

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Administrative details

• Next class

Questions?

Robot Vision

4. Image Filtering II

Credits

- Some slides comes directly from:
 - Yogesh S Rawat (UCF)
 - Noah Snavely (Cornell)
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Mubarak Shah (UCF)
 - S. Seitz
 - James Tompkin
 - Ulas Bagci
 - L. Lazebnik

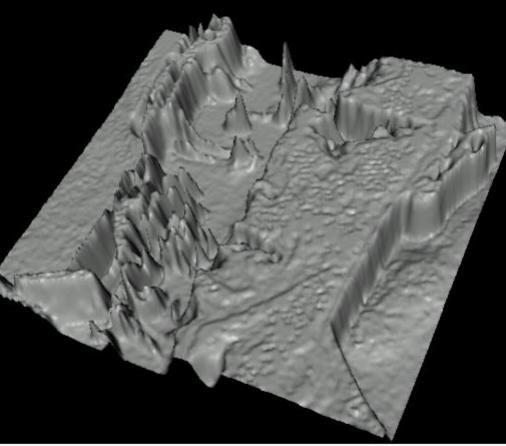
Outline

- Image as a function
- Extracting useful information from Images
 - Histogram
 - Filtering (linear)
 - Smoothing/Removing noise
 - Convolution/Correlation
 - Image Derivatives/Gradient
 - Edges

Edge Detection

- Identify sudden changes in an image
 - Semantic and shape information
 - Marks the border of an object
 - More compact than pixels

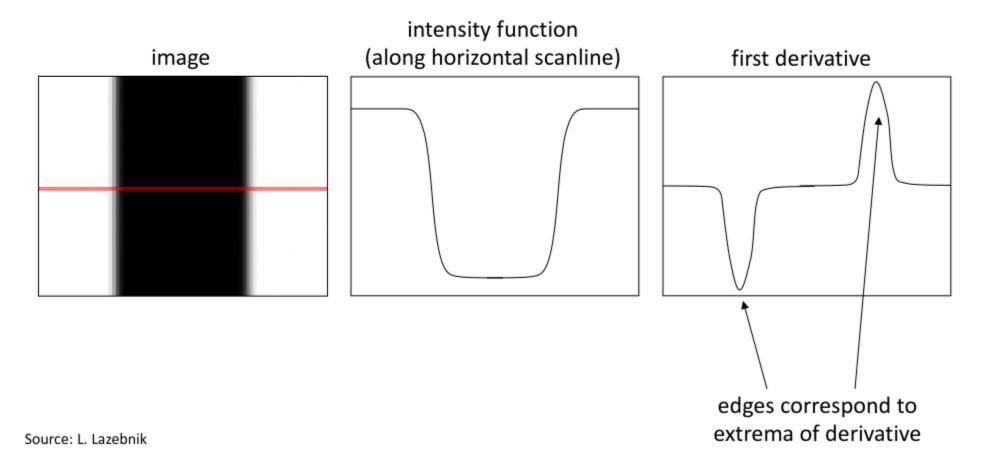
Images as functions...



 Edges look like steep cliffs

Characterizing edges

• An edge is a place of *rapid change* in the image intensity function



Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

 \checkmark You use finite differences.

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

What convolution kernel does this correspond to?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\begin{array}{c|c} -1 & 0 & 1 \\ \hline 1 & 0 & -1 \end{array}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

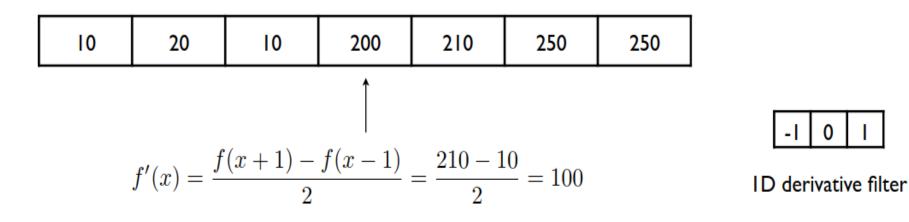
$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

