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a b s t r a c t 

This work investigates the relationship between scene and associated objects on daily activities under 

egocentric vision constraints. Daily activities are performed in prototypical scenes that share a lot of vi- 

sual appearances independent of where or by whom the video was recorded. The intrinsic characteristics 

of egocentric vision suggest that the location where the activity is conducted remains consistent through- 

out frames. This paper shows that egocentric scene identification is improved by taking the temporal 

context into consideration. Moreover, since most of the objects are typically associated with particular 

types of scenes, we show that a generic object detection method can also be improved by re-scoring the 

results of the object detection method according to the scene content. We first show the case where the 

scene identity is explicitly predicted to improve object detection, and then we show a framework using 

Long Short-Term Memory (LSTM) where no labeling of the scene type is needed. We performed exper- 

iments in the Activities of Daily Living (ADL) public dataset (Pirsiavash and Ramanan,2012), which is a 

standard benchmark for egocentric vision. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Egocentric vision has recently got significant interest from the

ision community since the advent of wearable vision sensors and

heir potential applications. From the applications standpoint, ego-

entric videos are a key enabler for a number of technologies rang-

ng from augmented reality to context–aware cognitive assistance,

hich could improve our daily lives dramatically. Current assis-

ance systems like Siri, lack the ability to understand the visual

ontext – where you are in your house, what objects you are work-

ng with. This shortcoming limits its capabilities to help us in many

f our day-to-day activities. Egocentric vision, with its ubiquity, has

he capacity to be the provider of such knowledge. Consequently,

n this paper, we study some computer vision techniques that help

o exploit inherent constraints of first-person camera video of in-

ividuals performing daily activities. 

In the case of activities of daily living, the actions typically are

erformed in common places associated with human residences

uch as bathroom, corridor, patio, kitchen, among others, which

ill be referred as the scenes. Then, we are interested in the frame
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evel scene identification problem, where the goal is to find the

orrect scene identity for all the frames of the egocentric video.

e note that temporal constraints can be exploited to improve

rame level scene identification performance. The location where

n activity is performed remains consistent for several frames un-

il the user changes his/her current location. Given a frame, sev-

ral trained scene classifiers are evaluated and a decision about

he identity is taken based on the classification scores. However,

he scores obtained for individual frames can lead to wrong scene

dentification since these scores are agnostic with respect to the

emporal constraints associated with egocentric vision. In this pa-

er, we propose a formulation that uses the scene identification

cores of temporally adjacent frames to improve the scene identity

ccuracy. The formulation is based on a Conditional Random Field

CRF). 

We are also interested in the problem of improving the detec-

ion of objects. Object detection task attempts to find the location

f objects in a frame. Traditional approaches use human labeled

ounding boxes of objects as positive training data while visual

eatures not included in the positive training bounding box are part

f the negative data. However, in the real world, the objects are

art of a scene. Consider, for example, Fig. 1 (a) which shows a pic-

ure from a kitchen. Fig. 1 (b) shows a list of possible objects that

ould be interesting to detect. It is obvious for humans that some

ypes of objects are unlikely to be found in the observed scene,
ification and object detection on egocentric vision of daily activi- 

g/10.1016/j.cviu.2016.10.016 
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a)

b)

Fig. 1. Example of how object detection is influenced by the scene context. Figure 

a) contains an image taken in a kitchen. Figure b) shows a list of possible objects 

that could be detected. From the list, only the coffeemaker makes sense in the ob- 

served context. 
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while a coffeemaker is an object that most likely can be found in

this type of scene. 

The previous observation is used as a constraint in our problem

formulation to improve the quality of object detectors. We concen-

trate on Activities of Daily Living (ADL), where most of the first

person activities are performed in few prototypical scenes that are

common to all the actors. ADLs are an extremely challenging sce-

nario for object detection, since the objects suffer from notable

changes on appearance due to radial distortion, pose change and

actor influence over the object. We do not focus on direct improve-

ments in the object detection. Instead, the results of object detec-

tion are improved after re-scoring the outcome of the object de-

tection method. Objects that are most probably present in a type

of scene get higher scores, while objects that are unusual in a type

of scene get lower scores. In this paper, we present two type of

formulations. Firstly, a formulation to manage the case, where the

labels of the test videos are explicitly predicted from scene mod-

els learned in training data. Two algorithms are proposed for this

case: a greedy algorithm, and a Support Vector Regression (SVR)

based algorithm. Secondly, a formulation based on Long Short-

erm Memory (LSTM), that directly infers the probability of hav-

ing a type of object in a sequence, without an explicit knowledge

of the label of the scenes. As we show in our experiments, the

improvements are consistent for different types of scene detectors

and two types of object detectors in both formulations. 

To summarize, the main contributions of this paper are the

following. Firstly, we propose the use of temporal consistency

constraint to improve scene identification accuracy in egocentric

videos, with the aid of a Conditional Random Field (CRF) formula-

tion analyzed under two types of pairwise relations. Secondly, we

present two algorithms to improve the object detection results, by

modifying the object detection scores of the bounding box propos-

als according to the scene identity of the frame currently tested.

