

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Administrative details

- 1 homework
- 1 project

Credits

- Some slides comes directly from:
 - Yosesh Rawat
 - Andrew Ng

Robot Vision

18. Convolutional Neural Networks I

Fully connected networks: Review

• A deep network is a neural network with many layers

- A neuron in a linear function followed for an activation function
- Activation function must be non-linear
- A loss function measures how close is the created function (network) from a desired output
- The "training" is the process of find parameters ('weights') that reduces the loss functions
- Updating the weights as $w_{new} = w_{prev} \alpha \frac{dJ}{dW}$ reduces the loss
- An algorithm named back-propagation allows to compute $\frac{dJ}{dW}$ for all the weights of the network in 2 steps: 1 forward, 1 backward

Activations and their derivatives

Digit classification

- MNIST dataset:
 - 70000 grayscale images of digits scanned.
 - 60000 for training
 - 10000 for testing
- Loss function

28

28

Digit classification

- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

A look in the code

• To run this code do:

- import network
- net = network.Network([784, 30, 10])
- net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

Z C:\U	sers\vac	aca27.IMEC\OneDrive - imec\depplearning\crash course\neural-networks-and-deep-learning-master\neural-netw	
<u>File</u>	dit <u>S</u> ea	arch <u>V</u> iew E <u>n</u> coding <u>L</u> anguage Se <u>t</u> tings T <u>o</u> ols <u>M</u> acro <u>R</u> un <u>P</u> lugins <u>W</u> indow <u>?</u>	
2 占		i 🕞 🕞 😂 🕹 🌇 🜔 Ə 🙋 📾 🍇 🤏 🛸 🖫 🔤 💷 🎵 🌉 🖉 🗁 🔍 🔍 🔍 🗩	
🗄 new	1 X 🗄	.gitignore 🛪 🔚 PopulateDefaults.m 🛪 🔚 framepulses.py 🛪 🔚 README.md 🛪 🔚 network.py 🛪 🔚 mnist_loader.py 🛪	
18			
19		ss Network(object):	
20	T		
21	ė.	<pre>def init (self, sizes):</pre>	
22		"""The list ``sizes`` contains the number of neurons in the	
23		respective layers of the network. For example, if the list	
24		was [2, 3, 1] then it would be a three-layer network, with the	
25		first layer containing 2 neurons, the second layer 3 neurons,	
26		and the third layer 1 neuron. The biases and weights for the	
27		network are initialized randomly, using a Gaussian	
28		distribution with mean 0, and variance 1. Note that the first	
29		layer is assumed to be an input layer, and by convention we	
30		won't set any biases for those neurons, since biases are only	
31		ever used in computing the outputs from later layers."""	
32		<pre>self.num_layers = len(sizes)</pre>	
33		self.sizes = sizes	
34	Ц	<pre>self.biases = [np.random.randn(y, 1) for y in sizes[1:]]</pre>	
35	E E	<pre>self.weights = [np.random.randn(y, x)</pre>	
36		<pre>for x, y in zip(sizes[:-1], sizes[1:])]</pre>	
37	Д		
38	T	<pre>def feedforward(self, a): """""""""""""""""""""""""""""""""</pre>	
39	4	"""Return the output of the network if ``a`` is input."""	
40 41	T	for b, w in zip(self.biases, self.weights):	
41		<pre>a = sigmoid(np.dot(w, a)+b) return a</pre>	
43		recur a	
44	L.	def SGD(self, training data, epochs, mini batch size, eta,	
45	Ľ	test data=None):	
46		"""Train the neural network using mini-batch stochastic	
47		gradient descent. The ``training data`` is a list of tuples	
48		(x, y) representing the training inputs and the desired	
49		outputs. The other non-optional parameters are	
50		self-explanatory. If ``test data`` is provided then the	
51		network will be evaluated against the test data after each	
52		epoch, and partial progress printed out. This is useful for	
53		tracking progress, but slows things down substantially."""	
54		if test data: n test = len(test data)	
55		n = len(training_data)	
56	白	<pre>for j in xrange(epochs):</pre>	
57		<pre>random.shuffle(training_data)</pre>	
58	白	<pre>mini_batches = [</pre>	
59		<pre>training_data[k:k+mini_batch_size]</pre>	
60	-	<pre>for k in xrange(0, n, mini_batch_size)]</pre>	
61	白	<pre>for mini_batch in mini_batches:</pre>	
62	-	<pre>self.update_mini_batch(mini_batch, eta)</pre>	
63	Ē	if test_data:	
64	户	<pre>print "Epoch {0}: {1} / {2}".format(</pre>	
65	上	<pre>j, self.evaluate(test_data), n_test)</pre>	
66	户	else:	
67	-	<pre>print "Epoch {0} complete".format(j)</pre>	
68			
69	- F	<pre>def update mini_batch(self, mini_batch, eta):</pre>	
70		""Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch	
71			