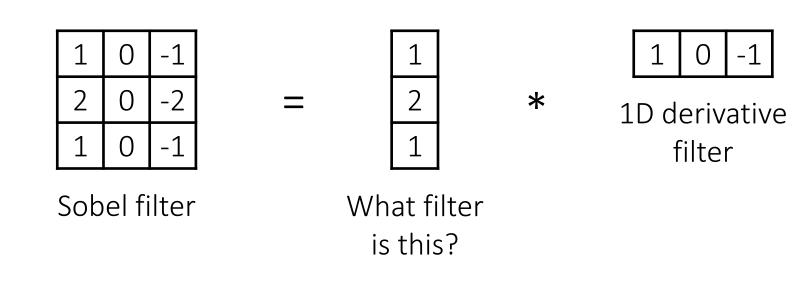
1D derivative filter

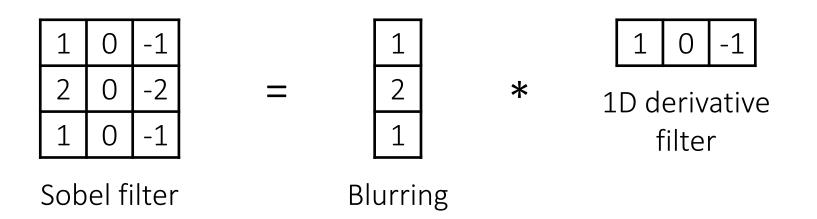
1	0	-1
---	---	----

Example 1D signal

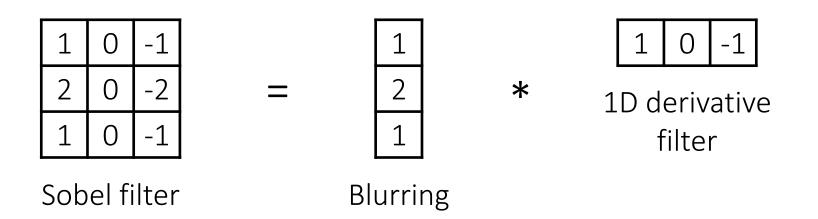
How do we compute the derivative of a discrete signal?





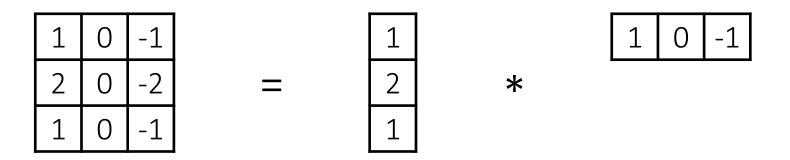


In a 2D image, does this filter responses along horizontal or vertical lines?



Does this filter return large responses on vertical or horizontal lines?

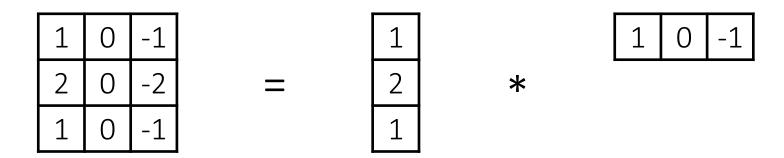
Horizontal Sober filter:



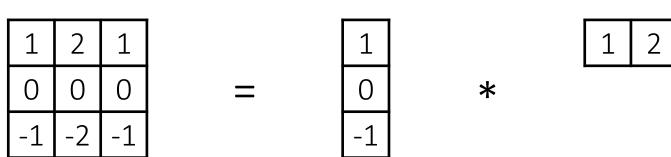
What does the vertical Sobel filter look like?

