Binary Classification

Given training data \((x_i, y_i)\) for \(i = 1 \ldots N\), with \(x_i \in \mathbb{R}^d\) and \(y_i \in \{-1, 1\}\), learn a classifier \(f(x)\) such that

\[
\begin{align*}
 f(x_i) \geq 0 & \quad y_i = +1 \\
 f(x_i) < 0 & \quad y_i = -1
\end{align*}
\]

i.e. \(y_i f(x_i) > 0\) for a correct classification.

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman
Linear separability

- linearly separable
 - Example 1
 - Example 2

- not linearly separable
 - Example 3
 - Example 4

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman
Linear classifiers

A linear classifier has the form

$$f(x) = w^T x + b$$

- in 2D the discriminant is a line
- w is the normal to the line, and b the bias
- w is known as the weight vector
What is the best w?

- maximum margin solution: most stable under perturbations of the inputs
Support Vector Machine

Linearly separable data

\[f(x) = \sum_i \alpha_i y_i (x_i^T x) + b \]

where

- \(f(x) \) is the decision function.
- \(\alpha_i \) are the Lagrange multipliers.
- \(y_i \) are the class labels (1 or -1).
- \(x_i \) are the data points.
- \(x \) is the input vector.
- \(b \) is the bias term.
- \((x_i^T x) \) is the inner product of \(x_i \) and \(x \).

The margin is defined by the distance of the support vectors to the decision boundary.

The SVM classifier maximizes the margin between the two classes.
SVM – sketch derivation

- Since $w^T x + b = 0$ and $c(w^T x + b) = 0$ define the same plane, we have the freedom to choose the normalization of w

- Choose normalization such that $w^T x_+ + b = +1$ and $w^T x_- + b = -1$ for the positive and negative support vectors respectively

- Then the margin is given by

$$\frac{w}{\|w\|} \cdot (x_+ - x_-) = \frac{w^T (x_+ - x_-)}{\|w\|} = \frac{2}{\|w\|}$$
Support Vector Machine

linearly separable data

Margin = \frac{2}{||w||}

\(w^T x + b = 1 \)
\(w^T x + b = 0 \)
\(w^T x + b = -1 \)

Slide from: Lecture 2: The SVM classifier
C19 Machine Learning Hilary 2013 A. Zisserman
SVM – Optimization

- Learning the SVM can be formulated as an optimization:
 \[
 \max \frac{2}{||w||} \quad \text{subject to} \quad \begin{cases}
 w^\top x_i + b \geq 1 & \text{if } y_i = +1 \\
 \leq -1 & \text{if } y_i = -1
 \end{cases} \quad \text{for } i = 1 \ldots N
 \]

- Or equivalently
 \[
 \min ||w||^2 \quad \text{subject to } y_i \left(w^\top x_i + b \right) \geq 1 \quad \text{for } i = 1 \ldots N
 \]

- This is a quadratic optimization problem subject to linear constraints and there is a unique minimum.
Linear separability again: What is the best w?

- the points can be linearly separated but there is a very narrow margin

- but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data.
Introduce “slack” variables

\[\xi_i \geq 0 \]

- for \(0 < \xi \leq \frac{1}{||w||} \) point is between margin and correct side of hyperplane. This is a margin violation
- for \(\xi > \frac{1}{||w||} \) point is misclassified

\[w^T x + b = 1 \]
\[w^T x + b = 0 \]
\[w^T x + b = -1 \]
“Soft” margin solution

The optimization problem becomes

\[
\min_{w \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||w||^2 + C \sum_{i=1}^{N} \xi_i
\]

subject to

\[
y_i \left(w^T x_i + b \right) \geq 1 - \xi_i \text{ for } i = 1 \ldots N
\]

- Every constraint can be satisfied if \(\xi_i \) is sufficiently large
- \(C \) is a **regularization** parameter:
 - small \(C \) allows constraints to be easily ignored \(\rightarrow \) large margin
 - large \(C \) makes constraints hard to ignore \(\rightarrow \) narrow margin
 - \(C = \infty \) enforces all constraints: hard margin
- This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, \(C' \).
Loss function

\[
\min_{w \in \mathbb{R}^d} \|w\|^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(x_i))
\]

Points are in three categories:

1. \(y_i f(x_i) > 1\)
 - Point is outside margin.
 - No contribution to loss.

2. \(y_i f(x_i) = 1\)
 - Point is on margin.
 - No contribution to loss.
 - As in hard margin case.