FLOR

	*C:\Users\vacaca27.IMEC\OneDrive - imec\depplearning\crash course\neural-networks-and-deep-learning-master\neural-net			
	<u>File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?</u>			
	2 🗠 🖶 🔁 🗟 12 🖉 11 💭 12 12 12 12 12 12 12 12 12 12 12 12 12			
	🔚 new 1 🗵 🔚 gitignore 🗵 🚍 PopulateDefaults m 🛛 📑 framepulses.py 🗵 블 README.md 🗵 블 network.py 🛛 🔚 mist_loader.py 🗵			
	93			
A look in code	94 def backprop(self, x, y):			
	95 """Return a tuple ``(nabla b, nabla w)`` representing the			
	96 gradient for the cost function C x. ``nabla b`` and			
	97 ``nabla w`` are layer-by-layer lists of numpy arrays, similar			
	98 to ``self.biases`` and ``self.weights``."""			
	99 nabla b = [np.zeros(b.shape) for b in self.biases]			
	100 nabla w = [np.zeros(w.shape) for w in self.weights]			
	101 # feedforward			
	102 activation = x			
	103 activations = [x] # list to store all the activations, layer by layer			
	104 zs = [] # list to store all the z vectors, layer by layer			
	105 for b, w in zip(self.biases, self.weights):			
	106 z = np.dot(w, activation)+b			
	107 zs.append(z)			
	108 activation = sigmoid(z)			
	109 - activations.append(activation)			
	110 # backward pass			
	111 delta = self.cost_derivative(activations[-1], y) * \			
	112 - sigmoid_prime(zs[-1])			
	113 nabla_b[-1] = delta			
	<pre>114 nabla_w[-1] = np.dot(delta, activations[-2].transpose())</pre>			
	115 # Note that the variable 1 in the loop below is used a little			
	116 # differently to the notation in Chapter 2 of the book. Here,			
	117 # 1 = 1 means the last layer of neurons, 1 = 2 is the			
	118 # second-last layer, and so on. It's a renumbering of the			
	119 # scheme in the book, used here to take advantage of the fact			
	120 # that Python can use negative indices in lists. 121 = for 1 in xrange(2, self.num layers):			
For $k = N1$ $\frac{\partial Div}{\partial Liv} = \frac{\partial Div}{\partial Div}$	121 for 1 in xrange(2, self.num_layers): 122 z = zs[-1]			
For $k = N1$ For $i = 1$: layer – width $\frac{\partial Div}{\partial z_i^{(k)}} = f'_k \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$	$\begin{array}{c} z = zs[-1] \\ z = sigmoid prime(z) \end{array}$			
Initialize: Gradient	123 sp = Sigmoid_prime(2) 124 delta = np.dot(self.weights[-1+1].transpose(), delta) * sp			
$\frac{\partial Div}{\partial Div}$	125 nabla b[-1] = delta			
	126 - nabla w[-1] = np.dot(delta, activations[-1-1].transpose())			
w.r.t network output $\frac{\partial y_i^{(k-1)}}{\partial y_i^{(k-1)}} = \sum_j w_{ij} \frac{\partial z_i^{(k)}}{\partial z_i^{(k)}}$	127 - return (nabla b, nabla w)			
	128			
$\frac{\partial Div}{\partial t} = \frac{\partial Div(Y,d)}{\partial Div}$	129 def cost derivative(self, output activations, y):			
$\frac{\partial y_i}{\partial y_i} = \frac{\partial y_i^{(N)}}{\partial y_i^{(k)}}$	130 """Return the vector of partial derivatives \partial C x /			
$\frac{\partial y_i}{\partial y_i} = \frac{\partial y_i^{(N)}}{\partial w_{ij}^{(k)}} = \frac{\partial y_i^{(k-1)}}{\partial z_j^{(k)}}$	131 \partial a for the output activations."""			
	132 return (output activations-y)			
	133			
	134 #### Miscellaneous functions			
	135 Edef sigmoid(z):			
	136 """The sigmoid function."""			
λ	137 return 1.0/(1.0+np.exp(-z))			
	138			
	139 Edef sigmoid prime(z):			
	140 """Derivative of the sigmoid function."""			
	141 return sigmoid(z)*(1-sigmoid(z)) 142			
	*12 V			