1

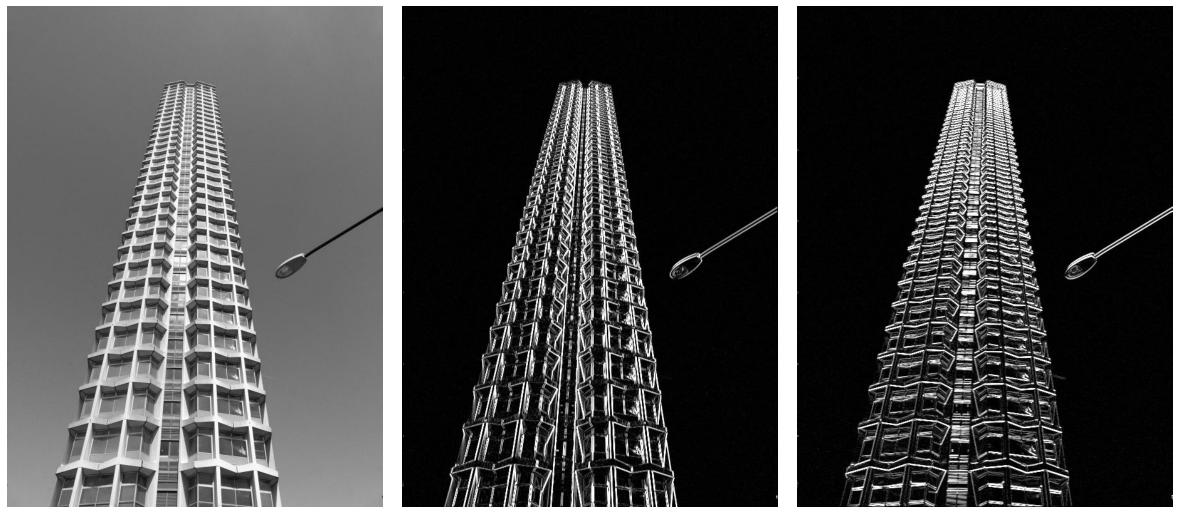
Horizontal Sober filter:



Vertical Sobel filter:



Sobel filter example

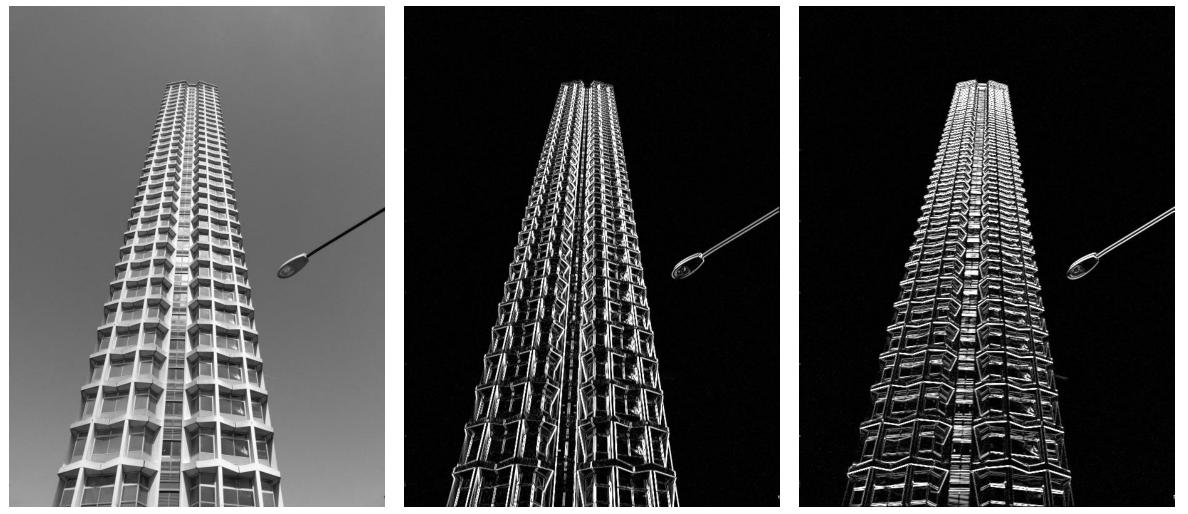


original

which Sobel filter?

which Sobel filter?

