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Administrative details

• Issues submitting homework
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Credits

• Some slides comes directly from:
• Kristen Grauman

• A. Zisserman

• Ross B. Girshick
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Short Review 
from last class
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Feature Descriptor
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Histogram of Oriented Gradients (HOG)

• Revisiting histogram
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Invariance to deformation

• Deformation can also move 
pixels around

• Again, instead of precise 
location of each pixel, only 
want to record rough location

• Divide patch into a grid of cells

• Record counts of each 
orientation in each cell: 
orientation histograms 

Orientation histogram



Feature detection and description

• Harris corner detection gives:
• Location of each detected corner

• Orientation of the corner (given by xmax)

• Scale of the corner (the image scale which gives the maximum response at 
this location)

• Want feature descriptor that is
• Invariant to photometric transformations, translation, rotation, scaling

• Discriminative



Summary of HOG computation

• Step 1: Extract a square window (called “block”) of some size around the pixel 
location of interest.

• Step 2: Divide block into a square grid of sub-blocks (called “cells”) (2x2 grid in 
our example, resulting in four cells).

• Step 3: Compute orientation histogram of each cell.

• Step 4: Concatenate the four histograms.

• Step 5: normalize v using one of the three options:
• Option 1: Divide v by its Euclidean norm.
• Option 2: Divide v by its L1 norm (the L1 norm is the sum of all absolute values of v).
• Option 3: 

• Divide v by its Euclidean norm. 
• In the resulting vector, clip any value over 0.2 
• Then, renormalize the resulting vector by dividing again by its Euclidean norm
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Histogram of Oriented Gradients (HOG)

• Parameters and design options:

• Angles range from 0 to 180 or from 0 to 360 degrees?
• In the Dalal & Triggs paper, a range of 0 to 180 degrees is used

• Number of orientation bins.
• Usually 9 bins, each bin covering 20 degrees.

• Cell size.
• Cells of size 8x8 pixels are often used.

• Block size.
• Blocks of size 2x2 cells (16x16 pixels) are often used.

• Usually a HOG feature has 36 dimensions.
• 4 cells * 9 orientation bins.
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Histogram of Oriented Gradients (HOG)
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SIFT descriptor

• Compute on local 16 x 16 window around detection.

• Rotate and scale window according to discovered orientation ϴ and 
scale σ (gain invariance).

• Compute gradients weighted by a Gaussian of variance half the 
window (for smooth falloff).
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SIFT descriptor

• 4x4 array of gradient orientation histograms weighted by gradient 
magnitude.

• Bin into 8 orientations x 4x4 array = 128 dimensions.
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Robot Vision
13. Object detection I
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Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maxima Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)
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What  is object detection

http://cs231n.stanford.edu/slides/winter1516_lecture8.pdf



Object detection

• Multiple outputs
• Bounding box

• Label

• Score
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Detection Competitions

Pascal VOC
COCO
ImageNet ILSVRC

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#introduction

COCO: 200 classes 

VOC: 20 classes 



Valid detection

• Groundtruth: 
• Bounding box
• Label

• Possible detection
• Bounding box
• Label
• score

𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑒𝑑 𝐴𝑟𝑒𝑎

𝑈𝑛𝑖𝑜𝑛 𝐵𝐵 𝑎𝑟𝑒𝑎

Different criteria to declare detections:

Pascal criteria
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.5

All of these:
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.5
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.55
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.6
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.65
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.7
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.75
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.8
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.9
𝑠𝑐𝑜𝑟𝑒𝑖𝑜𝑢 > 0.95

groundtruth

Possible detection



Terms

Recall
Precision
mAP
IoU

Possible detection
Bounding box
Label
score



Terms

Recall
Precision
mAP
IoU

Possible detection
Bounding box
Label
score

Average precision (AP): Area under curve



Terms

Recall
Precision
mAP
IoU

Possible detection
Bounding box
Label
score

Average precision (AP): Area under curve

mAP is simply all the AP values averaged over different classes/categories

Box Average Precision (AP@[0.5:0.95]): sums IOUs
between 0.5 and 0.95 and divides the sum by the number of the IOU values



Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maxima Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)
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Popular algorithms for object detection

• Pre-DeepLearning
• HOG + SVM (Dalal, Triggs)

• Deformable Part-based Model (DPM)

• Deep learning
• Fast R-CNN

• Faster R-CNN

• Region-based Convolutional Neural Networks (R-CNN)

• Region-based Fully Convolutional Network

• Single Shot Detector (SSD)

• YOLO (You Only Look Once)
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PASCAL VOC 2005-2012

Classification: person, motorcycle

Detection Segmentation

Person

Motorcycle

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

20 object classes 22,591 images
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Large Scale Visual 
Recognition Challenge (ILSVRC) 2010-2014

