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A B S T R A C T

This paper proposes a new representation of the visual content of an image that allows learning about what
elements are part of an image and the hierarchical structure that they form. Our representation is a Top-Down
Visual-Tree, where every node represents a bounding box, label, and visual feature of an object existing in the
image. Each image and its object annotations from a training dataset are parsed to obtain the proposed visual
representation. These images and their parsed tree representations are trained using a Top-Down Tree LSTM
(Long Short Term Memory) network. The encoded information, allows integrate object detection and image
understanding in a single process. The presented holistic object detection is not agnostic to the overall content
of the image, and it is influenced by the image composition and the parts discovered. During testing time,
from an image, we are able to infer the most prominent type of objects and their locations, the parts of these
objects, and having a proper understanding of the image content through the obtained Top-Down Visual-Tree
representation output. The accuracy of our object detection process increases notably respect to the baseline
Fast R-CNN method in the visual genome test dataset.

1. Introduction

Humans derive a great deal of information about the world through
their visual sense. Vision accounts for two-thirds of the electrical activ-
ity of the brain when the eyes are open (Fixot, 1957). In spite of the
recent success in computer vision on individual tasks such as image
classification, object detection, image segmentation, and the progress
on scene understanding, researchers still lack clarity about computer
comprehension of the content of the image as a whole. While most
recent efforts have involved the use of language to achieve comprehen-
sion (Vinyals et al., 2015; Wu et al., 2015; Fang et al., 2015; Hendricks
et al., 2016; Jia et al., 2015; Mao et al., 2016; You et al., 2016; Zhou
et al., 2016; Wu et al., 2015, 2016), this paper presents a pure visual
representation of the image content that allows an understanding of the
image content through a unified framework for object/stuff detection,
and representation of the discovered objects, their relations, and their
relative importance.

The object detection problem focuses on identifying a particular
object from multiple categories. Given a set of window proposals, a
multi-label classifier determines scores for the different types of objects
and the background in the selected region. Each category competes
with others for the highest score that determines the label of the region.
In scenarios constrained to a few categories (e.g. less than 200) the
described approach works reasonably well; however in more realistic
scenarios, a larger number of categories is necessary in order to have a
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better understanding of the diverse content of images. This increase in
the number of categories results in many simultaneous possible valid
detections, which makes scene interpretation more difficult. In addi-
tion, many categories with weak detectors do not generate high scores,
even in scenes where the global and local context strongly suggests
the opposite. An example is shown in Fig. 1b where object detections
for most prominent classes are displayed. Neither the ‘‘drape’’ nor the
‘‘pillow’’ are detected directly, however these objects could be detected
using the context information from the detection scores of the nearby
objects ‘‘window’’, and ‘‘bed’’, which are generally highly correlated
with the un-detected objects. Hence, the object detection problem with
multiple categories will benefit from the incorporation of contextual
cues such as object co-occurrence, and overall image consistency.

Images contains more information than just objects. A typical image
can be interpreted as a hierarchical structure that relates objects to each
other. Starting from the higher level that represents the full image,
there are elements that are more prominent or meaningful from a
visual and/or semantic point of view. Similarly, each one of these
elements may also be related with other elements that have lower
relative importance in the image. In the case of Fig. 1a, the elements
in the scene in order of their importance are ‘‘bed’’, ‘‘window’’, ‘‘desk’’,
and ‘‘wall’’. Each one of these objects has associated other less relevant
elements. The ‘‘pillow’’ and the ‘‘doll’’ are associated with ‘‘bed’’. The
‘‘drape’’ is associated with the ‘‘window’’. Similarly, there are some
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Fig. 1. An image, the most confident detector outputs, and the TDVT image
representation of its content.

‘‘pictures’’ associated with the ‘‘wall’’. Fig. 1c depicts a proposed tree
that captures the inherent hierarchical structure of Fig. 1a. In this pa-
per, we propose a Top-Down Visual-Tree (TDVT) image representation
that allows to encode the location of the elements in the image and their
hierarchical structure. The proposed representation also encodes the
order of importance of the elements and defines their type of relations.

As a first step, we show how to automatically obtain a Top-
Down Visual-Tree (TDVT) image representation from object annota-
tions through an image parsing process that operates on available
image datasets (with annotations). Then, in the training process, we
learn models for object detection and use a novel Top-Down Tree LSTM
network to learn the hierarchical structures associated with images
from their TDVT image representation. During testing, given an input

image, our method generates a rich set of outputs, beyond the object
locations. In particular, we are also able to predict the structure of the
image, and identify its main salient elements; recognize which objects
are parts of others, and identify relationships between objects.

The inference process finds un-detected elements that traditional
object detection is unable to capture, since our approach incorporates
the image context during object detection.

The contributions of this paper are summarized as follows: (1) a
new TDVT image representation that captures hierarchical structure,
importance of objects and type of dependencies, (2) a parsing method
to obtain the image representation from an annotated dataset, (3) an
algorithm to train and learn the visual structure of the images in the
dataset, (4) an algorithm to perform inference from an image to detect
the objects, degrees of importance, and its hierarchical structure.

2. Related work

The object detection problem has been one of the core problems in
computer vision since objects are a key building block of any image. A
decade ago, object detection technology started to solve real problems
with the finding of visual features like the Histogram of Gradient (HOG)
that in conjunction with Support Vector Machines (SVM) provided the
reference method (Dalal and Triggs, 2005) for the period from 2005
to 2008. The Pascal VOC challenge (Everingham et al., 2010) was
the competition that fueled the object detection research from 2005
to 2012. With a dataset of twenty different object classes, and up to
approximately five thousand images, the competition was dominated
by methods based on Deformable Part Model (DPM) (Felzenszwalb
et al., 2010). The availability of massive image datasets (Deng et al.,
2009; Lin et al., 2014a) resulted in deep learning based methods as
the current predominant technique for object detection (Girshick, 2015;
Ren et al., 2015). The number of available training images in the new
datasets increased to hundreds of thousands, and also the number of
categories to detect. In the Large Scale Visual Recognition Challenge
(ILSVRC) 20161 the classes went up to 200 categories, while the recent
COCO dataset2 contains 80.