Finally, in the case that scene labeling of the training data is not

available, we present an LSTM formulation that predicts how likely

a type of object will be present in the current frame of a video

sequence. This prediction allows to re-score the object detection

according to the scene context producing excellent results. We per-

formed our experiments in the Activities of Daily Living (ADL) pub-

lic dataset ( Pirsiavash and Ramanan, 2012 ). 
Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
. Related work 

A relatively recent trend in computer vision community is the

gocentric vision. Most effort s ( Fathi et al., 2011; Pirsiavash and Ra-

anan, 2012; Ren and Philipose, 2009 ) in egocentric vision have

ocused on object recognition, activity detection/recognition and

ideo summarization, however, with the exception of our previous

ork ( Vaca-Castano et al., 2015 ), none of these effort s have f ocused

n scene identification and its relation with object detection. Ren

nd Philipose (2009) collected a video dataset of 42 objects com-

only found in every day life with large variations in size, shape,

olor, etc. They quantify the accuracy drop of object detectors after

imulating background clutter and occlusion on clean exemplars.

athi et al. (2011) observed that the object of interest tends to be

entered and covers a large space of the image frame. Based on

hat observation they perform unsupervised bottom–up segmenta-

ion and divide each frame into hand, object, and background cat-

gories. A list of objects that are part of the video is provided, and

n appearance model for them is learned from the training dataset.

bjects become part of the background after the manipulation of

he object is completed. In Pirsiavash and Ramanan (2012) , a new

ataset of videos of Activities of Daily Living (ADL) in first-person

amera is presented. The dataset contains bounding boxes annota-

ions for 42 different objects of frames sampled every second from

he videos. The dataset also provides the results of Deformable Part

odel (DPM) object detectors for some of those objects. The object

etection models were trained from a subset of egocentric videos

f the dataset, since models trained on standard object detection

atasets like Imagenet ( Russakovsky et al., 2014 ) or PASCAL VOC

ontain only iconic view of the objects, compared to the most chal-

enging appearance of objects from egocentric videos. Many of the

lasses with available ground-truth were not reported in the object

etection due to their insignificant performance. 

Improvement in object detection has been fueled mainly by

ASCAL VOC competition ( Everingham et al., 2010 ), and more

ecently by ImageNet Large Scale Visual Recognition Challenge

ILSVRC) ( Russakovsky et al., 2014 ). An extensive analysis of the re-

ults of the different com petitions on PASCAL VOC challenge dur-

ng years 2008 to 2012 was published ( Everingham et al., 2014 )

y their organizers. Their analysis shows clearly that the refer-

nce method for object detection in VOC 2008–2012 was the

eformable Part-based Model (DPM) ( Felzenszwalb et al., 2010 ),

hich won the detection contest on 2008 and 2009. DPM model

ses a histogram of oriented gradients representation (HOG) to de-

cribe a coarse scale root filter and a set of finer-scale part tem-

lates that can move relative to the root. During testing, the model

s applied everywhere in the image (sampled in different scales)

sing sliding window technique. A huge gain in performance was

chieved later by Girshick (2015) ; Girshick et al. (2014) using a

ombination of selective search ( Uijlings et al., 2013 ) and Convo-

utional Neural Networks (CNN). In that work, the Convolutional

eural Network trained by Krizhevsky et al. (2012) for the Ima-

eNet (ILSVRC) classification challenge was used, but a fine tuning

n the fully connected layers of the network was performed in or-

er to adapt the domain to the PASCAL VOC dataset. 

In spite of the significant performance gains of these methods

or single image object detection, these methods under-perform on

ideo object detection due to multiple factors such as motion blur,

emporary occlusions, objects out of focus, among others. One fo-

us of our paper is improving the results of object detectors on

ampled frames using scene context. Once better object detectors

re available, the tracking by detection framework of the Multiple

bject Tracking (MOT) problem, could be incorporated to obtain

etter tracks and handle long-term temporal relations. Different

OT algorithms ( Andriyenko and Schindler, 2011; Stauffer, 2003;

amir et al., 2012; Zhang et al., 2008 ) use object detections on the
ification and object detection on egocentric vision of daily activi- 
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nput video frames and generate target tracks by connecting the

etection outputs corresponding to identical objects across frames.

he main difference among MOT trackers is the utilized detection-

ssociation mechanism. MOT does not overlap with the proposed

echanism in this paper to improve object detection, being in fact,

omplementary. We will not focus on the MOT problem in this pa-

er. 

Recently, Han et al. (2016) proposed a heuristic method for

e-ranking bounding boxes in video sequences, linking bounding

oxes temporally that have a high overlap from frame to frame.

hey achieved the third place in the video object detection (VID)

ask of the ImageNet Large Scale Visual Recognition Challenge 2015

ILSVRC2015). Unfortunately, this approach assumes the availability

f detections that overlap in every frame. This condition only can

e achieved with high sampling rates which is prohibitive in long

equences as ours. In contrast, we process frames sampled approx-

mately every second. Additionally, the mentioned approach does

ot consider the scene context associated with the objects in the

rame. 

The role of context in object recognition has been analyzed

rom a cognitive science perspective ( Oliva and Torralba, 2007 ),

ut also from a computer vision perspective ( Carbonetto et al.,

0 04; Divvala et al., 20 09; Heitz and Koller, 20 08; Park et al., 2010;

ong et al., 2010; Soomro et al., 2015; Torralba et al., 2010, 2003 ).

eitz and Koller (2008) used a terminology coined by Forsyth et al.

1996) known as “thing” and “stuff” (TAS), linking discriminative

etection of objects with unsupervised clustering of image regions.

ther approaches like ( Song et al., 2010 ) achieve a boost in object

etection by iteratively switching between the classification task

nd detection using each other output as context. Divvala et al.

2009) studied several sources of context, and incorporate some of

hem to improve object detection. An approach more directly re-

ated to ours is the work of Torralba et al. (2003) , where the global

cene context and its influence over object recognition is consid-

red by representing the scene as a low-dimensional global image

epresentation (GIST), and this is used as contextual information to

ntroduce strong priors that simplify object recognition. 