Python file length : 6,439 lines : 142

Ln:140 Col:5 Sel:0|0

Windows (CR LF) UTF-8

INS

*C:\Users\vacaca27.IMEC\OneDrive - imec\depplearning\crash course\neural-networks-and-deep-learning-master\neural-net...

A look in the code

A REVIEW

Story so far

- Neural nets can be trained via gradient descent that minimizes a loss function
- Backpropagation can be used to derive the derivatives of the loss
- Backprop is not guaranteed to find a "true" solution, even if it exists, and lies within the capacity of the network to model
 - The optimum for the loss function may not be the "true" solution
- For large networks, the loss function may have a large number of unpleasant saddle points
 - Which backpropagation may find

Convergence of gradient descent

- An iterative algorithm is said to converge to a solution if the value updates arrive at a fixed point
 - Where the gradient is 0 and further updates do not change the estimate
- The algorithm may not actually converge
 - It may jitter around the local minimum
 - It may even diverge
- Conditions for convergence?

Learning rate

A closer look at the convergence problem

- With dimension-independent learning rates, the solution will converge smoothly in some directions, but oscillate or diverge in others
- Proposal:
 - Keep track of oscillations
 - Emphasize steps in directions that converge smoothly
 - Shrink steps in directions that bounce around..

Momentum Update

• The momentum method maintains a running average of all gradients until the *current* step

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

- Typical β value is 0.9
- The running average steps
 - Get longer in directions where gradient stays in the same sign
 - Become shorter in directions where the sign keeps flipping

Nestorov's Accelerated Gradient

Nestorov's method

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k)} + \beta \Delta W^{(k-1)})$$
$$W^{(k)} = W^{(k-1)} + \Delta W^{(k)}$$

Momentum methods emphasize directions of steady improvement are demonstrably superior to other methods

Other popular optimizers

RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in Lecture 6e of his Coursera Class.

RMSprop and Adadelta have both been developed independently around the same time stemming from the need to resolve Adagrad's radically diminishing learning rates. RMSprop in fact is identical to the first update vector of Adadelta that we derived above:

$$\begin{split} E[g^2]_t &= 0.9 E[g^2]_{t-1} + 0.1 g_t^2 \\ \theta_{t+1} &= \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t \end{split}$$

RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients. Hinton suggests γ to be set to 0.9, while a good default value for the learning rate η is 0.001.

Adam

Adaptive Moment Estimation (Adam) ^[14] is another method that computes adaptive learning rates for each parameter. In addition to storing an exponentially decaying average of past squared gradients v_t like Adadelta and RMSprop, Adam also keeps an exponentially decaying average of past gradients m_t , similar to momentum. Whereas momentum can be seen as a ball running down a slope, Adam behaves like a heavy ball with friction, which thus prefers flat minima in the error surface ^[15]. We compute the decaying averages of past and past squared gradients m_t and v_t respectively as follows:

$$m_t = eta_1 m_{t-1} + (1 - eta_1) g_t$$

 $v_t = eta_2 v_{t-1} + (1 - eta_2) g_t^2$

 m_t and v_t are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients respectively, hence the name of the method. As m_t and v_t are initialized as vectors of o's, the authors of Adam observe that they are biased towards zero, especially during the initial time steps, and especially when the decay rates are small (i.e. β_1 and β_2 are close to 1).