The core idea of the current dominant algorithms for object de-
tection is the use of Regions of Interest (ROI) that could contain an
object, and evaluation of each region to determine if it belongs to
a class or to the background. Hence, a detection network typically
contains a stack of Convolutional Neural layers (computed once per
image), a ROI pooling method that extracts features for each ROI, and a
classification network that determines the label of the region. Region of
Interests (ROI) can be generated externally by a generic object proposal
method (Uijlings et al., 2013; Zitnick and Dollàr, 2014). Most recently,
the ROI generation process was integrated in the network (Ren et al.,
2015; Redmon et al., 2016; Liu et al., 2016), saving extra computa-
tions by re-utilizing the computed CNN features. Further performance
improvements has been achieved mainly by changes in the network
structure toward the use of deeper networks (Simonyan and Zisserman,
2015; He et al., 2015). The progress in object detection technology
have shifted the challenge from tens of possible object categories to
thousands of them.

Previous to the emergence of the neural networks as the dominant
computer vision tool, many efforts focused on the analysis of context
and its relation with object detection (Galleguillos and Belongie, 2008;
Divvala et al., 2009; Choi et al., 2010; Song et al., 2011). Galleguillos
and Belongie (2008) presented a survey that identifies three types of
context, semantic, spatial, and size context; acting at two levels, global
and local; and showing two mechanism of integration of the context
information. They demonstrated that contextual information can help
to successfully disambiguate appearance inputs in recognition tasks.
In Divvala et al. (2009), the authors presented an evaluation of the

1 http://image-net.org/challenges/LSVRC/2016/.
2 http://mscoco.org/.
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role context plays in the object detection task using the Pascal VOC
2008 dataset. Understanding the context as any information source that
may influence the way a scene and the objects within it are perceived,
ten different sources of context were identified, and experiments were
performed with a subset of context sources: local pixel context, 2D
scene gist, 3D geometric, semantic, geographic, photogrammetric, and
cultural cues. A Bayesian formulation for the object location, size, and
presence, and their combinations, was used to improve the object de-
tection based on these cues. The work of Choi et al. (2010) introduced
the SUN dataset, and presented a Tree-structured contextual model.
Their model is a single graph that represents positive and negative
co-occurrences per dataset. A major weakness of their model is that
it only captures generalities about the specific dataset. Song et al.
(2011) proposed an iterative contextualization system, with the objec-
tive of boosting object detection and image categorization by taking
the outputs from one task as the context of the other one using a SVM
formulation and dynamically adjusting the classification hyperplane.
The key of the hyperplane formulation is that context is activated to
be supportive mostly for ambiguous samples where context is helpful.

The role of local context in object detection using deep neural
networks seems less important than in traditional object detection,
presumably due to longer field of view covered by the convolutions.
Nevertheless, the context was shown to have a positive impact for ob-
ject detection using deep neural networks (Bell et al., 2015; Gidaris and
Komodakis, 2015; Li et al., 2016; Vaca-Castano et al., 2016). Gidaris
and Komodakis (2015) presented a multi-region deep CNN that selects
different regions around the ROI to obtain a more robust feature vector.
They improved object detection results on the Pascal VOC dataset.
Similarly, Bell et al. (2015) form a descriptor that includes vectors from
other multiple layers. They used spatial Recurrent Neural Networks
(RNNs) to gather local contextual information from above, below, left,
and right of the object. They used the descriptors to obtain improved
scores and adjusted ROIs. The work of Li et al. (2016) proposed a
network that exploits contextual information for object detection using
two sub-networks. An attention-based sub-network allows to use a
global context view, while a multi-scale sub-network captures local con-
text by pooling descriptors from three bounding boxes scaled around
the ROI. Their results were reported in PASCAL dataset.

Latterly, most of the efforts in regards to image understanding have
proceeded to the use of Natural Language Processing (NLP) in conjunc-
tion with the extra help from visual information. Related problems like
image captioning (Vinyals et al., 2015; Wu et al., 2015; Fang et al.,
2015; Hendricks et al., 2016; Jia et al., 2015; Mao et al., 2016; You
et al., 2016) and visual questioning answering (Zhou et al., 2016; Wu
et al., 2015, 2016) have emerged producing impressive results.

The common trend in these methods is that they are based on
directly using language to fill the visual semantic gap. Studies with
people born completely deaf (Sacks, 1989) related to the way they think
in terms of their ‘‘inner voice’’, has shown that, persons born completely
deaf, that only learned sign language, will think in sign language.
There is no doubt that language is needed in order to have an abstract
thinking and self-awareness. We believe, however that a pure visual
level representation of the image content is still missing in the current
trending abstraction, since it jumps directly from objects and global
descriptors to the language, without a notion about the overall content
of the image. Hence, in this paper, we propose a novel purely visual
hierarchical representation that allows modeling the image content,
and learning about the image structure from datasets with massive
amount of images. The proposed representation and learning strategy
is utilized to perform object detection using thousands of categories
while simultaneously understanding the overall content of the image,
determining the relative importance of their objects, and identifying
their hierarchies.

Fig. 2. Parts of the proposed framework for object detection and image understanding.

3. Framework

In this section, we describe in detail the proposed framework. Our
goal is to provide a holistic description of the image, that accounts for
the presence of elements (object detection), identification of the image’s
main salient elements, and finding the relationships between objects
that form a hierarchical structure (see Fig. 2).