The scene identification problem is essentially an image clas-

ification problem with a domain specific type of images. Over

any years approaches based on Bag of Words paradigm ( Csurka

t al., 2004; Sivic and Zisserman, 2003 ) were the dominant state

f the art. Further improvement was achieved by including spatial

nformation using pyramids ( Grauman and Darrell, 2005; Lazeb-

ik et al., 2006 ) in association with new types of encoding ( Jegou

t al., 2010; Perronnin and Dance, 2007; Perronnin et al., 2010;

ang et al., 2010 ). Huge improvements have been obtained in clas-

ification and detection (almost double in less than 2 years ac-

ording to the comprehensive evaluation of the ILSVRC challenge

eported in Russakovsky et al. (2014) ) after the generalized use

f Convolutional Neural Networks (CNN). Most of these new ap-

roaches are based on the extension of the CNN architecture pre-

ented by Krizhevsky et al. (2012) for the ILSVRC classification

hallenge. A number of recent works ( Girshick et al., 2014; Oquab

t al., 2014; Razavian et al., 2014; Sermanet et al., 2014 ) had shown

hat CNN features trained on sufficiently large and diverse datasets,

an be successfully transferred to other visual recognition tasks

uch as scene classification and object localization, with only a

imited amount of task-specific training data. To the best of our

nowledge the work of Gong et al. (2014) is the current state of

he art for scene classification, where global CNN features are en-

oded together by concatenating multiple scale levels CNN fea-

ures pooled by orderless Vector of Locally Aggregated Descriptors

VLAD). In our work, we show that scene identification methods

an be improved by considering its egocentric video intrinsic tem-

oral constraints. 
p

Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
. Egocentric vision clues 

In this work, we focus on two important building blocks to-

ards the goal of using a first-person camera for context acquisi-

ion and scene understanding: a) improving scene identification by

sing temporal information, and b) improving the object-detection

hrough the utilization of the visual appearance of the scene (ei-

her scene identity or global context). 

We use the egocentric video temporal consistency constraint

o improve scene identification accuracy by means of a Condi-

ional Random Field (CRF) formulation, which penalizes short-term

hanges of the scene identity. This formulation is covered in detail

n Section 3.1 . 

Assuming that we have a method for object detection that pro-

ides bounding boxes and their confidence scores, we show that

t is possible to increase the performance of the detector by in-

orporating the information about the particular type of the scene

or the frame that is being tested. We learn from the training data,

o modify the confidence scores of the object detectors according

o the type of scene identity. Detection scores for objects that are

nlikely to appear in a particular kind of scene are re-scored with

ower values, while the scores of categories commonly associated

ith the type of scene are increased. Section 3.2 covers the details

n improving object detection by incorporating information about

he scene to re-score the original object detection results. We pro-

ose two approaches. The first one is a greedy algorithm, and the

econd is an algorithm based on Support Vector Regression (SVR). 

Finally, Section 3.3 presents a framework for improving object

etection scores that simultaneously considers the temporal infor-

ation and the global context, with the additional benefit of not

equiring an explicit scene labeling of the video frames. 

.1. Improving scene identification 

Given a set of training videos containing N s type of scene iden-

ities, one scene classifier is trained for each type of scene. Un-

er the assumption that other frames do not influence the scene

dentity of the current frame, each sampled frame is evaluated

ndependently to determine the scene identity by comparing the

cores of each one of the trained scene classifiers, and selecting

he classifier with maximum score. However, we are dealing with

rst-person camera videos where the scene identity of a frame is

nfluenced by the identities of previous frames. It is evident that

 person requires some time to move from one scene to another,

herefore, if a person is known to be in a particular scene, it is

ery likely that the individual will remain on the same stage dur-

ng some additional frames. 

We use a Conditional Random Field (CRF) formulation to model

he temporal constraint of scene identities associated with first-

erson videos. The goal is to find the scene labels y = y 1 , y 2 , · · · , y N 
or a video sequence with N frames, that best fit the scores of the

cene classifiers while enforcing the temporal constraint. 

We define a graph with scene label nodes y i for each frame

f the video, which are connected temporally through edges with

heir r neighbors frame labels. Each frame label has a number of

ossible observations (scene classifiers) associated x i 
j∈ [1 ···N s ] . Fig. 2

resents a particular case, where the two previous frames are con-

ected. 

Let P r( y | G ;ω) be the conditional probability of the scene label

ssignments y given the graph G ( S p , Edge ) and a weight ω, we need

o minimize the energy equation 

og(P r( y | G ;ω)) = 

∑ 

s i ∈ S p 
ψ(y i | s i ) + ω 

∑ 

s i ,s j ∈ Edge 

φ(y i , y j | s i , s j ) , (1)

here ψ are the unary potentials, and φ are the pairwise edge

otentials. 
ification and object detection on egocentric vision of daily activi- 

g/10.1016/j.cviu.2016.10.016 
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Fig. 2. Example of a graphical model representing temporal dependencies for scene labeling in a first-person camera video. A total of r = 2 previous observations and three 

possible scene identities are represented in the figure. The figure shows the observations (scene scoring) as shadowed nodes x i y i and label assignments as white nodes y i . 

Experiments in Section 4.1 were performed with r = 7 . 
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a  

f  
The energy function to minimize can be represented as 

E( y ) = 

∑ 

p=1 ···N 
ψ(y p ) + 

∑ 

q =1 ···N 

∑ 

p=1 ···N 
w p,q V (y p , y q ) , (2)

where w p, q is an adjacency matrix, that indicates which nodes are

connected by edges and how much influence any of the r neighbor

frames has on the current frame. 

In our problem the unary potential is determined by a normal-

ized scene classification score x i y i as 

ψ(y i ) = 1 − x 

i 
y i 
, (3)

which privileges scene labels with high scores. 

The pairwise edge potential is given by a matrix V ( y p , y q ). The

matrix V ( y p , y q ) is defined with zeros in its diagonal, implying that

the energy is not affected if the scene identity remains the same,

and with positive values in positions off diagonal of the matrix to

penalize changes in the scene identity. This enforces the temporal

continuity of scene identities for frames linked by edge potentials

in the graph. 