They counteract these biases by computing bias-corrected first and second moment estimates:

$$\hat{m}_t = rac{m_t}{1-eta_1^t}$$
 $\hat{v}_t = rac{v_t}{1-eta_2^t}$

They then use these to update the parameters just as we have seen in Adadelta and RMSprop, which yields the Adam update rule:

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t.$$

The authors propose default values of 0.9 for β_1 , 0.999 for β_2 , and 10^{-8} for ϵ . They show empirically that Adam works well in practice and compares favorably to other

Other omitted tricks REGULARIZATION

Batch normalization

<u>Batch Normalization | What is Batch Normalization in Deep Learning (analyticsvidhya.com)</u> <u>Batch normalization - Wikipedia</u>

• Regularization

$$L(W_1, W_2, \dots, W_K) = \frac{1}{T} \sum_{t} Div(Y_t, d_t) + \frac{1}{2}\lambda \sum_{k} ||W_k||_2^2$$

• Batch mode:

$$\Delta W_k = \frac{1}{T} \sum_t \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k$$

- Dropout: During training, for each input, at each iteration turn off" each neuron with a probability 1-a
- Data augmentation

Chain of assumptions in ML

Train/dev/test sets

Outline

- What is a CNN (convolutional Neural Network)
- Image Classification
 - AlexNet: Network structure
 - Dropout, RELU
 - NN as feature vector
 - More recent networks:
 - VGG
 - ResNet
- Domain adaptation
 - Transfer learning, fine-tuning
 - Example: Python detection

References

- <u>http://neuralnetworksanddeeplearning.com/chap1.html</u>
- https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/
- Coursera (Deep learning specialization)

Convolutional Neural Networks

A problem

• Will an MLP that recognizes the left image as a flower also recognize the one on the right as a flower?

The need for shift invariance

Convolutional Neural Network (CNN)

- A class of Neural Networks
 - Takes image as input (mostly)
 - Make predictions about the input image

Neural Network vs CNN

- Image as input in neural network
 - Size of feature vector = HxWxC
 - For 256x256 RGB image
 - 196608 dimensions

- CNN Special type of neural network
 - Operate with volume of data
 - Weight sharing in form of kernels

Source: http://cs231n.github.io

What is a convolution

Example 5x5 image with binary pixels

- Scanning an image with a "filter"
 - Note: a filter is really just a perceptron, with weights and a bias

What is a convolution

- Scanning an image with a "filter"
 - At each location, the "filter and the underlying map values are multiplied component wise, and the products are added along with the bias

The "Stride" between adjacent scanned locations need not be 1

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "hop" of two pixels per shift

The "Stride" between adjacent scanned locations need not be 1

Filter

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "hop" of two pixels per shift

The "Stride" between adjacent scanned locations need not be 1

Filter

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "hop" of two pixels per shift

 $z(i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w_{S,l,n}(p,k,l) Y_p(i+l,j+k) + b$

 The computation of the convolutive map at any location sums the convolutive outputs at all planes

Extending to multiple input maps

 The computation of the convolutive map at any location sums the convolutive outputs at all planes

 The computation of the convolutive map at any location sums the convolutive outputs at all planes

k=1 l=1

n

Extending to multiple input maps

 The computation of the convolutive map at any location sums the convolutive outputs at all planes

Extending to multiple input maps

 The computation of the convolutive map at any location sums the convolutive outputs at all planes

- Image size: $N \times N$
- Filter: $M \times M$
- Stride: S
- Output size (each side) = $\lfloor (N M)/S \rfloor + 1$
 - Assuming you're not allowed to go beyond the edge of the input