Our TDVT image representation describes the content of the image
as a hierarchy of objects encoding their importance and type of relation.
Section 3.1 provides details about this representation. Section 3.2 is
dedicated to the pre-processing stage that generates TDVT training data
from the images and annotations of existing datasets. Then, in Sec-
tion 3.3 we describe our training process, that learns a knowledge base
about the objects and the image composition from the training images
and the TDVT representations previously generated. The training phase
includes the learning of three different parts from a tree. They are: (a)
the existence or absence of an edge in a tree, (b) the node label (object
category) associated to an existing edge, and (c) the score associated
to the visual information of a node the tree. Finally, in Section 3.4 we
provide the details about the inference process where the hierarchical
structure and the objects are discovered. In the inference, we repeat a
sequential process that includes determining the existence of an edge,
predicting the possible labels for the object linked to the edge, and
scoring the candidate regions of interest (ROI).

3.1. Image representation

Representations are important in order to model information about
the world in a form that a computer system can utilize to solve complex
tasks. Consider an image in Fig. 3a. If any person is asked to describe
the content of the image, a very fair approximate description would be
something like this: ‘‘there are two men on a sidewalk next to a building
and the street ’’. Just as in this particular case, We will describe images
based on the entities that are part of the image. Beyond this, each one
of the described entities can also be described by their constituent parts
and relations with other entities. In the same image, for example, the
man on the left side wears pant, shirt, glasses and sneakers. Hence,
we observe that an image can be described properly as a hierarchical
structure of related objects.

A natural data structure to represent hierarchical constructions is
the tree. A tree is a collection of nodes starting at a root node, where
the nodes are connected to other nodes through edges, without having
any cycle (sub-tree children have only one parent node). Every node
is a data structure that contains associated information. In the case of
an image, we represent every node as a possible object/stuff/attribute
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Fig. 3. Image and its proposed TDVT image representation obtained from its annotations.

and its associated information. The information associated to each node
includes the bounding box location within the image, identity (class)
of the object, and feature vector. The root node corresponds to the full
image.

In order to describe the image visually, it is important to encode
the relative importance of the objects. Not every object in an image
is equally important. In case of Fig. 3a, the most prominent object in
the image is the man in red shirt. After that the man wearing a jacket
captures our attention next, followed by the building, sidewalk, and
street. Visual information has an inherent sequential ordering in the
sense that some objects capture our attention more quickly than others.
Our image representation captures this property through the ordering
of the siblings of any sub-tree. As can be appreciated in Fig. 3b, the
child branches that are more important are listed first (closest to the
left), while less salient children are listed at the end. As we will show
further, the ordering is important since most prominent objects are
discovered first in the inference process, resembling attention models.

Finally, in our TDVT representation, we distinguish between two
types of child edge relations. The first one, depicted as green edges
in Fig. 3b corresponds to relations that imply clear ownership depen-
dencies. This applies to the case of object and parts, or parts and
some inherent properties such as color or shape. The second type
of childhood relation, depicted as red edges, model weaker relations
between the nodes where some dependence exists, but there is no clear
ownership implied. For the rest of this paper, we will denote the first
type of relations as Part dependencies, and the second type of relations
as Weak dependencies. Examples of Part dependencies in the figure are
man–jacket, man–pants, man–shoes where all the siblings correspond
to parts associated with the man. An example of Weak dependence is
jacket–arm, where ownership association between jacket and arm is not
so evident. A special case in the definition of Part and Weak branches
is at root level. In this case, a Part dependence represents an object that
is notoriously salient with respect to other objects in the image. In the
example, the man in red is considered a Part dependence, and all the
remaining main objects are part of the Weak dependence.

3.2. Parsing images from a dataset

The proposed TDVT image representation allows to describe the
content of the image in a hierarchical manner, encoding the importance
of objects, and relations between the objects. The TDVT representation
becomes powerfully useful when we are able to represent a large
number of images of which we can learn generalities about the image
composition. Annotation of a complete dataset is a titanic task due
the size of the current datasets (more than 100k images). We are
interested in avoiding a special annotation process of the training image
in the dataset, since the associated high costs, and in order to keep

our approach as independent as possible from the annotation process.
Additionally, obtaining consensus from different annotators could be
cumbersome, since there is not a unique way to build the proposed tree
representation. Therefore, it makes more sense to create the tree image
representation from existing annotations and set up a set of parsing
rules to build tree representations in an unified way.

Assuming that the training dataset contains bounding box annota-
tions of the possible objects/stuff present in the image, we describe
below the five steps involved in parsing a large image dataset to obtain
a TDVT representation. Fig. 4 shows the parsing obtained for two
images randomly selected from the training dataset.

3.2.1. Merging duplicate instances from annotations
Our assumption is that we are dealing with a large number of

classes, annotated by humans (typically turkers). Annotation corre-
sponds to a bounding box 𝑏𝑖 that enclose an object annotation 𝑖, and
has a label 𝑙𝑖. Typically, multiple individuals work on the same image,
and it is quite common to find bounding boxes approximately enclosing
the same object with different labels. In this step, we eliminate the
duplicated annotations by considering the overlap between all the
annotated bounding boxes for the image. We use the Jaccard index
as a measure of the similarity between two bounding boxes 𝑏𝑖 and 𝑏𝑗 .
Jaccard index between bounding box 𝑏𝑖 and 𝑏𝑗 is defined as:

𝐽 (𝑏𝑖, 𝑏𝑗 ) =
|

|

|

𝑏𝑖 ∩ 𝑏𝑗
|

|

|

|

|

|

𝑏𝑖 ∪ 𝑏𝑗
|

|

|

, (1)

where the numerator is the area of the common region enclosed by
the bounding boxes 𝑏𝑖 and 𝑏𝑗 , and the denominator is the total area
of the union of the regions enclosed by bounding boxes 𝑏𝑖 and 𝑏𝑗 . The
bounding boxes with Jaccard index close to one,