We will discuss choices for matrix V ( y p , y q ) and adjacency ma-

trix w p, q in the experimental section. 

3.2. Improving object detection 

Object detection is the process of finding a set of bounding

boxes that delimits the regions which contain the objects of in-

terest. When we are running object detectors, the detection scores

signify the matching between the visual model and the testing

bounding box content. Typically, object detectors consider at most

only the local context, which corresponds to the surrounding re-

gions of the bounding box where the object is localized, but rarely

examine global information about the scene. 

Consider a typical object used in ADL video, for instance, a mi-

crowave. A microwave is commonly found in the kitchen but is

very unusual in other locations such as bedroom, bathroom or a

laundry room. Consequently, in cases where it is possible to obtain

information about the identity of the scene of the current frame,

we could re-score the results of the object detector to penalize de-

tections in scenes that typically do not contain the object that we

are looking for. Overall, it is possible to increase the performance

of the detector by incorporating the information about the partic-

ular type of the scene for the frame that is being tested. 

The objective is to learn from the training data how much the

detection score should be increased or decreased to account for the

chances of having the object in a type of scene. The scene identity
Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
nd the localization of the objects in every frame from the training

ideos of the Activities of Daily Living (ADL) dataset ( Pirsiavash and

amanan, 2012 ) are known in advance. Assuming that an object

etector is available, we can obtain bounding boxes and their asso-

iated detection scores. We also could determine how much over-

ap exists between the candidate bounding box and the ground-

ruth bounding box of the searched object. The resulting measure-

ent is called overlap score. 

Fig. 3 clarifies the concept behind our method. We focus on the

icrowave object in this discussion, but it applies to any other ob-

ect such as, refrigerator, tv, bed, computer, etc. In all the subfig-

res, the X–axis represents the detection scores produced for the

ifferent candidate bounding boxes, and the Y–axis represents the

verlap score on the ground-truth bounding boxes measured using

he same criteria as PASCAL VOC challenge (Area Overlap / Area To-

al). A detection is considered valid when the bounding box over-

ap score exceeds 0.5. Each dot in any of the figures represents a

andidate bounding box. They are computed from object detectors

rained using Fast R-CNN framework ( Girshick, 2015 ). The color

epresents the scene identity. In this example, green color repre-

ents kitchen, while red color accounts for a bedroom. 

From Fig. 3 (a), it is clear that many valid detections (i.e., over-

ap score (Area Overlap / Area Total) is over 0.5) can be found in

he kitchen scenes. The figure also shows that there is not a sin-

le valid microwave detection in bedroom scenes for the training

ataset, which is consistent with our common sense understand-

ng. 

If we select a threshold for the object detection score that cap-

ures most of the valid detections in the kitchen, then such a

hreshold produces lots of false microwave detections in the bed-

oom scene; but if we set up a high threshold for microwave de-

ection (in order to avoid adding invalid detection of the bedroom

cenes), then a lot of correct detections from the kitchen will be

gnored. Fig. 3 (b) shows a possible re–scoring for the object de-

ection scores based on the scene identity that deals with the fact

hat microwaves rarely appear in a bedroom. As can be appreci-

ted from the figure, we have performed a simple shifting of the

etection scores appearing in bedroom scenes. As a result, the de-

ections from the bedroom scenes do not add any false positives

hich allows improving the results of object detection. 

.2.1. Greedy algorithm 

The goal of our algorithm is to find the optimal value to be

dded to the initial object detection score for each scene identity

rom the training data. If N o is the number of different object
ification and object detection on egocentric vision of daily activi- 

g/10.1016/j.cviu.2016.10.016 
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Fig. 3. Explanation of the main idea behind our method to improve object detection based on scene identity using training data of ADL dataset. Figures are generated from 

microwave detector, and show the detection score versus ground-truth match score. Figure a) shows the detections for the kitchen in green and the results for a bedroom 

in red. Figure b) shows a re-scoring that improves the object detection. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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etectors, there is a total of N s × N o values to be learned. The

alues are saved in a matrix C N s ×N o , which contains the corrections

hat need to be added to the detection scores according to the

ype of scene and object detector. We fix the object detector and

ll out the rows of the matrix C N s ×N o applying the procedure that

s described below. Once the correction matrix is filled for the

ifferent scenes of a particular object detector, we repeat the same

rocedure with every object detector. 

The procedure uses as input the detection scores and their cor-

esponding overlap scores of the candidate object bounding boxes.

he candidates are grouped according to the type of scene of the

rame. The first step is to select a scene identity to be used as a

eference by the other types of scenes to compute their correc-

ions. We calculate the mean Average Precision (mAP) score of the

bject detector for the candidates in each type of scene and save

hem in a sorted list. The scene identity that has the highest mAP

alue is selected as the reference. Once the reference scene iden-

ity is selected, we process all the scenes that do not contain any

alid detection according to the PASCAL–overlap criteria. This is the

ame case presented in Fig. 3 (b). The magnitude of the correction

s given by the difference between the lowest detection score value

f a valid bounding box in the reference scene, and the value of the

ighest score of the new type of scene being processed. In practice,

e also add a small fixed tolerance value ε, that ensure all the

amples of the processed scene have scores lower than the lowest

alid detection in the reference scene. 

The remaining types of scenes are processed one by one start-

ng from the scene with higher mAP in the sorted list of scenes

omputed in the first step that has not been processed yet. The

ntuition behind this choice is to assure that we adjust first the

orrections of the type of scenes that need less adjustment in the

orrection value. At this point, we conduct a grid search of the cor-

ection value for the currently processed scene identity. The ob-

ective function is to maximize the mAP computed using the con-

unction of candidates bounding boxes from previously processed

cene identities and the currently processed scene identity. All the

etection scores of the candidates involved in the computation of

he mAP are adjusted according to their scene identities. 