Convolutional Network

• Convolution network is a sequence of these layers

Convolutional Network

• Convolution network is a sequence of these layers

6 3x3x3 kernels – 6x3x3x3 parameters = 162

2D Convolution - dimensions

7x7 map

3x3 filter

Output activation map 5x5Output size N-F+1 (7 - 3 + 1) = 5

- N input size
- F filter size

7x7 map

3x3 filter

Filter applied with stride 2

7x7 map

3x3 filter

Filter applied with stride 2

3x3 filter

Filter applied with stride 2

Activation map size 3x3 Output size (7-3)/2 + 1 = 3

(N-F)/S + 1

7x7 map

3x3 filter

Filter applied with stride 3

7x7 map

3x3 filter

Filter applied with stride 3

Cannot cover perfectly

Not all parameters will fit

7x7 map

3x3 filter Output size (N-F)/S + 1 N = 7, F = 3

Stride 1 (7-3)/1 + 1 => 5 Stride 2 (7-3)/2 + 1 => 3 Stride 3 (7-3)/3 + 1 => 2.33

Solution

- Zero-pad the input
 - Pad the input image/map all around
 - Pad as symmetrically as possible, such that..
 - For stride 1, the result of the convolution is the same size as the original image

Padding

Zero padding in the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

For 7x7 input and 3x3 filter

If we have padding of one pixel

Output 7x7

Size (recall (N-F)/S+1) (N-F+2P)/S + 1

Padding

Zero padding in the input

Common to see, (F-1)/2 padding with stride 1 to preserve the map size

$$N = (N-F+2P)/S + 1$$

$$\Rightarrow (N-1)S = N-F+2P$$

$$\Rightarrow P = (F-1)/2$$

Why convolution?

- Convolutional neural networks are, in fact, equivalent to scanning with an MLP
 - Just run the entire MLP on each block separately, and combine results
 - As opposed to scanning (convolving) the picture with individual neurons/filters
 - Even computationally, the number of operations in both computations is identical
 - The neocognitron in fact views it equivalently to a scan
- So why convolutions?

The 1x1 filter

- A 1x1 filter is simply a perceptron that operates over the *depth* of the map, but has no spatial extent
 - Takes one pixel from each of the maps (at a given location) as input

I × I image

Parameters to choose: K₁, L and S
1. Number of filters K₁
2. Size of filters L × L × 3 + bias

3. Stride of convolution S

Total number of parameters: $K_1(3L^2 + 1)$

- Input is convolved with a set of K₁ filters
 - Typically K₁ is a power of 2, e.g. 2, 4, 8, 16, 32,...
 - Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
 - Typical stride: 1 or 2

- The convolution operation results in a convolution map
- An Activation is finally applied to every entry in the map

Convolutional Neural Network (CNN)

- A class of Neural Networks
 - Takes image as input (mostly)
 - Make predictions about the input image

The other component Downsampling/Pooling

- Convolution (and activation) layers are followed intermittently by "downsampling" (or "pooling") layers
 - Often, they alternate with convolution, though this is not necessary

Pooling

- Makes the representations smaller
- Operates over each activation map independently

Recall: Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Pooling

- Kernel size
- Stride

5	6	2	8
5	0	1	0
3	2	1	0
1	2	3	4

ngle	depth	slice
------	-------	-------

max pool with 2x2 filters and stride 2

Alternative to Max pooling: Mean Pooling

Single depth slice Х Mean pool with 2x2 3.25 5.25 filters and stride 2 у

Convolutional Neural Network (CNN)

- A class of Neural Networks
 - Takes image as input (mostly)
 - Make predictions about the input image

- First convolutional layer: Several convolutional filters
 - Filters are "3-D" (third dimension is color)
 - Convolution followed typically by a RELU activation
- Each filter creates a single 2-D output map

Filter size:

- First downsampling layer: From each P × P block of each map, pool down to a single value
 - For max pooling, during training keep track of which position had the highest value

• Second convolutional layer: K₂ 3-D filters resulting in K₂ 2-D maps

- Second convolutional layer: K₂ 3-D filters resulting in K₂ 2-D maps
- Second pooling layer: K₂ Pooling operations: outcome K₂ reduced 2D maps