𝐽 (𝑏𝑖, 𝑏𝑗 ) > 1 − 𝛾, (2)

encloses approximately the same region of the image.
Annotations that satisfy the last condition are then examined se-

mantically to determine if the annotations are variants of the same
object. In order to examine the semantic similarity, we use the word
distance between the labels of the annotated objects. The distance is
computed using a path-based distance measure for words from the
wordnet (Miller, 1995) hierarchy. Two labels might describe the same
object if they have high semantic similarity,
|

|

|

𝑙𝑖, 𝑙𝑗
|

|

|𝑠
> 1 − 𝜖, (3)

where the score for a perfect match 𝑙𝑖 = 𝑙𝑗 has a score equals to 1.
Instances with high semantic similarity (Eq. (3)) and similar bounding
boxes (Eq. (2)) are merged in a single node. They are considered noisy
annotations of the same object.
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Fig. 4. Examples of two images (at top) that were parsed from the dataset. Their TDVT image representations are depicted in the middle, while the images on the bottom are the
different objects annotated that are part of the final Tree representation. Part dependencies are depicted in green color, and Weak dependencies are depicted in red color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.2.2. Connecting related nodes
Our objective is to build a tree from the existing bounding boxes and

labels. Every annotation available after merging duplicates (previous
step) is a possible node of the tree 𝐕 = {𝑉1, 𝑉2,… , 𝑉𝑗 ,… , 𝑉𝑁}. In this
step, we define the mechanism to create edge connections, between the
available nodes, 𝐸 = {{𝑉𝑗 , 𝑉𝑘},… , {𝑉𝑙 , 𝑉𝑚}}. The main assumption here,
is that nodes that are related must have at least some degree of visual
overlapping. Hence, we only consider connections between nodes with
Jaccard index greater than zero.

{𝑉𝑗 , 𝑉𝑘} ∈ 𝐸, if 𝐽 (𝑏𝑉𝑗 , 𝑏𝑉𝑘 ) > 0. (4)

Each one of these edges are analyzed individually to determine the
type of dependence (Part or Weak) between the related nodes.

An obvious Part dependence exists when one of the nodes (child)
is inside other node (parent), and there is a close semantic similarity
between the nodes.

{𝑉𝑗 , 𝑉𝑘} ∈ 𝐸𝑃 ,

if 𝑏𝑉𝑗 ∩ 𝑏𝑉𝑘 > 𝜁 ⋅ ||
|

𝑏𝑉𝑘
|

|

|

∧ |

|

|

𝑙𝑉𝑗 , 𝑙𝑉𝑘
|

|

|𝑠
< 1 − 𝜖2, (5)

where 𝐸𝑃 is the set of Part dependencies, |

|

|

𝑏𝑉𝑘
|

|

|

is the area of the
bounding box 𝑏𝑉𝑘 , 𝜁 is a tolerance value for the area intersection,

|

|

|

𝑙𝑉𝑗 , 𝑙𝑉𝑘
|

|

|𝑠
is the semantic similarity between the nodes 𝑉𝑗 and 𝑉𝑘, 𝜖2

is a tolerance value for the word similarity, 𝑉𝑗 is the parent node, and
𝑉𝑘 is the child node.

There are datasets that have extra annotations that can be utilized to
define dependencies. For example, the visual genome dataset (Krishna
et al., 2016) provides relations between nodes through word connec-
tions that can be used to define edges between nodes. The existence
of Part dependencies can be established by matching word connectors
against a list of key words that denote ownership relation such as ‘‘in’’,
‘‘wears’’, and ‘‘have’’.

Any edge that belongs to 𝐸, which is not a Part dependence 𝐸𝑃 is
considered to be part of the set of Weak dependencies 𝐸𝑊 ,

𝐸𝑊 = 𝐸 ⧵ 𝐸𝑃 . (6)

3.2.3. Generating sub-trees
The obtained list of edges 𝐸 is used to identify formed disjoint sub-

graphs. In this step, each one of these sub-graphs are converted into a
tree structure.

The first characteristic of a tree is that the edges do not form any
cycle. However, the disjoint graphs obtained so far, do not have this
property. A spanning tree of a graph is just a subgraph that contains
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all the nodes without cycles. A graph may have many spanning trees,
but the Minimum Spanning Tree (MST) is an algorithm that connects
all the nodes together with the minimal total weighting for its edges.
Hence, any existing loop in each graph is removed through a Minimum
Spanning Tree (MST) algorithm, where the weights of the edges in
the graph are defined using the path-based distance measure for word
similarity from wordnet hierarchy,

𝑤(
{

𝑉𝑗 , 𝑉𝑘
}

) = |

|

|

𝑙𝑉𝑗 , 𝑙𝑉𝑘
|

|

|𝑠
. (7)

Each one of the obtained group of nodes that do not form loops are
analyzed to identity their root nodes, and edge directions are defined
using parenthood hierarchical relations. The parenthood relations from
Part dependencies 𝐸𝑃 =

{{

𝑉parent𝑖 , 𝑉child𝑗

}

,… ,
{

𝑉parent𝑛 , 𝑉child𝑜

}}

automatically determines their edge directions.
Any node in a tree must have at most one parent. In cases where the

existing Part dependencies indicates that a node has multiple parents,
only one parent edge is selected,

𝐸𝑃 =
{{

𝑉𝑖, 𝑉𝑗
}

,
{

𝑉𝑖, 𝑉𝑘
}

,
{

𝑉𝑖, 𝑉𝑧
}

,… ,
{

𝑉𝑥, 𝑉𝑦
}}

⇒

𝐸𝑃 =
{{

𝑉𝑖, 𝑉𝑗
}

,… ,
{

𝑉𝑥, 𝑉𝑦
}}

, (8)

using the largest area overlap between the node and their possible
parents is utilized as criteria to determine parenthood relation,

𝑉𝑖 ∩ 𝑉𝑗 > 𝑉𝑖 ∩ 𝑉𝑘,… , 𝑉𝑖 ∩ 𝑉𝑧. (9)

A list of root node candidates is created from the existing Part and
Weak dependencies. A node with only one connection and relative
small bounding box size is a leaf, and then removed from the list of root
node candidates. Nodes are examined one by one starting from known
leaves until only one root node remains in the list. The criteria used for
discarding nodes are (a) consistency in the sizes of the bounding boxes
which allows to identify directions in Part Dependencies, and (b) all the
nodes can have at most one parent. The last condition implies that if a
parent exists for a node, any other edges connecting the same node are
children connections and are discarded from the root node candidate
list.