Sobel filter example

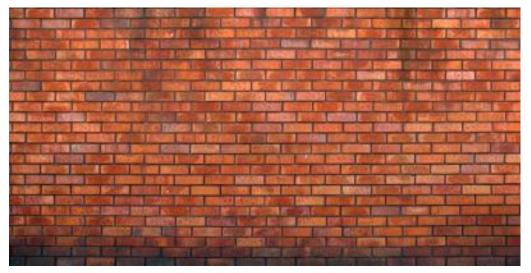


original

horizontal Sobel filter

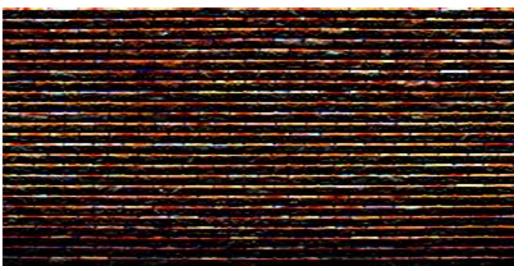
vertical Sobel filter

Sobel filter example

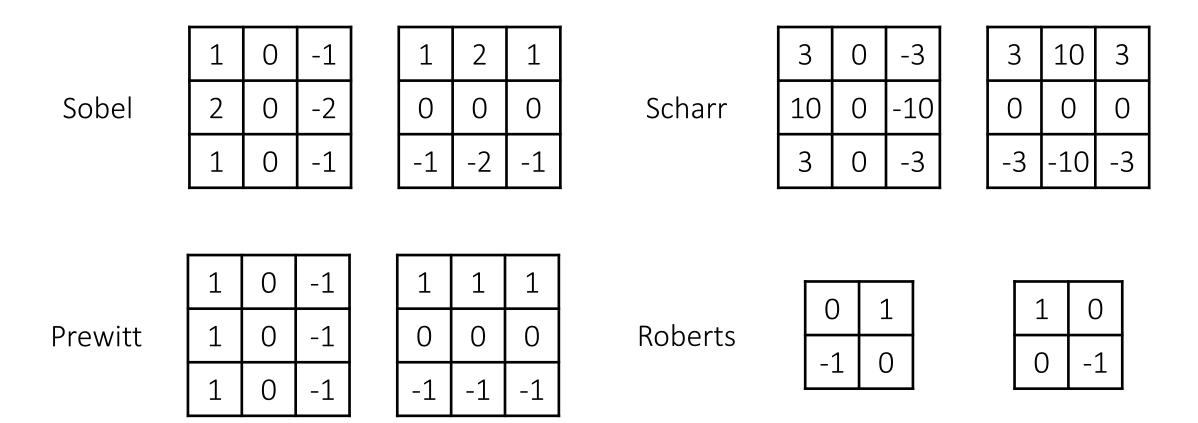


original

horizontal Sobel filter



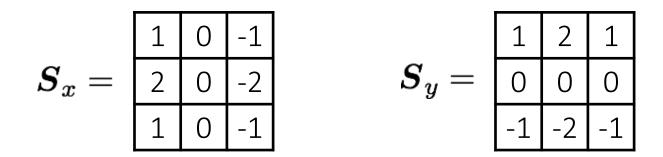
Several derivative filters



- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

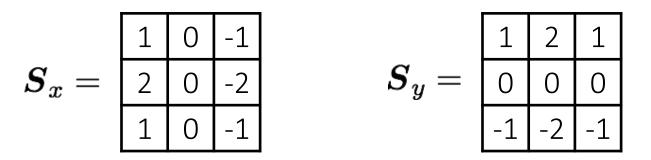
Computing image gradients

1. Select your favorite derivative filters.



Computing image gradients

1. Select your favorite derivative filters.

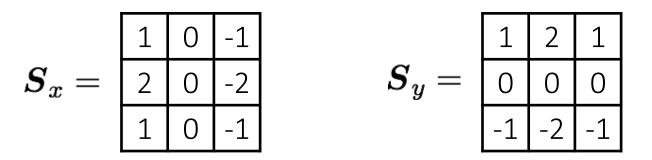


2. Convolve with the image to compute derivatives.

$$rac{\partial f}{\partial x} = S_x \otimes f$$
 $rac{\partial f}{\partial y} = S_y \otimes f$