This continues for several layers until the final convolved output is fed to an MLP

Parameters to choose (design choices)

- Number of convolutional and downsampling layers
 - And arrangement (order in which they follow one another)
- For each convolution layer:
 - Number of filters K_i
 - Spatial extent of filter $L_i \times L_i$
 - The "depth" of the filter is fixed by the number of filters in the previous layer K_{i-1}
 - The stride S_i
- For each downsampling/pooling layer:
 - Spatial extent of filter $P_i \times P_i$
 - The stride D_i
- For the final MLP:
 - Number of layers, and number of neurons in each layer

Binary classification

- Target class present or not?
 - Single output
 - Two outputs

One prediction for each class

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{array}{c} s=f(x_i;W_i) \ T=f(x_i;W_i) \ T=f(x_i;W_i)$

cat **3.2** car 5.1 frog -1.7

 cat
 3.2

 car
 5.1

 frog
 -1.7

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $s=f(x_i;W)$

Multi-label

- Multiple classes can be active
- Softmax will not work
- Use sigmoid activation

Why not correlation neural network?

- It could be
 - Deep learning libraries actually implement correlation
- Correlation relates to convolution via a 180deg rotation
 - When we learn kernels, we could easily learn them flipped

Digit classification

General CNN architecture

The (weights and biases of the) filters for every convolutional layer

- Backpropagation from the flat MLP requires special consideration of
 - The pooling layers (particularly Maxout)
 - The shared computation in the convolution layers

Training Issues

- Standard convergence issues
 - Solution: RMS prop or other momentum-style algorithms
 - Other tricks such as batch normalization
- The number of parameters can quickly become very large
- Insufficient training data to train well
 - Solution: Data augmentation

Data Augmentation

Augmented data

- rotation: uniformly chosen random angle between 0° and 360°
- translation: random translation between -10 and 10 pixels
- rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
- flipping: yes or no (bernoulli)
- shearing: random shearing with angle between -20° and 20°
- stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-uniform)

https://cs.stanford.edu/people/karpathy/convn etjs/demo/cifar10.html

AlexNet

- 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
- 1000 different classes (softmax layer)
- NN configuration
 - NN contains 60 million parameters and 650,000 neurons,
 - 5 convolutional layers, some of which are followed by max-pooling layers
 - 3 fully-connected layers

Krizhevsky, A., Sutskever, I. and Hinton, G. E. "ImageNet Classification with Deep Convolutional Neural Networks" NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.

- Input: 227x227x3 images
- Conv1: 96 11x11 filters, stride 4, no zeropad
- Pool1: 3x3 filters, stride 2
- "Normalization" layer [Unnecessary]
- Conv2: 256 5x5 filters, stride 2, zero pad
- Pool2: 3x3, stride 2
- Normalization layer [Unnecessary]
- Conv3: 384 3x3, stride 1, zeropad
- Conv4: 384 3x3, stride 1, zeropad
- Conv5: 256 3x3, stride 1, zeropad
- Pool3: 3x3, stride 2
- FC: 3 layers,
 - 4096 neurons, 4096 neurons, 1000 output neurons

AlexNet : Network Size

- Input: 227x227x3 images
- First layer (CONV1): 96 11x11 filters applied at stride 4
- What is the output volume size? (227-11)/4+1 = 55
- What is the number of parameters? 11x11x3x96 = 35K

CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV4 CONV5 MAX POOL3 FC6 FC7 FC8

AlexNet : Network Size

- After CONV1: 55x55x96
- Second layer (POOL1): 3x3 filters applied at stride 2
- What is the output volume size? (55-3)/2+1 = 27
- What is the number of parameters in this layer? 0

MAX POOL3

FC6

FC7

FC8

AlexNet : Network Size

- After POOL1: 27x27x96
- Third layer (NORM1): Normalization
- What is the output volume size? 27x27x96

CONV5 MAX POOL3 FC6 FC7 FC8

<u>۸</u>	D	Л	Л	Γ.	2	
_A	Р	4	4	С	5	

[27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

- 4. [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 5.
- [13x13x256] MAX POOL2: 3x3 filters at stride 2 6.
- [13x13x256] NORM2: Normalization layer 7.
- [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 8.
- [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 9.
- 10. [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- 11. [6x6x256] MAX POOL3: 3x3 filters at stride 2
- 12. [4096] FC6: 4096 neurons

[227x227x3] INPUT

1.