3.2.4. Building a preliminary tree
The set of resulting sub-trees are gathered to form a preliminary

tree. The root node is defined as the node covering all the image.
Each one of the root nodes from the generated sub-trees becomes the
main objects of the image representation (See Fig. 3b). Nodes that are
isolated are considered irrelevant and not included in this preliminary
visual tree representation.

3.2.5. Re-ordering branches
The preliminary visual tree was built without any consideration

about the importance of the nodes of the tree. In this step, each branch
of the tree is analyzed independently. The nodes with a common parent
are sorted according to their visual importance (see Fig. 5).

A saliency map is a function that gives a subjective perceptual value
about the property that ‘‘makes some items in the world stand out from
their neighbors and immediately grab our attention’’.3 Given a saliency
map, we define the saliency density for a region of interest as the sum
of the saliencies values enclosed by the associated object bounding box
divided by its area. Saliency density is computed for every node of the
tree.

Every branch is then independently processed. The nodes with a
common parent are sorted in a descending order according to its
saliency density value. Finally, a special treatment is operated over
the children of the root node to identify if the nodes qualify as Part
or Weak dependencies. Nodes with a very high saliency density values
are interpreted as Part dependencies and the rest of the nodes becomes
Weak dependencies.

3 Laurent Itti (2007), Scholarpedia, 2(9):3327. http://www.scholarpedia.
org/article/Visual_salience.

Fig. 5. Image and saliency map used to compute the visual importance.

3.3. Training

Each node of the TDVT representation is formed by a label, a
bounding box and the possible connections to other nodes. These three
aspects of our representation are learned separately, but assembled
together on inference time. Now, we provide details about these three
training stages.

3.3.1. Learning to score ROI
The extraction of the visual information and scoring of the bounding

boxes for the different labels is performed using Fast R-CNN architec-
ture (Girshick, 2015). Fast R-CNN architecture takes an image as input
into a Convolutional Neural Network(CNN), where Multiple Regions
of Interest (ROI) are evaluated one by one using a ROI pooling layer
that maps the outcome of the CNN spanning the ROI into a fixed-size
vector. Each one of these vectors pass through a multi-layer Perceptron
(MLP) that outputs the scores for any possible object label. We trained
a fast-RCNN network, and use the layers and weights learned to process
visual inputs of our system.

3.3.2. Learning to predict objects
The core part of our system, is a network that combines the visual

layers trained on Fast R-CNN and a neural network architecture named
Top-Down Tree LSTM (Long Short-Term Memory) (Zhang et al., 2016),
to predict the most probable type of object (label) that could be
associated to a node, given the already seen tree structure of the image
and its visual information. The composition of this network is presented
in the Fig. 6. The inputs for the training process are an image and its
TDVT image representation. Visual features are extracted for the image
using the CNN layers and the ROI layer learned from the trained Fast-
RCNN model. Each node of the TDVT representation has associated
a bounding box that is used as Region of Interest to extract visual
features.

Starting from the root node of the TDVT representation, the Top-
Down Tree LSTM building block learns, edge by edge, to predict the
category (label) of the node linked by the edge currently trained. The
nodes and their edges are processed sequentially in a Breadth-first
order. The predicted output 𝑤 is encoded as a one-hot vector. The
vector consists of 0s in all components with the exception of a single
‘1’ , in a component used uniquely to identify the predicted label. The
fully connected (FC) layer at the end of the network uses as input the
hidden state from the recurrent neural network (RNN) unit, and outputs
the vector 𝑤 after passing for a softmax function.

The network is trained with Noise Contrastive Estimation (NCE)
loss (Amnih and Teh, 2012). As in any other recurrent neural network
(RNN), the sequential signal is fed one by one to the network. Training
is done in mini-batches of size 𝑏. In step 1 of the training, the first edge
associated to the root of the 𝑏 images is input in parallel. In step 2, the
second edge associated to each one of the 𝑏 images is input in parallel.

6
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Fig. 6. Proposed training model utilized for the prediction of the associated object according to a hierarchical structure. The input image passes once through a Convolutional
Neural Network, and visual features are extracted for each node of the tree structure representation. The network is trained with the goal of predicting the label of the node that
the examined edge is connecting to. In the figure, the edge that contains as a starting node the man in red shirt is being examined, and the edge must predict the correct label
‘sneakers’. The predicted label, 𝑊7, is encoded as a one-hot vector. Every new processed edge updates the value of the hidden state ℎ7 (the ‘7’ makes reference to the sequence
ordering). The hidden state keep tracks of the tree structure previously processed.

The mini-batch is finalized when all the edges of the 𝑏 images are fed.
Each TDVT tree in a batch is handled in parallel, but the network only
sees one predicted output word from an edge at a time and does the
computations accordingly.

3.3.3. The recurrent neural network (RNN) unit
The RNN unit contains four LSTM units, a shared hidden state vector

ℎ, and a tree dependency selector that controls which LSTM unit is
activated. From the four LSTM units, two of them are only used when
there are edges with dependencies of type Part, and the other two only
take care of the edges with dependencies type Weak.