20 object classes 22,591 images

200 object classes 517,840  images DET
1000 object classes 1,431,167 images CLS-LOC

Person

http://image-net.org/challenges/LSVRC/

Person

Dog

Person
Person



ILSVRC detection in 2014 (Deep learning)
on image classification

23%

44%

1.9x increase in object detection average 
precision in one year

~3% due to more data

~18% due to better methods

Russakovsky* and Deng* et al., ImageNet Large Scale Visual Recognition Challenge, http://arxiv.org/abs/1409.0575



Microsoft 
COCO: Common 
Objects in 
Context

CAP4453 31COCO - Common Objects in Context (cocodataset.org)

https://cocodataset.org/#detection-2020


State of the art 
methods

CAP4453
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State of the art 
methods

CAP4453
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Do you still need the old methods?



Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maximum Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)

CAP4453 34



CAP4453 35



Sliding Window Technique

• Classification problem:
• Score for a category
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Sliding Window Technique

• Score every subwindow
• extract features from the image window

• classifier decides based on the given features.

• It is a brute-force approach
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Window-based detection: strengths

Pros

• Sliding window detection and 
global appearance descriptors:

• Simple detection protocol to 
implement

• Good feature choices critical

• Past successes for certain classes

Slide: Kristen Grauman

Cons 

• High computational complexity 
• For example: 250,000 

locations x 30 orientations x 
4 scales = 30,000,000 
evaluations!

• If training binary detectors 
independently, means cost 
increases linearly with 
number of classes

• With so many windows, false 
positive rate better be low



Cons (continued)

• Not all objects are “box” shaped

Slide: Kristen Grauman



Limitations (continued)

• If considering windows in isolation, context is lost

Figure credit: Derek Hoiem

Sliding window Detector’s view

Slide: Kristen Grauman



Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maximum Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)
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Let’s examine possible feature vectors

• Pixel based (as a vector)
• Sensitive to small shifts

• Color based

• color-based representations are 
sensitive to color (illumination)
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Gradient-based representations

• summarize the local distribution of 
gradients with histograms

• invariance to small shifts and 
rotations

• offers more spatial information 
compared to a single global histogram

• Includes contrast normalization
• reduce the impact of variable 

illumination (color)
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Histograms of Oriented Gradients (HOG)

• Step 1: Extract a square window (called “block”) of some size around the pixel 
location of interest.

• Step 2: Divide block into a square grid of sub-blocks (called “cells”) (2x2 grid in 
our example, resulting in four cells).

• Step 3: Compute orientation histogram of each cell.

• Step 4: Concatenate the four histograms.

• Step 5: normalize v using one of the three options:
• Option 1 (L2): Divide v by its Euclidean norm.
• Option 2 (L1): Divide v by its L1 norm (the L1 norm is the sum of all absolute values of v).
• Option 3 (L2-Hys): 

• Divide v by its Euclidean norm. 
• In the resulting vector, clip any value over 0.2 
• Then, renormalize the resulting vector by dividing again by its Euclidean norm
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Histogram of Oriented Gradients (HOG)

• Angles range from 0 to 180 or from 0 to 360 degrees?
• In the Dalal & Triggs paper, a range of 0 to 180 degrees is used

• Number of orientation bins.
• Usually 9 bins, each bin covering 20 degrees.

• Cell size.
• Cells of size 8x8 pixels are often used. (64 → 9)

• Block size.
• Blocks of size 2x2 cells (16x16 pixels) are often used.

• HOG feature has 36 dimensions.
• 4 cells * 9 orientation bins.
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Calculate HOG Descriptor vector

• The 16×16 window then moves by 8 pixels and a normalized 36×1 vector is 
calculated over this window and the process is repeated for the image

• To calculate the final feature vector for the entire image patch, the 36×1 
vectors are concatenated into one giant vector.

• Example: an input picture of size 64×64 
• The 16×16 block has 7 positions horizontally and 7 position vertically.
• In one 16×16 block we have 4 histograms which after normalization concatenate to 

form a 36×1 vector.
• This block moves 7 positions horizontally and vertically totalling it to 7×7 = 49 

positions.
• we concatenate them all into one gaint vector we obtain a 36×49 = 1764 dimensional

vector.
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Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maximum Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)
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Support vector machines

Image source

https://codesachin.wordpress.com/2015/08/16/logistic-regression-for-dummies/


Support vector machines
• When the data is linearly separable, there may be 

more than one separator (hyperplane)

Which separator
is best?



Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman
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Support vector machines
• Find hyperplane that maximizes the margin between the positive and 

negative examples

1:1)(negative

1:1)( positive

−+−=

+=

by

by

wxx

wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and 
Knowledge Discovery, 1998 

Distance between point 
and hyperplane: ||||

||

w

wx b+

For support vectors, 1=+ bwx

Therefore, the margin is  2 / ||w||

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin hyperplane

1. Maximize margin 2 / ||w||

2. Correctly classify all training data:

• Quadratic optimization problem:

•

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and 
Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman
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SVM training in general

• Separable data:

• Non-separable data:

1)(subject to
2

1
min

2

,
+ by ii

b
xww
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Maximize margin
Classify training data correctly
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w,b

1

2
w

2
+C max 0,1- yi(w ×xi +b)( )

i=1

n

å

Maximize margin Minimize classification mistakes



SVM training in general

• Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo

Margin

+1
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0
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w,b
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http://cs.stanford.edu/people/karpathy/svmjs/demo
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Nonlinear SVMs
• General idea: the original input space can always be 

mapped to some higher-dimensional feature space 
where the training set is separable

Φ:  x→ φ(x)

Image source

http://stackoverflow.com/questions/9480605/what-is-the-relation-between-the-number-of-support-vectors-and-training-data-and


• Linearly separable dataset in 1D:

• Non-separable dataset in 1D:

• We can map the data to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



The kernel trick
• Linear SVM decision function:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and 
Knowledge Discovery, 1998 

byb
i iii +=+  xxxw 

Support 
vector

learned
weight

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


The kernel trick
• Linear SVM decision function:

• Kernel SVM decision function:

• This gives a nonlinear decision boundary in the 
original feature space

bKyby
i

iii

i

iii +=+  ),()()( xxxx 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and 
Knowledge Discovery, 1998 

byb
i iii +=+  xxxw 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


The kernel trick

• Instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such 
that

K(x,y) = φ(x) · φ(y)

• (to be valid, the kernel function must satisfy 
Mercer’s condition)



Polynomial kernel:

dcK )(),( yxyx +=



Gaussian kernel
• Also known as the radial basis function (RBF) 

kernel:
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Gaussian kernel

SV’s

• Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo

http://cs.stanford.edu/people/karpathy/svmjs/demo


SVMs: Pros and cons

• Pros
• Kernel-based framework is very powerful, flexible

• Training is convex optimization, globally optimal 
solution can be found

• Amenable to theoretical analysis

• SVMs work very well in practice, even with very small 
training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class 

SVMs (e.g., with one-vs-others)

• Computation, memory (esp. for nonlinear SVMs)



Dalal & Triggs, CVPR 2005

• Histogram of oriented 

gradients (HoG): Map each 

grid cell in the input window to 

a histogram counting the 

gradients per orientation.

• Train a linear SVM using 

training set of pedestrian vs. 

non-pedestrian windows.

Person detection
with HoG’s & linear SVM’s (so far)



The Dalal & Triggs detector
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The Dalal & Triggs detector
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1. Compute HOG of the whole image at 
multiple resolutions!



The Dalal & Triggs detector
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1. Compute HOG of the whole image
at multiple resolutions!

2. Score every window of the feature 
pyramidp

𝑠𝑐𝑜𝑟𝑒 𝐼, 𝑝 = 𝑤 ∙ 𝜙(𝐼, 𝑝)

FROM 
TRAINING



The Dalal & Triggs detector
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1. Compute HOG of the whole image
at multiple resolutions!

2. Score every window of the feature 
pyramidp

𝑠𝑐𝑜𝑟𝑒 𝐼, 𝑝 = 𝑤 ∙ 𝜙(𝐼, 𝑝)

FROM 
TRAINING

3. Apply non-maximal 
suppression (NMS)



Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maximum Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)
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Non-Maximum Suppression
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Non-Maximum Suppression
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Outline

• Overview: What is Object detection?

• Top methods for object detection

• Object detection with Sliding Window and Feature Extraction(HoG)
• Sliding Window technique
• HOG: Gradient based Features
• Machine Learning

• Support Vector Machine (SVM)

• Non-Maximum Suppression (NMS)

• Implementation examples

• Deformable Part-based Model (DPM)
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Implementation example (car detector)
Get the data. UIUC Car Database

• 550 positive images • 500 negatives
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Implementation example (car detector)

• Extract features
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VladKha/object_detector: Object detector from HOG + Linear SVM framework (github.com)

https://github.com/VladKha/object_detector/


Implementation 
example (car detector)

• Train SVM with HOG features
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Implementation 
example (car detector)

Test

• Load image

• Loop over different 
pyramid images

• loop the window 
position

• Compute HOG for 
each window

• Compute score
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Implementation 
example (car detector)

Test

• Load image

• Loop over different 
pyramid images

• loop the window 
position

• Compute HOG for 
each window

• Compute score

• Perform NMS
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Testing (different pyramid levels)
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NMS
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Before NMS After NMS
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Questions?