3. \(y_i f(x_i) < 1\)
 - Point violates margin constraint.
 - Contributes to loss.
SVM – review

- We have seen that for an SVM learning a linear classifier
 \[f(x) = \mathbf{w}^\top x + b \]
 is formulated as solving an optimization problem over \(\mathbf{w} \):
 \[
 \min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{w}||^2 + C \sum_{i} \max (0, 1 - y_i f(x_i))
 \]
- This quadratic optimization problem is known as the **primal** problem.

- Instead, the SVM can be formulated to learn a linear classifier
 \[f(x) = \sum_{i}^{N} \alpha_i y_i (x_i^\top x) + b \]
 by solving an optimization problem over \(\alpha_i \).
- This is know as the **dual** problem, and we will look at the advantages of this formulation.
Primal and dual formulations

N is number of training points, and d is dimension of feature vector \mathbf{x}.

Primal problem: for $\mathbf{w} \in \mathbb{R}^d$

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{w}\|^2 + C \sum_{i}^{N} \max(0, 1 - y_if(x_i))$$

Dual problem: for $\alpha \in \mathbb{R}^N$ (stated without proof):

$$\max_{\alpha_i \geq 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k (x_j^\top x_k) \text{ subject to } 0 \leq \alpha_i \leq C \text{ for } \forall i, \text{ and } \sum_i \alpha_i y_i = 0$$

- Need to learn d parameters for primal, and N for dual
- If $N << d$ then more efficient to solve for α than \mathbf{w}
- Dual form only involves $(x_j^\top x_k)$. We will return to why this is an advantage when we look at kernels.
Support Vector Machine

\[f(x) = \sum_i \alpha_i y_i (x_i^\top x) + b \]

\[w^\top x + b = 0 \]
Dual Classifier in transformed feature space

Classifier:

\[f(x) = \sum_{i}^{N} \alpha_i y_i x_i^\top x + b \]

\[\rightarrow f(x) = \sum_{i}^{N} \alpha_i y_i \Phi(x_i)^\top \Phi(x) + b \]

Learning:

\[\max_{\alpha_i \geq 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k x_j^\top x_k \]

\[\rightarrow \max_{\alpha_i \geq 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k \Phi(x_j)^\top \Phi(x_k) \]

subject to

\[0 \leq \alpha_i \leq C \text{ for } \forall i, \text{ and } \sum_{i} |\alpha_i y_i| = 0 \]
Dual Classifier in transformed feature space

- Note, that $\Phi(x)$ only occurs in pairs $\Phi(x_j)^T \Phi(x_i)$

- Once the scalar products are computed, only the N dimensional vector α needs to be learnt; it is not necessary to learn in the D dimensional space, as it is for the primal

- Write $k(x_j, x_i) = \Phi(x_j)^T \Phi(x_i)$. This is known as a Kernel

Classifier:

$$f(x) = \sum_{i}^{N} \alpha_i y_i k(x_i, x) + b$$

Learning:

$$\max_{\alpha_i \geq 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{jk} \alpha_j \alpha_k y_j y_k k(x_j, x_k)$$

subject to

$$0 \leq \alpha_i \leq C$$ for $\forall i$, and $\sum_{i} \alpha_i y_i = 0$
Special transformations

\[\Phi: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[\Phi(x)^\top \Phi(z) = (x_1, x_2, \sqrt{2}x_1x_2) \begin{pmatrix} z_1^2 \\ z_2^2 \\ \sqrt{2}z_1z_2 \end{pmatrix} \]

\[= x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2 \]

\[= (x_1z_1 + x_2z_2)^2 \]

\[= (x^\top z)^2 \]

Kernel Trick

- Classifier can be learnt and applied without explicitly computing \(\Phi(x) \)
- All that is required is the kernel \(k(x, z) = (x^\top z)^2 \)
- Complexity of learning depends on \(N \) (typically it is \(O(N^3) \)) not on \(D \)
Example kernels

- **Linear kernels** $k(x, x') = x^\top x'$
- **Polynomial kernels** $k(x, x') = (1 + x^\top x')^d$ for any $d > 0$
 - Contains all polynomials terms up to degree d
- **Gaussian kernels** $k(x, x') = \exp \left(-\|x - x'\|^2 / 2\sigma^2 \right)$ for $\sigma > 0$
 - Infinite dimensional feature space
LIBSVM FOR MATLAB
LibSVM

• **LIBSVM** is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification.