2.

3.

- 13. [4096] FC7: 4096 neurons
- 14. [1000] FC8: 1000 neurons (class scores)

AlexNet : Network Size

CONV1	35K
MAX POOL1 NORM1	
CONV2	307K
MAX POOL2	
NORM2	
CONV3	884K
CONV4	1.3M
CONV5	442K
MAX POOL3	
FC6	37M
FC7	16M
FC8	4M

Alexnet: Total parameters

- 650K neurons
- 60M parameters
- 630M connections

- Testing: Multi-crop
 - Classify different shifts of the image and vote over the lot!

Learning magic in Alexnet

- Activations were RELU
 - Made a large difference in convergence
- "Dropout" 0.5 (in FC layers only)
- Large amount of data augmentation
- SGD with mini batch size 128
- Momentum, with momentum factor 0.9
- L2 weight decay 5e-4
- Learning rate: 0.01, decreased by 10 every time validation accuracy plateaus
- Evaluated using: Validation accuracy
- Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7 networks
 - Lowest prior error using conventional classifiers: > 25%

ImageNet

Figure 3: 96 convolutional kernels of size 11×11×3 learned by the first convolutional layer on the 224×224×3 input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. "ImageNet Classification with Deep Convolutional Neural Networks" NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually *learns* features!

Eight ILSVRC-2010 test images and the five labels considered most probable by our model. The correct label is written under each image, and the probability assigned to the correct label is also shown with a red bar (if it happens to be in the top 5). Five ILSVRC-2010 test images in the first column. The remaining columns show the six training images that produce feature vectors in the last hidden layer with the smallest Euclidean distance from the feature vector for the test image.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. "ImageNet Classification with Deep Convolutional Neural Networks" NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

ZFNet

ZF Net Architecture

- Zeiler and Fergus 2013
- Same as Alexnet except:
 - 7x7 input-layer filters with stride 2
 - 3 conv layers are 512, 1024, 512
 - Error went down from 15.4% \rightarrow 14.8%
 - Combining multiple models as before

Visualizing Convolution

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

VGGNet

- Simonyan and Zisserman, 2014
- Only used 3x3 filters, stride 1, pad 1
- Only used 2x2 pooling filters, stride 2
- Tried a large number of architectures.
- Finally obtained 7.3% top-5 error using 13 conv layers and 3 FC layers
 - Combining 7 classifiers
 - Subsequent to paper, reduced error to 6.8% using only two classifiers
- Final arch: 64 conv, 64 conv, 64 pool, 128 conv, 128 conv,
 - 128 pool,
 - 256 conv, 256 conv, 256 conv, 256 pool,
 - 512 conv, 512 conv, 512 conv,
 - 512 pool,
 - 512 conv, 512 conv, 512 conv, 512 pool,
 - FC with 4096, 4096, 1000
- ~140 million parameters in all!

ConvNet Configuration								
A	A-LRN	В	С	D	E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224×224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
	_		pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
	maxpool							
FC-4096								
FC-4096								
FC-1000								
soft-max								

Googlenet: Inception

- Multiple filter sizes simultaneously
- Details irrelevant; error → 6.7%
 - Using only 5 million parameters, thanks to average pooling

Imagenet

Figure 2. Residual learning: a building block.

- Resnet: 2015
 - Current top-5 error: < 3.5%</p>
 - Over 150 layers, with "skip" connections..

Resnet details for the curious..

Figure 2. Residual learning: a building block.

- Last layer before addition must have the same number of filters as the input to the module
- Batch normalization after each convolution
- SGD + momentum (0.9)
- Learning rate 0.1, divide by 10 (batch norm lets you use larger learning rate)
- Mini batch 256
- Weight decay 1e-5
- No pooling in Resnet

Questions?