Part dependencies are modeled by a first LSTM that control initial
Part dependence (Part-Init), and a second LSTM unit that controls the
connections between the remaining nodes of the same parent (Part-
Next). Similarly, Weak dependencies are controlled by two LSTM. One
unit controls the initial Weak connections (Weak-Init), and the other
unit controls consecutive Weak dependencies of the same parent node
(Weak-Next).

The input to the unit are 𝒙𝒕 and 𝑧𝑡. 𝒙𝒕 denotes the visual feature
pooled from the node, and 𝑧𝑡 ∈ {𝑃𝑎𝑟𝑡 − 𝐼𝑛𝑖𝑡, 𝑃 𝑎𝑟𝑡 −𝑁𝑒𝑥𝑡,𝑊 𝑒𝑎𝑘 − 𝐼𝑛𝑖𝑡,
𝑊 𝑒𝑎𝑘 −𝑁𝑒𝑥𝑡} denotes the type of edge dependence of the currently
analyzed edge. Let 𝑯 ∈ ℜ𝑑×(𝑛+1) represent the shared hidden states of
all the existing nodes, where 𝑑 is the hidden unit dimension size, and 𝑛
the number of nodes in the image representation. Every time an edge is
processed, only one of the four LSTMs is activated based on edge type
𝑧𝑡. The hidden state is updated as:

𝒉𝒕 = 𝐿𝑆𝑇𝑀𝑧𝑡 (𝒙𝑡,𝑯[∶, 𝑡′]), (10)

𝑯[∶, 𝑡] = 𝒉𝒕. (11)

3.3.4. Learning to predict the existence of edges
The network trained in the previous subsection learns to predict

what object could attached to an edge that is currently examined.
However, during testing, the input is just an image, we do not know
if the edge for a particular exist or not. Therefore, every time a node is
found, it is necessary to determine if the node has an edge, and what
type of edge the node has.

To solve this inconvenient a set of four different classifiers are
trained, given that there are four possible type of dependence (Part-Init,
Part-Next, Weak-Init, Weak-Next).

The inputs for these classifiers are the visual features of the analyzed
node, and the current hidden vector ℎ𝑡 state. The output of these
classifiers are 1 or 0, if the particular type of edge exist or not.

3.4. Inference

This subsection describes the procedure to obtain the detected
objects and the associated TDVT image representation from a test
image. A first assumption, is the availability of object proposals for the
image, which are obtained using some of the existing object proposal
methods. The TDVT image representation is built gradually edge by
edge. Then the inference process starts from the root node which
represents the full image. The convolutional layers from the model
trained for object detection are used to extract visual features. Using
the visual feature for the full image and the hidden vector ℎ at its
initialization value, the classifier for Part-Init dependence is evaluated
to determine the existence of a Part dependence. In the case that the
output is positive, the Top-Down Tree LSTM network for the Part-Init
dependence is utilized to predict a label vector. This vector indicates
how likely is to find each of the object categories in the image. A object
detection search is performed in the image for a limited set of object
categories determined by the label vector. The search is performed by
computing scores using the classification layers of the trained object
detector, having as input the visual features pooled from the bounding
boxes provided by the object proposal method. The detection with
the highest score among most likely objects, is declared as the node
connected by the Part edge. Subsequently, the existence of other Part
dependencies for the examined node are determined by the classifier for
Part-Next dependence. Visual features extracted from the latest found
node and the corresponding updated hidden vector ℎ𝑡 are used as inputs
to the classifier. Every time a Part-Next dependence is found to exist,
the Top-Down Tree LSTM determines the most likely labels for the
corresponding edge. The object search is performed in a reduced set of
categories, boosting the possibility to find visually low-scoring objects
of categories related to the examined visual content; in similar fashion
than on Part-Init dependence. After the Part branch is completely
processed (or the root node does not have a Part dependence), identical
course is enforced for the Weak branch.

A classifier for the Weak-Init dependence determines the existence
of a Weak branch. If a Weak dependence exists, then the Top-Down
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Tree LSTM determines the possible categories of objects related to the
edge. The object search procedure is performed only among the found
possible categories. When the classifier for Weak-Next dependencies
indicates the existence of an additional Weak dependency, the same
process of category prediction and object search in a reduced set of
categories, is repeated until there are no more positive Weak-Next
dependencies.
input :

• Image to be processed
• Object proposals (from a generic object proposal method)

output: TDVT representation of the image

Initialization;
Initialize NextList to empty;
Initialize ℎ0;
Get visual feature (full image);
Compute 4-way branches classifier (Section 3.3.4);
If Part-init then
| Fill up InitList indicating the node and their type of edge is Part-Init;
If Weak-init then
| Fill up InitList indicating the node and their type of edge is Weak-Init;

while NextList is not empty OR InitList is not empty do
while NextList is not empty do

Get visual feature (ROI of analyzed node), Get ℎ𝑖;
Predict edge existence using the trained classifier (Section 3.3.4);

Update NextList if there are Part-Next or Weak-Next edges;
Update InitList if there are Part-Init or Weak-Init edges;

Predict labels for the edge → set {label name, Label score};
Pick the top N labels with highest label score;
From the N selected labels:

Pick object (proposal, label) with highest det. score
(Fast-RCNN) ;
Add the object as a new node of the tree;

end
if InitList is not empty then

Get visual feature (ROI of analyzed node), Get ℎ𝑖;
Predict edge existence using the trained classifier (Section 3.3.4);

Update NextList if there is a Part-Next or Weak-Next;
Update InitList if there is a Part-Init or Weak-Init;

Predict labels for the edge → set {label name, Label score};
Pick the top N labels with highest label score;
From the N selected labels:

Pick object (proposal, label) with highest det. score
(Fast-RCNN) ;
Add the object as a new node of the tree;

end
end

Algorithm 1: Algorithm to infer a TDVT representation from a test
image.

