:

2 o2
vig-28.,°8
ax~ dy~ 01f

(Laplacian) °

DoG = G(x,y,ka)—G(x,y,U)

(Difference of Gaussians)

= | aplacian
— DoG

where Gaussian ——
2, .2
G(I‘ O') — 1 €—$2;|_y Note: The LoG and DoG operators
Y 27TO'2 are both rotation equivariant










References

Basic reading:
» Szeliski textbook, Sections 4.1.



Questions?