Computing image gradients

1. Select your favorite derivative filters.



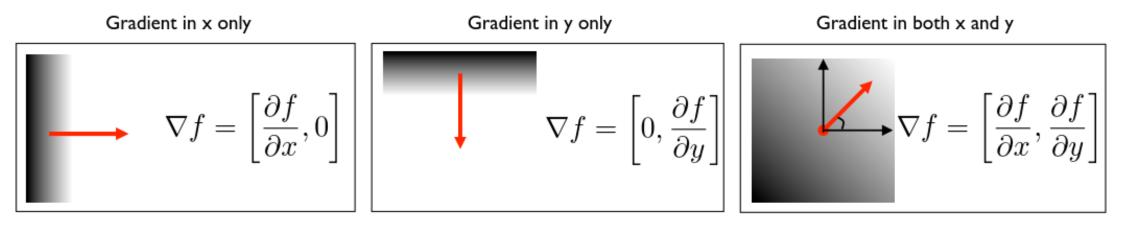
2. Convolve with the image to compute derivatives.

$$rac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f} \qquad \qquad rac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \otimes \boldsymbol{f}$$

3. Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
gradient direction amplitude

Image Gradient



Gradient direction $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$

How does the gradient direction relate to the edge?

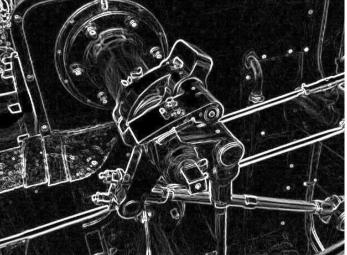
Gradient magnitude

$$||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

What does a large magnitude look like in the image?

Image gradient example

gradient amplitude

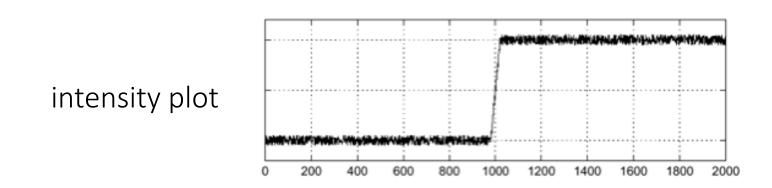


vertical derivative

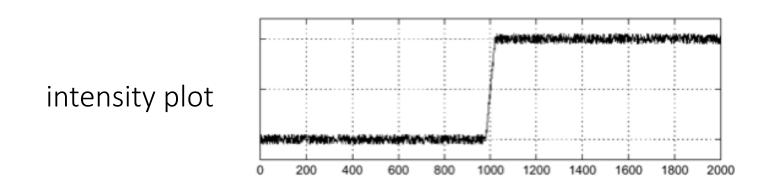
horizontal derivative

How does the gradient direction relate to these edges?

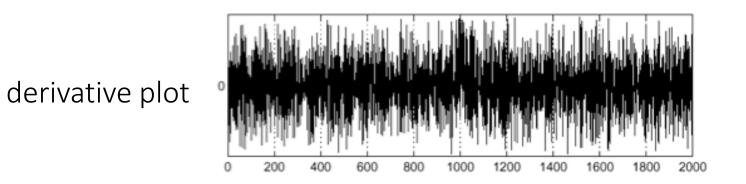
How do you find the edge of this signal?



How do you find the edge of this signal?



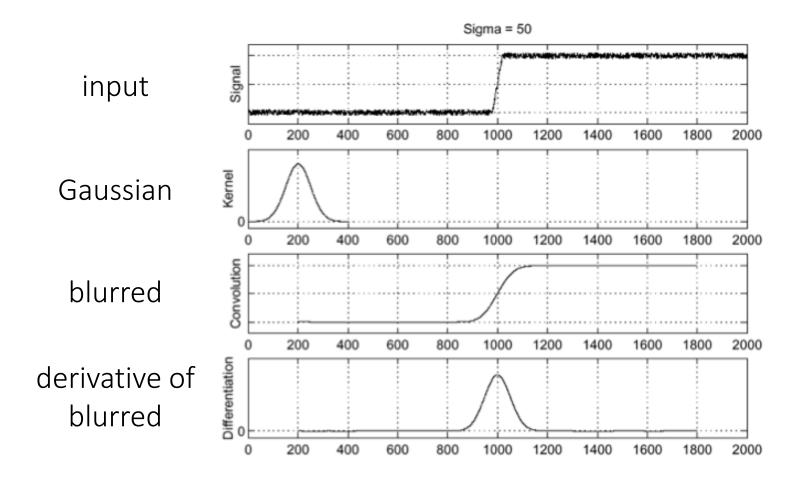
Using a derivative filter:

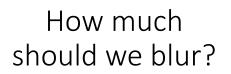


What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

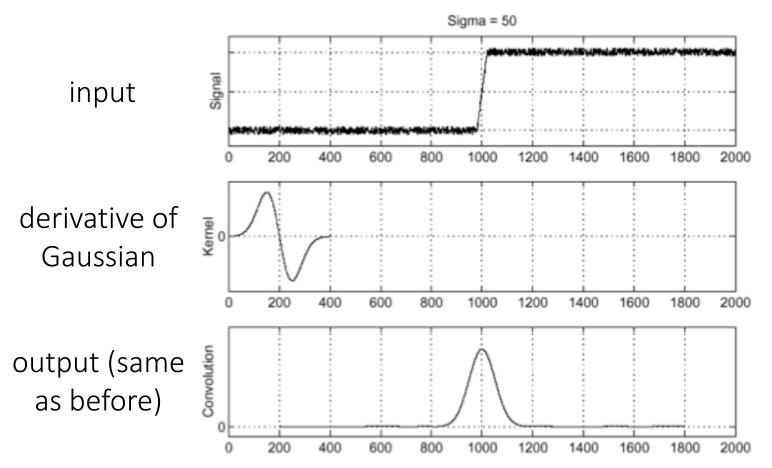




Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



- How many operations did we save?
- Any other advantages beyond efficiency?

Laplace filter

A.K.A. Laplacian, Laplacian of Gaussian (LoG), Marr filter, Mexican Hat Function

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow Laplace filter$?

Laplace filter

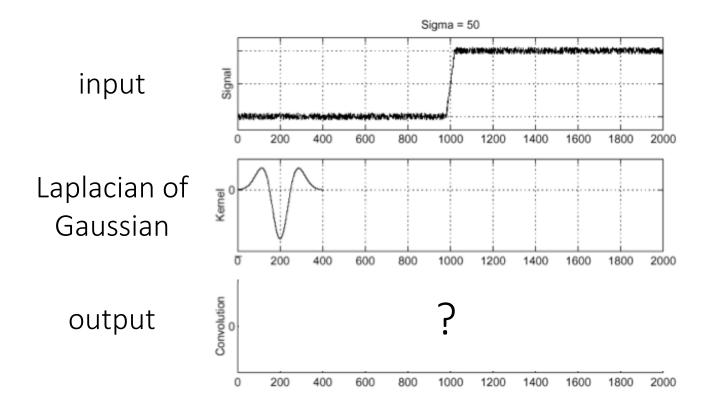
Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow 1D$ derivative filter
 $1 \quad 0 \quad -1$

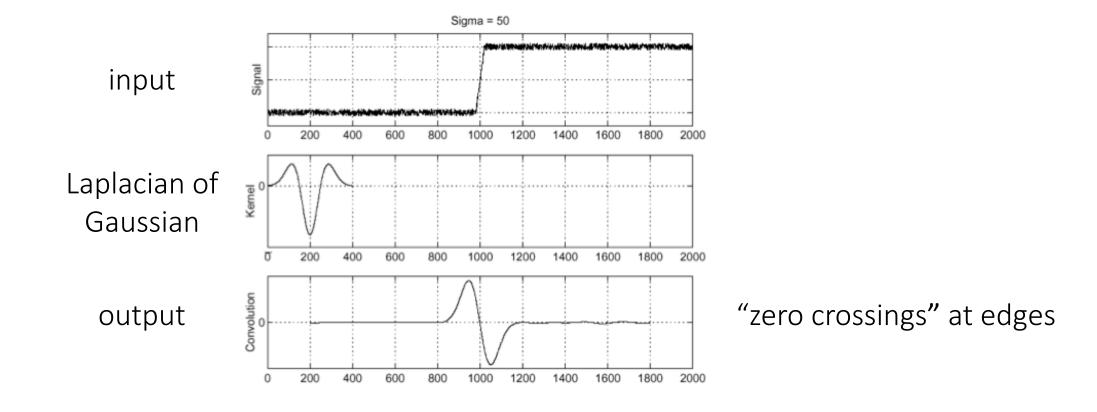
Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering



Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

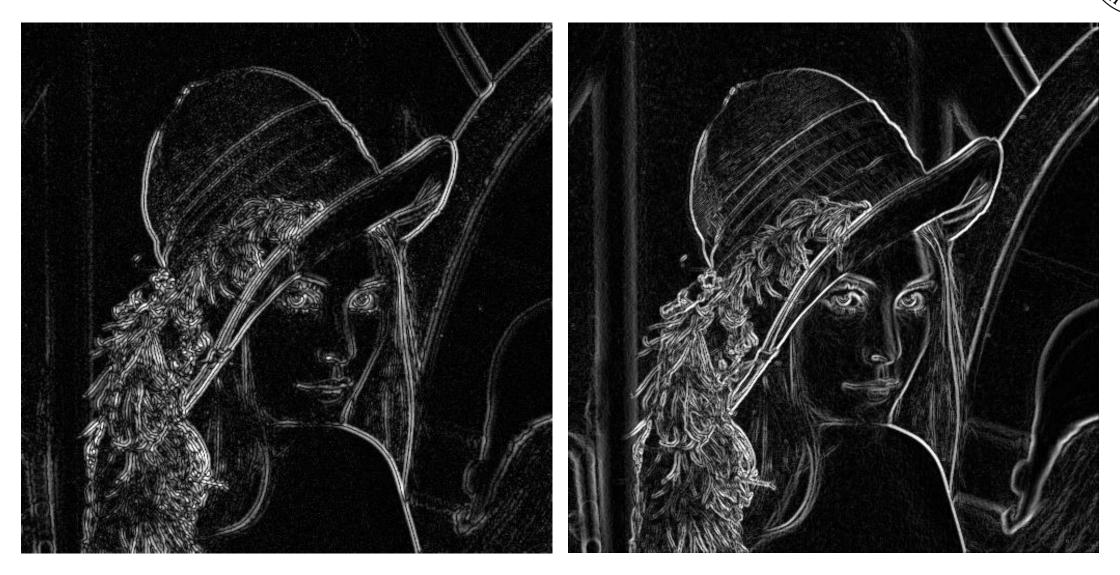


Laplace and LoG filtering examples

Laplacian of Gaussian filtering

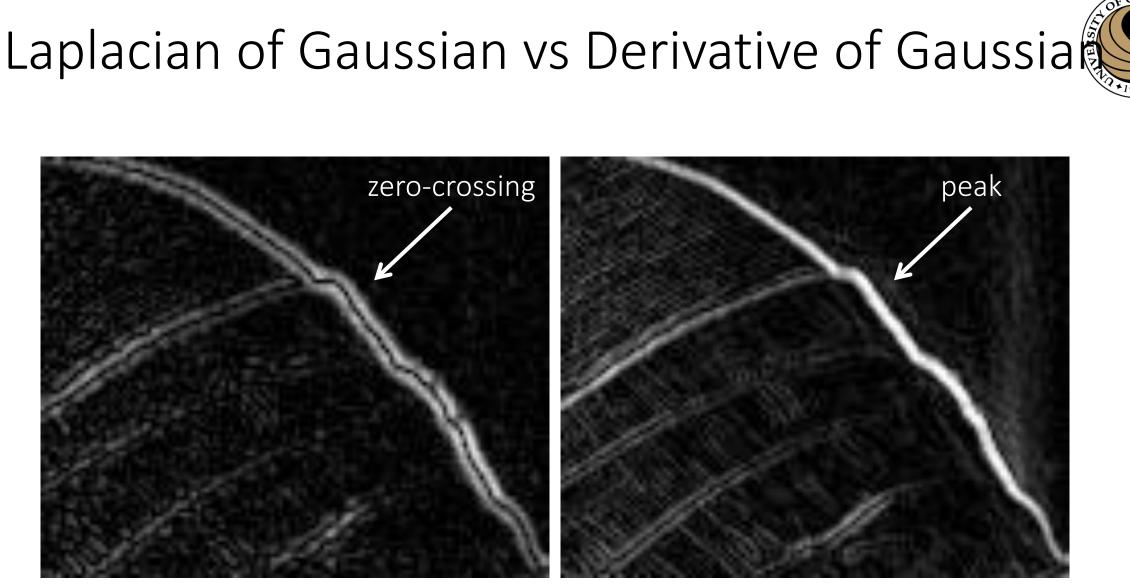
Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussia



Laplacian of Gaussian filtering

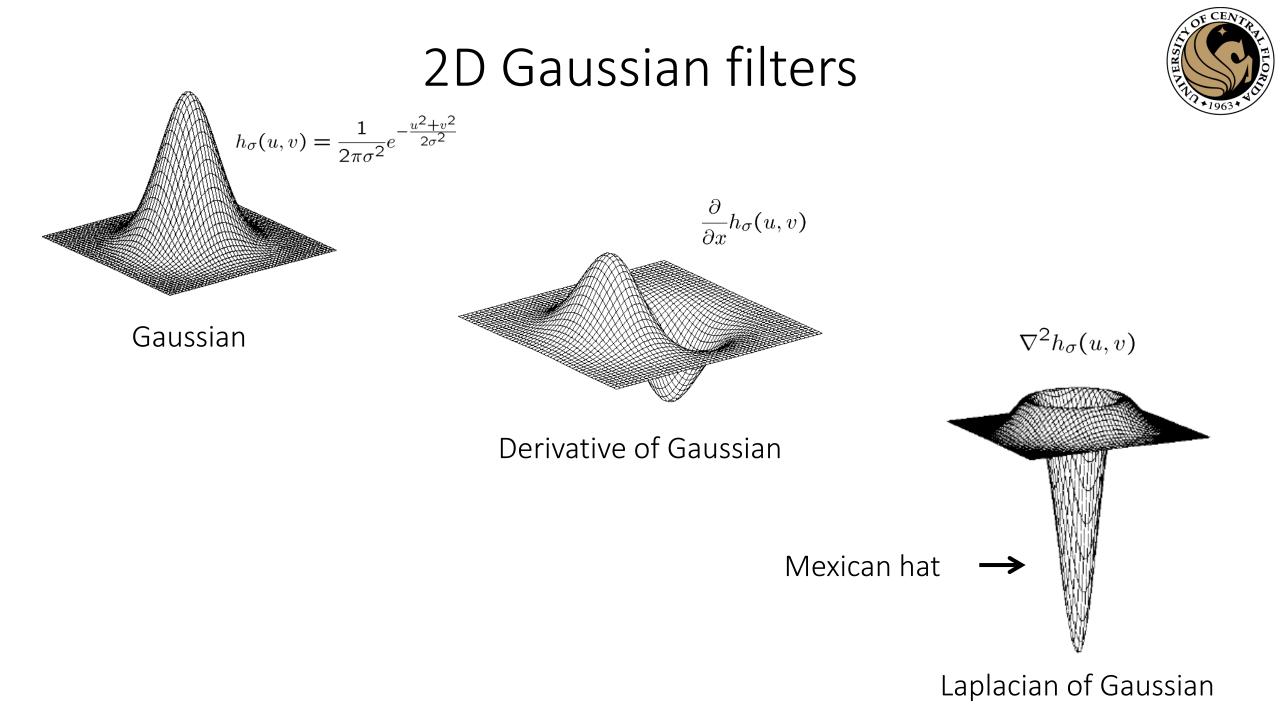
Derivative of Gaussian filtering



Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).



References

Basic reading:

• Szeliski textbook, Section 3.2

Questions?