Once the children for the root node are computed, we proceed to in-
fer edges and nodes of lower levels of the tree using the aforementioned
object search process used for Part and Weak dependencies in the root
node. Part dependencies deal with parts, therefore it is reasonable to
process only the bounding boxes with some level of overlap respect to
the parent node. The search process in the Weak dependence is more
flexible and only requires that the parent node has at least one pixel of
overlap with respect to the parent node. The result of this operation is a
tree that represents the image, with nodes that contain object detections
results (bounding box, label, and score).

The inference process is summarized in the Algorithm 1. Two lists
are used to control which node will be processed next. A list named
NextList contains information about nodes that have edges type Part-
Next or Weak-Next, and a list named InitList contains information about
nodes with edges type Part-Init or Weak-Init.

4. Experiments

We perform experiments on the visual genome dataset (Krishna
et al., 2016). The visual genome dataset has 108,077 images from the

Fig. 7. Accumulative number of samples for the most common objects in the dataset.

intersection of the YFCC100M (Thomee et al., 2016) and MS-COCO (Lin
et al., 2014a) datasets. The annotation includes 5.4 million region
descriptions and 2.3 million pair-wise relationships, which are used as
possible nodes of the TDVT image representation.

Using the training data, the number of instances of each object
category after obtaining TDVT representations are sorted in descending
order to establish the most common object categories. We selected
the first two thousand popular labels as the classes to be used in the
experiments. The most common class of the training dataset is ‘man’
with 37,292 training samples, while the class ranked 2000 is ‘desert’
and only has 52 samples (see Fig. 7).

Fine-tuning of a Fast R-CNN object detection model is performed
using the full annotations of the selected two thousand classes. The
network used to train the object is based on the VGG 16 network (Si-
monyan and Zisserman, 2015) and EdgeBox (Zitnick and Dollàr, 2014)
is used as the object proposal method.

We now describe the choice of parameters and implementation
details for the image parsing process of the dataset. We selected the
parameters for merging similar objects in an image as 𝛾 = 0.2, and
𝜖 = 0.5. Edges are considered Part Branches if the intersection of
the nodes is more than 80% the area of the smallest bounding box
(𝜁 = 0.8), and path similarity is over 0.3 (𝜖2 = 0.7). We use Kruskal’s
Algorithm to solve the Minimum Spanning Tree (MST) and generate
trees from graphs. The saliency method by Duan et al. (2011) was used
to determine the order within the siblings nodes. A density saliency
over 0.8 defines a Part dependence in the root level.

The training details of our network are described next. The Top-
Down Tree LSTM of our experiments has a hidden vector dimension
of 300, was trained with Stochastic Gradient Descent(SGD), using
batches of 64 images. The four classifiers to learn to build the tree was
implemented as a Multi Layer Perceptron (MLP) with two hidden units
of 300 dimensions.

4.1. Qualitative results

In this section we showed some qualitative results of the proposed
approach to perform simultaneously object detection and image un-
derstanding. Test images are feed to infer a TDVT representation that
express the visual content of the image.

Fig. 8 shows the results obtained for two randomly selected test
images. While traditional object detection produces a set of bounding
boxes and scores with the most likely objects, our method produces a
reduced set of objects that are essential to describe the visual content,
and the possible relations between these objects. For example, Fig. 8a
shows the street/road as the most important objects, followed by two
cars, and some signs. Associated to the street/road, in a lower level of
importance the image contains two trees, a pole, and two persons.

8
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Fig. 8. Obtained TDVT image representations for some testing images. Part dependencies are depicted in green color, and Weak dependencies are depicted in red color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9 shows the object detection results of some testing images.
For the proposed method (right side), we show only the detected
objects from the children of the root node, which determines the most
important objects of the image. For the Fast-RCNN (left side) we show
the most confident results according to the object detection score. Our
method allows to find un-spotted objects like the ‘‘‘woman’’’ in the first
set of images, or the ‘‘‘monitor’’’ screen in the second set of images. It
also, allows to find the most important elements of the images such as

the ‘‘‘street’’’ and the ‘‘‘building’’’ in the third set of images. Finally, our
method can get rid of inconsistent categories such as the ‘‘‘person’’’ in
the last set of images.

4.2. Dataset parsing

We perform a user study to evaluate the quality of the visual
tree representations obtained after parsing the images and annota-
tions of the visual genome dataset. Amazon mechanical turkers were

9



G. Vaca-Castano, N.D. Lobo and M. Shah Computer Vision and Image Understanding 181 (2019) 1–13

Fig. 9. Examples of images showing the most confident detections using Fast R-CNN object detection (left side) and the proposed method (right side).

used for this evaluation. Every image of the visual genome dataset
was presented next to the visual tree representation obtained from
the annotations. A total of 156 turkers were asked to tell if the vi-
sual tree properly represents the content of the image. Each image

was rated by at least seven different turkers. The results are pre-
sented in Table 2. Most of turkers considers that the parsed image
representations represents properly the content of the images of the
dataset.

10
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Table 1
Comparison of the Average Precision–Recall (APR) of Fast R-CNN detector and the proposed approach for the forty four most popular classes of the dataset. The mean Average
Precision (mAP) of the two thousand classes is shown in the last column of the table. Our method improves the detection in 38 out of the main 44 classes.