.2.2. Support Vector Regression (SVR) algorithm 

In this subsection, we present an algorithm to learn to re-rank

he object detection scores depending of the scene identity of the
Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
ested frame. The algorithm is based on a Support Vector Regressor

SVR). The problem of regression is equivalent to finding a function

hich approximately maps from an input domain to the real num-

ers based on a training sample. 

Our goal is to map the object detection score to a new score

alue considering the scene identity. Then, the input data must

ncode the current scene identity and also include the detection

core. The scene identity is encoded as one-hot vector of scene

dentities i.e. a vector with dimension equal to the number of

cenes, with an entry equal to one in the dimension representing

he actual scene identity, and zeroes in all the others dimensions.

ence, the input data x i ∈ � 

N s +1 is represented by the concatena-

ion of the one-hot scene identity vector and the detection score

f the candidate bounding box. 

The output data y i ∈ � contains the target detection scores.

ith y i having any one of these possible values: 

 

i = 

{
1 if overlap score ≥ 0 . 5 

J i otherwise 
(4) 

here J i represents the overlap score of the candidate detection. 

A different regressor is trained for every type of object in the

ataset. During testing, the detection score and the output of the

cene classifiers are used to encode the input vector. The regres-

ion output of the regressor associated to the type of object is used

s the new score for the bounding box. 

.3. Improving object detection without scene identity labeling. 

In this section, we present a framework to use the general vi-

ual information of the frame sequences, and impose temporal

onstraints with the purpose of estimating how likely certain types

f objects are present in the frame (without using a specific object

etection method). Such information is employed to improve the

esults of the existing object detectors. 

Our framework is based on a feedback network called Long

hort-Term Memory (LSTM) ( Hochreiter and Schmidhuber, 1997 ).

STM is a type of neural network that allows connections from

nits in the same layer, creating loops that enable the network

o use information from previous passes, acting as memory. LSTM

an actively maintain self-connecting loops without degrading as-

ociated information. Fig. 4 depicts the internal structure and the

ssociated equations of the LSTM unit selected in our implemen-
ification and object detection on egocentric vision of daily activi- 

g/10.1016/j.cviu.2016.10.016 
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Fig. 4. Internal representation of an LSTM unit. 

Fig. 5. Our framework to obtain the most likely objects from scene descriptor in a frame sequence. Visual features are used as inputs, while the target vector Y o = 

[ y o 1 , y 
o 
2 , · · · , y o N o 

] encodes the presence or absence of an object class in the frame. 
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tation. The LSTM unit takes an input vector X t at each time step t

and predicts an output h t . In contrast to a simple Recurrent Neural

Network (RNN) unit, the LSTM unit additionally maintains a mem-

ory cell c, which allows it to learn longer term dynamics. As a con-

sequence, LSTM is a very effective technique to capture contextual

information when mapping between input and output sequences. 

Fig. 5 depicts the proposed framework. Every frame is prepro-

cessed to obtain a visual image descriptor which feeds the Long

Short-Term Memory (LSTM) network. The system is trained to pro-

duce the correct answer to the question: which objects are visible

in the image? 

The answer to the question is encoded also as a vector Y o =
[ y o 

1 
, y o 

2 
, · · · , y o 

N o 
] , where N o is the number of possible objects to be

considered, and y o ∈ {0, 1} . The vector Y o has non-zero entries

at the positions that indicate the indexes of existing objects in the

frame. In training time, we use the information of every frame to

fill out the vector Y o , and the image descriptor X . 

o  

c

Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
During testing, for each frame descriptor, we obtain a N o di-

ensional output vector Y o with values in the range [0, 1]. The

 o dimensions of the vector indicate how likely is finding a type

f object given the visual information of the frame and its history.

he output layer after the LSTM unit is shared across the time. 

In practice, we use this likelihood as a way to re-score the re-

ults of object detectors, according to the general information of

he scene by means of the simple re-scoring function 

 

new 

p j 
= S p j + k ∗ Y o p , (5)

here S new 

p j 
is the new score for the instance j of object type p, S p j 

s the score result of the object detector j for object type p , Y o p is

he output after the LSTM that indicates the likelihood of having

he object p in the scene, and k is a constant that indicates the

mportance of the scene information in the final score. The value

f k is determined from a small validation set containing ADL ego-

entric videos. 
ification and object detection on egocentric vision of daily activi- 

g/10.1016/j.cviu.2016.10.016 
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Table 1 

Comparison of the overall accuracy of four scene identification methods. The 

baseline 1 does not consider any temporal constrain, the baseline 2 uses a 

moving average filter in the time domain to decide the frame identity, and 

baseline 3 considers a HMM model. The proposed CRF is examined under two 

different choices of pairwise terms. 

BoW MOP CNN CNN 

CNN CNN L1 L3 

Baseline 1. No time 50 .45 64 .53 64 .08 63 .87 

Baseline 2. Moving average 58 .54 67 .95 69 .38 67 .66 

Baseline 3. HMM 61 .21 68 .97 70 .92 69 .79 

Proposed CRF - 1. Uniform V, ω 65 .52 68 .53 71 .85 69 .88 

Proposed CRF - 2. Non-uniform V, ω 62 .27 72 .09 74 .21 72 .15 
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. Experiments 

We conducted our experiments in the Activities of Daily Living

ADL) dataset ( Pirsiavash and Ramanan, 2012 ). ADL dataset cap-

ures High Definition (HD) quality video from 18 daily indoor ac-

ivities such as washing dishes, brushing teeth, or watching televi-

ion, performed by 20 different persons in their apartments. Each

ideo has approximately 30 min length, and the frames are an-

otated every second with object bounding boxes of 42 different

bject classes. From the 42 annotated object classes, results of a

rained Deformable Part-based Model (DPM) ( Felzenszwalb et al.,

010 ) are provided for 17 of them. In addition to the provided DPM

odels, we trained object detectors using the Fast R-CNN frame-

ork ( Girshick, 2015 ) and show that the proposed algorithms con-

istently achieve improvements independently of the type of object

etector used. 