• [Python](https://www.python.org), [R](https://www.r-project.org), [MATLAB](https://www.mathworks.com), [Perl](https://www.perl.org), [Ruby](https://www.ruby-lang.org), [Weka](https://www.cs.waikato.ac.nz/ml/weka), [Common LISP](https://www.lispworks.com), [CLISP](https://www.clisp.org), [Haskell](https://hackage.haskell.org), [OCaml](https://ocaml.org), [LabVIEW](https://www.labview.com), and [PHP](https://www.php.net) interfaces. [C# .NET](https://www.microsoft.com/en-us/net) code and [CUDA](https://www.nvidia.com/en-gb/cuda/) extension is available.
LibSVM installation

• Download from: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
• Un-compress the folder
• Go to MATLAB subfolder
• Compile using make command (Apply for Linux and Mac users; Windows binaries are already built in windows folder)
• Copy binaries in the work directory
The magic commands (svmtrain, svmpredict)

```matlab
model = svmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']);

- training_label_vector:
  An m by 1 vector of training labels (type must be double).
- training_instance_matrix:
  An m by n matrix of m training instances with n features.
  It can be dense or sparse (type must be double).
- libsvm_options:
  A string of training options in the same format as that of LIBSVM.

[predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model [, 'libsvm_options']);

- testing_label_vector:
  An m by 1 vector of prediction labels. If labels of test
  data are unknown, simply use any random values. (type must be double)
- testing_instance_matrix:
  An m by n matrix of m testing instances with n features.
  It can be dense or sparse. (type must be double)
- model:
  The output of svmtrain.
- libsvm_options:
  A string of testing options in the same format as that of LIBSVM.
```
LibSVM options (svm-train)

options:
- `svm_type`: set type of SVM (default 0)
 - 0 -- C-SVC (multi-class classification)
 - 1 -- nu-SVC (multi-class classification)
 - 2 -- one-class SVM
 - 3 -- epsilon-SVR (regression)
 - 4 -- nu-SVR (regression)
- `kernel_type`: set type of kernel function (default 2)
 - 0 -- linear: u'*v
 - 1 -- polynomial: (gamma*u'*v + coef0)^degree
 - 2 -- radial basis function: exp(-gamma*|u-v|^2)
 - 3 -- sigmoid: tanh(gamma*u'*v + coef0)
 - 4 -- precomputed kernel (kernel values in training_set_file)
- `degree`: set degree in kernel function (default 3)
- `gamma`: set gamma in kernel function (default 1/num_features)
- `coef0`: set coef0 in kernel function (default 0)
- `cost`: set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
- `nu`: set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
- `epsilon`: set the epsilon in loss function of epsilon-SVR (default 0.1)
- `cache_size`: set cache memory size in MB (default 100)
- `epsilon`: set tolerance of termination criterion (default 0.001)
- `shrinking`: whether to use the shrinking heuristics (default 1)
- `probability_estimates`: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
- `weight`: set the parameter C of class i to weight*C, for C-SVC (default 1)
- `n`: n-fold cross validation mode
- `quiet`: quiet mode (no outputs)

The k in the -g option means the number of attributes in the input data.

option -v randomly splits the data into n parts and calculates cross validation accuracy/mean squared error on them.
LibSVM options (svm-predict)

'svm-predict' Usage

Usage: svm-predict [options] test_file model_file output_file
options:
-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported

model_file is the model file generated by svm-train.
test_file is the test data you want to predict.
svm-predict will produce output in the output_file.
Example 1. Linear SVM

% read the data set
[heart_scale_label, heart_scale_inst] = libsvmread(fullfile(dirData,'heart_scale'));
[N D] = size(heart_scale_inst);

% Determine the train and test index
trainIndex = zeros(N,1); trainIndex(1:200) = 1;
testIndex = zeros(N,1); testIndex(201:N) = 1;
trainData = heart_scale_inst(trainIndex==1,:);
trainLabel = heart_scale_label(trainIndex==1,:);
testData = heart_scale_inst(testIndex==1,:);
testLabel = heart_scale_label(testIndex==1,:);

% Train the SVM
model = svmtrain(trainLabel, trainData, '-c 1 -g 0.07 -b 1');
% Use the SVM model to classify the data
[predict_label, accuracy, prob_values] = svmpredict(testLabel, testData, model, '-b 1');
Example 2. Multi-Class SVM

% Train the SVM in one-vs-rest (OVR) mode
model = svmtrain(trainLabel, trainData, '-s 0 -t 2 -c 1.5 -h 1 -b 1');
% Classify samples using OVR model
[predict_label, accuracy, prob_values] = svmpredict(testLabel, testData, model, '-b 1')
fprintf('Accuracy = %g%%\n', accuracy * 100);