Man Window Person Shirt Wall Ground Building Sign Tree Woman Light Head Pole Grass Hair

FRCNN 42.91 31.21 17.39 42.69 18.99 28.02 35.28 47.43 35.82 36.02 17.03 40.75 15.82 21.84 30.56
Ours 50.38 42.75 24.23 45.47 22.93 29.03 44.04 49.93 44.13 31.28 19.58 42.60 20.09 30.42 32.97

Hand Sky Table Water Leg Car People Pants Clouds Wheel Eye Ear Door Hat Trees

FRCNN 30.26 36.12 34.82 42.33 20.91 45.75 24.59 39.04 6.77 25.02 19.04 22.17 18.47 21.22 16.60
Ours 33.26 36.19 33.09 48.18 31.18 47.77 32.92 38.21 18.11 29.68 19.39 26.35 21.95 20.89 21.93

Floor Plate Line Shadow Leaves Snow Nose Shoe Jacket Chair Tail Fence Windows Letter Mean

FRCNN 26.20 45.42 11.93 4.36 10.95 24.03 16.45 21.93 33.43 41.58 23.51 15.62 3.80 15.23 11.12
Ours 31.69 43.27 17.00 6.31 20.48 27.14 20.15 26.85 32.66 42.20 25.20 20.19 7.27 24.26 22.53

Table 2
Evaluation of the parsing of images from annotations.
86.83% of the users considers that the obtained tree
represents properly the content of the image.
Yes No

86.83% 13.17%

Fig. 10. Rate of correct prediction of categories for different ranks.

4.3. Category prediction

The trained network predicts the category of the object linked by
the edge currently examined, given the sub-tree processed until that
point. Hence, a prediction is performed for each existing edge during
inference time. The test dataset of the visual genome dataset is parsed
to obtain TDVT representations of the test images (previous subsection).
We use these representations as ground truth and evaluate the perfor-
mance of the category prediction task for each edge. We evaluate the
quality of the predictions as a rank problem using a Cumulative Match
Characteristic (CMC) curve. Fig. 10 shows the results.

The prediction process allows to guide the search process. Our
framework predicts the right category in 60% of the cases, when the
top 100 most likely categories are considered. Clearly, our framework
is a lot better than giving to all the categories the same chance as in
traditional object detection.

4.4. Improved object detection

We present quantitative results performed over the 5000 images
from the original test split of the visual genome dataset.

We compare our method against the object detection results of the
Fast-RCNN object detector. The Table 1 shows the Average Precision–
Recall (APR) for the forty four most common categories in the training

Fig. 11. Improvement of our model over the baseline Fast R-CNN. Object categories
are sorted by the improvements. Figure (a) shows the full 2000 categories, Figure (b)
shows the 200 most common categories. The overall improvement is achieved by a
high improvement in the most popular categories in the training dataset.

dataset. Our method improves the detection in 38 out of these 44
classes. The average improvement of this large set of categories is +4.89
APR per category, while the loss in performance of the remaining six
categories is considerable lower (−1.75 APR per category). The loss in
performance in the six classes was small compared to the gain on most
of them.

The last column of Table 1 is the mean Average Precision (mAP)
computed considering all the objects in two thousand object categories.
The mAP for the Fast-RCNN detector with two thousand categories was
11.12, and it increased to 22.53 using the proposed approach.

Fig. 11 shows the relative improvements of the two thousand classes
that are detected sorted by the improvement in the APR. Fig. 11a
shows that the number of improved categories is lower than the number
of categories that decrease their APRs when all the two thousand
categories are considered. If we only consider the two hundreds most
popular categories from the training dataset (Fig. 11b), we notice that
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Table 3
Evaluation of the object detection results in the test
set of SUN2012 dataset trained with the data of the
visual genome dataset. Metric used is mAP.
Fast R-CNN Ours

3.40 4.12

Table 4
Evaluation of the obtained TDVT image representa-
tion. 85.48% of the users considers that the obtained
tree represents properly the content of the image.
Yes No

85.48% 14.51%

approximately 70% of the object categories improve their APRs. These
results indicate that our approach learn better models from elements
that are popular in the images of the training dataset. The overall
improvement in the mAP is achieved mainly for the categories that are
very common in both training and test images.

4.4.1. Cross-dataset evaluation
We tested the ability of our model to improve the object detec-

tion results across datasets. The model previously trained with the
TVDT representations and the 2000 categories selected from the vi-
sual genome dataset were used to test images of the SUN2012 test
dataset (Xiao et al., 2010). We have not used any annotations from the
training or validation sets. Hence, we have not performed fine tunning
or re-training of the networks. We also use the network weights of the
Fast R-CNN learned from the visual genome. Our goal is to observe if
the learned model generalizes to any image, instead of just learning a
particular dataset.

The SUN2012 dataset has annotations for 3819 object categories,
which are different from the 2.000 categories from our trained dataset.
Only 950 categories from the 2000 categories were mapped to the
existing ground truth categories of the SUN2012 dataset. The results
for object detection using Fast R-CNN and our framework are reported
in Table 3.

The performance of the Fast R-CNN model trained on the visual-
genome dataset is 3.40 mAP, considering all the 950 available cate-
gories. The apparent low performance results in this dataset are due
in part to the discrepancy between the categories that the model can
predict and the available groundtruth for this dataset. The experi-
ment shows that our frameworks allows to improve the results of
object detection compared to the baseline Fast R-CNN. The resulting
mAP is 4.12, which represents an improvement of 21.17% respect to
Fast-RCNN object detection.

4.5. Obtained TDVT representation

The quality of the obtained TDVT representation is evaluated in
the same way as we evaluate the visual representation obtained from
parsing the dataset (Section 4.2). Again, we asked turkers to tell if the
obtained TDVT visual tree properly represents the content of the image.
A total of 119 participate in this experiment. The results are showed in
Table 4.

According to the turkers, 85.48% of the images are represented
correctly by the obtained TDVT output. These values are close to the
results obtained for the parsing process, but the obtained TVDT repre-
sentation was obtained automatically from images without annotations.

5. Conclusions

We proposed a new image representation that captures the structure
of the image content, a methodology to extract the representation
from existing object detection datasets, and algorithms for learning

and inference of the proposed representation that allows to improve
the results of object detection when a large number of categories are
included. We performed our experiments in the challenging Visual
Genome dataset obtaining large improvements, as measured by the
mean Average Precision. The improvement is even kept on images from
other dataset, as showed in the test set of the SUN2012 dataset. We
showed that the proposed approach also allows to capture which ones
are the most important objects, and obtain a model for the overall
content of the image.
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