The ADL dataset provides splits for separating training and test-

ng data. From the twenty videos of the dataset, the first six of

hem were used as training data for object detection by the au-

hors of the dataset. We followed the same splits on the data, then

he first six videos were used to train scene classifiers, object de-

ectors using deep networks, and the LSTM network for improving

bject detection without scene labels. 

We performed scene identity annotations for all the video

rames of the dataset. We identify eight types of scenes in the

ataset. They are the kitchen, bedroom, bathroom, living room,

aundry room, corridor, outdoor, and none of them (blurred frames,

r non-identified place). 

To evaluate the object detectors, we use the standard mean Av-

rage Precision (mAP) evaluation metric. We use the classical PAS-

AL VOC criteria, which establishes that at least a value of 0.5 on

he overlap/union ratio among ground-truth and detection bound-

ng box is needed to declare the bounding box as a valid detection.

.1. Scene identification 

In this section, we show experiments on frame level scene iden-

ification and the improvements achieved by using the temporal

nformation. 

We performed frame scene identification on the video frames

f the test dataset. The first baseline in our experiments is simply

he results of the scene identification methods without considering

he time constraint. A second more challenging benchmark consid-

rs the temporal constraint by using a moving average filter across

he temporal domain. A third baseline examines a Hidden Markov

odel (HMM). Finally, we show that the overall accuracy of scene

dentification methods is largely improved using the proposed CRF

ormulation. 

We use four different frame level scene identification ap-

roaches in our experiments to show that the proposed formu-

ation works well independent of the selected scene identifica-

ion method. One approach is the traditional Bag of Words (BoW)

epresentation, encoding CNN features computed over object pro-

osals selected by using the selective search window technique

y Cheng et al. (2014) . We also performed experiments with the

ulti-Scale Orderless Pooling of Deep Convolutional Activation

eatures (MOPCNN) ( Gong et al., 2014 ) and the two additional vari-

nts described below. 

Multi-Scale Orderless Pooling of Deep Convolutional Activation

eatures (MOPCNN) ( Gong et al., 2014 ) is, to the best of our knowl-

dge, the current state of the art for scene classification. MOPCNN

perates in 3 scales, all of them using the sixth fully connected

ayer output of the Krizhevsky’s convolutional network. In the full

mage scale, the descriptor is directly the output of the sixth layer,

hile the descriptor for the other two scales is created by VLAD
Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
ncoding of periodically sampled CNN features at different scales

ollowed by dimensional reduction. 

The complete MOPCNN method is used as one of the tested

cene identification methods, but also two variants of the method

re also examined: a) the full scale of the MOPCNN method

MOPCNN-L1) i.e., the global CNN descriptor, and b) the third scale

f the MOPCNN (MOPCNN-L3), which uses VLAD encoding in the

 4 × 6 4 pixels scale. These two variants complete our four meth-

ds used for scene identification. 

We used Caffe ( Jia, 2013 ) to implement CNN feature extraction.

or the Bag of Words implementation, a total of 200 object propos-

ls were used, and the dictionary size was fixed in 50 0 0 words. For

ll the scene identification methods, we use a linear SVM as the

lassifier. We use the graph-cuts based minimization procedure in

oykov and Kolmogorov (2004) ; Boykov et al. (2001) ; Kolmogorov

nd Zabih (2004) to obtain the optimal solution for the Eq. (2) . 

Table 1 shows the overall accuracies for the three baselines and

he proposed CRF method. The baseline 1 in the table corresponds

o the direct output of the scene classifiers. The baseline 2 corre-

ponds to the moving average filtering in the time domain of the

cene scores. The filter size is in some way a measure of how fast

he person changes from the current scene to other scene. In our

xperiments, the sample rate is one frame per second (1 fps ). We

xamined different filter sizes, finding that considering the r = 7

revious sampled frames on the currently tested frame produced

est accuracies. These are the results reported in the second row

f the table. The baseline 3 is a Hidden Markov Model (HMM) that

redicts the sequence output of the scene identities. 

The results of the proposed CRF method depends on the choice

f the matrices V ( y p , y q ) and ω p, q . Following the findings of the

aseline 2, the presented results assume that information of the

revious seven frames influences the current frame label. 

We first consider the case where any of the seven previous

rames have the same impact on the current frame label i.e.,

 p,p−1 = ω p,p−2 = · · · = ω p,p−7 , and penalty is the same for any

air of scene identities, i.e., the V ( y p , y q ) value is the same for any

osition off diagonal. The fourth row of Table 1 reports results for

his uniform choice of V and ω. 

We also considered the case where the influence of the most

ecent frames is stronger than the previous ones. Hence, we as-

umed that for each row of the matrix ω, its weights follow a

aussian function with origin in the current frame. We also con-

idered alternatives for matrix V ( y p , y q ), where pairs of scene la-

els with more frequent transitions are penalized less severely

han others pairs that rarely occurs. We use the ground-truth

ata to count for the possible transitions between scene identi-

ies which are normalized and represented as T y p ,y q . Values for the

 ( y p , y q ) entries are defined as V (y p , y q ) = 1 − T y p ,y q . The last row

f Table 1 shows the best results achieved with the selected non-

niform V and ω matrices. 

In all the four scene classifiers, there is a visible improvement

n the accuracy using the proposed CRF with respect to the
ification and object detection on egocentric vision of daily activi- 

g/10.1016/j.cviu.2016.10.016 
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Table 2 

Results for the DPM object detection of the ADL dataset using mAP met- 

ric (as a percentage). The use of scene information increases the mAP for 

most of object categories. The best improvements are obtained when the 

scene identity is known. LSTM method performs better in comparison to 

the cases where the scene identity is estimated from scene classification. 

Scene known CNN-L1 scene 

DPM Greedy SVR Greedy SVR LSTM 

bed 8 .74 10 .32 9 .28 9 .01 9 .34 9 .37 

book 11 .93 11 .12 10 .98 12 .11 11 .21 12 .54 

bottle 1 .76 1 .83 2 .05 1 .73 2 .01 1 .69 

cell 0 .19 0 .35 0 .29 0 .18 0 .32 0 .19 

detergent 3 .90 4 .64 5 .12 4 .02 4 .87 3 .96 

dish 1 .26 0 .98 1 .35 1 .53 1 .04 1 .38 

door 12 .60 7 .82 8 .64 12 .83 9 .79 14 .24 

fridge 24 .80 28 .45 29 .18 25 .95 26 .05 26 .36 

kettle 12 .16 13 .02 12 .67 11 .43 12 .56 13 .01 

laptop 38 .52 40 .41 37 .81 38 .99 32 .93 39 .81 

microwave 17 .76 21 .37 22 .13 18 .88 21 .86 19 .57 

pan 6 .15 6 .70 7 .02 6 .23 6 .58 6 .58 

pitcher 1 .37 1 .69 1 .65 0 .68 1 .79 1 .27 

soap 5 .12 6 .34 6 .48 5 .43 5 .72 6 .00 

tap 30 .15 32 .40 33 .38 30 .19 31 .84 29 .59 

remote 4 .88 6 .28 5 .91 5 .14 6 .31 6 .12 

tv 44 .09 46 .88 48 .21 45 .70 47 .19 45 .12 

Total 13 .25 14 .15 14 .24 13 .53 13 .61 13 .93 

Table 3 

Results for the Fast R-CNN object detectors on the ADL dataset using mAP metric 

(as a percentage). The LSTM method produces higher improvements compared to 

any of the other methods to re-score the object detection results. 

Scene known CNN-L1 scene 

Fast R-CNN Greedy SVR Greedy SVR LSTM 

book 12 .83 13 .62 13 .88 13 .12 14 .14 13 .33 

bottle 11 .28 12 .32 9 .96 8 .70 9 .81 11 .71 

cell 8 .65 2 .21 3 .30 4 .51 6 .31 8 .65 

detergent 9 .13 11 .23 7 .50 8 .75 8 .99 9 .14 

dish 11 .19 13 .03 13 .85 12 .01 12 .96 11 .95 

door 5 .59 5 .69 5 .85 5 .61 5 .24 5 .74 

fridge 24 .95 27 .54 26 .25 25 .07 25 .41 26 .75 

kettle 23 .83 31 .11 26 .79 27 .12 27 .20 27 .28 

laptop 37 .46 41 .17 33 .16 43 .91 37 .37 48 .84 

microwave 32 .35 36 .85 36 .78 33 .62 34 .53 32 .37 

mug/cup 13 .24 14 .67 14 .21 12 .51 12 .90 14 .29 

oven/stove 43 .02 47 .73 54 .58 49 .54 52 .66 52 .54 

pan 10 .99 13 .90 13 .83 10 .78 11 .31 11 .00 

person 25 .74 43 .66 66 .63 64 .97 63 .49 71 .64 

soap 18 .77 19 .09 20 .53 17 .05 16 .94 18 .62 

tap 39 .55 48 .78 46 .00 47 .64 46 .25 47 .90 

thermostat 9 .01 9 .63 6 .27 6 .00 7 .83 8 .99 

remote 32 .88 43 .91 47 .98 43 .79 45 .20 41 .34 

washer/dryer 38 .86 47 .17 45 .09 39 .09 40 .42 40 .52 

tv 57 .58 61 .60 66 .07 61 .96 63 .57 67 .75 

Total 23 .35 27 .24 27 .91 26 .79 27 .15 28 .49 
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baselines. The relative increase is more significant for the weakest

scene classifier, the Bag of CNN features. As is expected, the state

of the art method (MOPCNN) has the best accuracy between the

scene classifiers before using any temporal constraint. However,

after considering the temporal information, the improvement is

superior in the scene detectors that only use one scale CNN as

a classifier. As a result, the two variants of the MOPCNN method

produce better accuracies than the complete MOPCNN method.

This surprising result, indicates that in real life applications, a

weaker but less computationally intense scene classifier can be

used in place of expensive computational methods as long as the

temporal constraint is exploited. 

We also note that the CRF defined with a more complex pair-

wise relation (Non-uniform V and ω), that weights the importance

of the closest frames to the tested frame, and considers the like-

lihood of scene transitions, produces significantly better results

when the best scene classifiers (MOPCNN and their two variants)

are used. The increase was a bit lower than the uniform V and

ω CRF with the weakest scene classifier (BoW), but still consider-

ably better than any of the baselines. We attribute this effect to

the stochastic nature of the output generated by the noisiest BoW

classifier that converts the output in a less predictable event. 

4.2. Improving object detection 

We perform experiments to demonstrate that the methods pre-

sented in this paper to improve object detection results, generalize

to different kinds of object detectors. In this section, we use the

DPM object detection results provided with the ADL dataset and

also the object detection outputs of models trained using the Fast

R-CNN framework. 

The DPM models themselves are not provided, only the bound-

ing boxes, and scores of the detections obtained by their models

in the training and testing videos of the ADL dataset. A total of 17

types of objects is provided. 

The Fast R-CNN models are trained using the VGG16 network

( Simonyan and Zisserman, 2015 ) employing object proposals com-

puted using EdgeBox ( Zitnick and Dollr, 2014 ). We trained models

for the 42 annotated objects. However, we only consider objects

with an mAP of at least 5.00%. A total of 20 object detectors satis-

fies this condition. 

We learned different matrices of corrections C N s ×N o and re-

scoring functions for the DPM and the Fast R-CNN detectors fol-

lowing the procedures described in Section 3.2 . In the case of the

greedy algorithm, the parameter ε was set to 0.05 for all the ex-

periments. In the case of the SVR algorithm, we used a Radial Basis

Function (RBF) as kernel. The parameters of the SVR were C = 0 . 01 ,

and γ = 0 . 1 , in order to have a smooth regression function. 

The first six videos of the ADL dataset were used to train the

LSTM network. These videos contain information about which ob-

jects are shown in each one of the sampled frames. The Y o vec-

tors were generated by forming groups with duration of 20 s

and an overlap of 8 s. We used the scene descriptor of the

MOPCNN method to feed the network. The training was performed

in batches of 16 groups executing a total of 30,0 0 0 epochs. 

In testing phase, we feed each frame with the scene descriptor,

and obtained a vector that indicates the likelihood of having the

object (indexed in each dimension of the vector) given the general

scene content. We used the Eq. (5) to re-score the object detection.

The value of k in our validation set was 0.11 for both set of object

detectors, the DPM and Fast R-CNN models. 

The Figs. 6 and 7 show some qualitative results of five object

detectors with a detection threshold fixed on −0 . 7 using the DPM

object detector, for some random frames covering different scenes.

The figures in column one show the detection results without us-

ing scene information, while the figures in the second column
Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
how the obtained detection after performing re–scoring consider-

ng the scene identity. The number of false microwave detections

s reduced for the scenes in the bedroom, living room, and bath-

oom. In the same way, false positives objects such as tv are re-

oved from the scenes in the kitchen, and bathroom. 

Table 2 presents the results associated with the DPM object de-

ectors and Table 3 displays the results related to the Fast R-CNN

bject detector. Tables 2 and 3 share the same structure. Each col-

mn of the tables presents the detection results in different sce-

arios. The columns of the tables present such scenarios. 

The first column contains the results of the selected object de-

ector applied on the sampled frames of the ADL dataset without

onsidering any information about the scene. 

The second and third columns present the results of improved

bject detection assuming the scene identities are known. Each
ification and object detection on egocentric vision of daily activi- 
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Fig. 6. Qualitative results of the object detection before and after re–scoring the detections based on the scene. Many false positives are removed after the proposed re- 

scoring. 
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Fig. 7. More qualitative results of the object detection before and after re–scoring the detections based on the scene. Many false positives are removed after the proposed 

re-scoring. 
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olumn shows a different technique. They are the greedy algorithm

nd the SVR algorithm. 

Instead of assuming the scene identities of the frames are

nown, the next two columns present the outcome of the greedy

nd the SVR algorithms, but this time using the best scene iden-

ification method that was obtained from the experiments of the

revious section. This method is the model trained using the CNN

eatures in full scales (L1) in conjunction with CRF. In the case of

he greedy algorithm, the corrections values for a frame are com-

uted as a weighted sum of corrections associated with the nor-

alized scene identities scores for each type of object. The correc-

ion values are extracted from a column of the matrix C N s ×N o , and

he weights from the normalized scores of the scene identity clas-

ifiers. For the SVR algorithm, we follow a similar weighting strat-

gy to estimate the new score values but using the scores obtained

rom the regression functions. 

Finally, the last column shows the results of the proposed LSTM

ethod to improve object detection without explicitly using scene

abeling. 

Trained Fast R-CNN object detectors produce better detector

odels than the provided DPM results. The performance is almost

he double, as can be appreciated from comparing the first column

f the tables. Besides, Fast R-CNN models can generate a longer

umber of good models, 20, compared to the 17 models provided

sing DPM. 

When we include the information about the scene, we observe

onsistent improvements for all the presented scenarios indepen-

ent of the detector model utilized. The gains are more notori-

us in the case of the Fast R-CNN detector models than for DPM.

s is expected, using the exact information about the scene iden-

ity (columns 2 and 3) outperforms the results obtained when the

cene identity is estimated (column 4 and 5) for both types of de-

ector models. The increases are considerable in the case of Fast

-CNN models. SVR algorithm have slightly better overall perfor-

ances compared to the greedy algorithm in all the tested scenar-

os. 

In general, a valid observation of the experiment is that when

he object detectors have good models (mAP over 20%), the im-

rovements of the results by using the scene information are con-

istently higher than for weaker object detectors. 

Finally, we highlight the results of the improved object de-

ection without explicitly using the label of the scene. Besides

f reducing the labeling effort, we note that the performance

chieved using the proposed LSTM formulation outperform the re-

ults reached when we estimate scene labels from scene classifiers.

n fact, for the case of the Fast R-CNN detectors, the results are su-

erior to the ones obtained using the knowledge about the scene

dentity directly. 

. Conclusions 

In this article, we presented algorithms for leveraging inherent

onstraints of egocentric vision towards improved scene identifi-

ation and object detection capabilities. Firstly, we notice that the

cene identity of a first-person video remains consistent for sev-

ral frames. Subsequently, we presented a CRF formulation that

mproves the frame level scene identification results of different

ethods for scene identification. Secondly, we identified the asso-

iation between some type objects with some scene locations and

roposed two re-scoring algorithms to improve the object detec-

ion according to the scene content. For the case where an ex-

licit scene labeling is not available, we proposed a LSTM formu-

ation that directly estimates the likelihoods of having some ob-

ects given a sequence of scene descriptors. Such formulation was

sed to improve the object detection scores of the DPM and Fast R-
Please cite this article as: G. Vaca-Castano et al., Improved scene ident

ties, Computer Vision and Image Understanding (2016), http://dx.doi.or
NN object detection outputs. The presented algorithms were im-

lemented and tested on the well-known public ADL dataset. 
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