Adaboost for faces.
Material
Gonzalo Vaca-Castano
Adaboost for faces paper

Boosting

• Defines a classifier using an additive model:

\[F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + \ldots \]
Each data point has a class label: $y_t \in \{1, -1\}$ and a weight: $w_t = 1$

Boosting

- It is a sequential procedure:
Toy example

Weak learners from the family of lines

Each data point has a class label:
\[\gamma_t \in \{1, -1\} \]
and a weight:
\[w_t = 1 \]

\[h \Rightarrow p(\text{error}) = 0.5 \text{ it is at chance} \]

Slide Credits: Andras Ferencz
Toy example

This one seems to be the best

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\bullet) \\
-1 & (\circ)
\end{cases} \]

and a weight:

\[w_t = 1 \]

This is a ‘weak classifier’: It performs slightly better than chance.
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

Each data point has a class label:

\[y_t = \begin{cases}
+1 & (\bullet) \\
-1 & (\bigcirc)
\end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]

Slide Credits: Andras Ferencz
We set a new problem for which the previous weak classifier performs at chance again. Each data point has a class label:

\[y_t = \begin{cases} +1 & (\bullet) \\ -1 & (\bigcirc) \end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases} +1 & (\circ) \\ -1 & (\bullet) \end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
We set a new problem for which the previous weak classifier performs at chance again.

Each data point has a class label:

\[y_t = \begin{cases} +1 \ (\text{•}) \\ -1 \ (\circ) \end{cases} \]

We update the weights:

\[w_t \leftarrow w_t \exp\{-y_t H_t\} \]
The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.
AdaBoost Algorithm

Given: m examples \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m\)

For \(t = 1\) to \(T\)

1. Train learner \(h_t\) with min error \(\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]\)

2. Compute the hypothesis weight \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)\)

3. For each example \(i = 1\) to \(m\)

\[
D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
eq y_i \end{cases} \end{cases} e^{-\alpha_t} \text{ if } h_t(x_i) = y_i \\
 e^{\alpha_t} \text{ if } h_t(x_i) \neq y_i
\]

Output

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
\]

The goodness of \(h_t\) is calculated over \(D_t\) and the bad guesses.

The weight adapts. The bigger \(\varepsilon_t\) becomes the smaller \(\alpha_t\) becomes.

Boost example if incorrectly predicted.

\(Z_t\) is a normalization factor.

Linear combination of models.

Slide Credits: Andras Ferencz
Algorithm

- Given example images \((x_1, y_1), \ldots, (x_n, y_n)\) where \(y_i = 0, 1\) for negative and positive examples respectively.
- Initialize weights \(w_{1,i} = \frac{1}{2m}, \frac{1}{2l}\) for \(y_i = 0, 1\) respectively, where \(m\) and \(l\) are the number of negatives and positives respectively.
- For \(t = 1, \ldots, T\):
 1. Normalize the weights, \(w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{T} w_{t,j}}\)
 2. Select the best weak classifier with respect to the weighted error
 \[
 \epsilon_t = \min_{f, p, \theta} \sum_i w_i | h(x_i, f, p, \theta) - y_i |.
 \]
 See Section 3.1 for a discussion of an efficient implementation.
 3. Define \(h_t(x) = h(x, f_t, p_t, \theta_t)\) where \(f_t, p_t, \theta_t\) are the minimizers of \(\epsilon_t\).
 4. Update the weights:
 \[
 w_{t+1,i} = w_{t,i} \beta_t^{1-\epsilon_t}
 \]
 where \(\epsilon_t = 0\) if example \(x_i\) is classified correctly, \(\epsilon_t = 1\) otherwise, and \(\beta_t = \frac{\epsilon_t}{1-\epsilon_t}\).
- The final strong classifier is:
 \[
 C(x) = \begin{cases}
 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\
 0 & \text{otherwise}
 \end{cases}
 \]
 where \(\alpha_t = \log \frac{1}{\beta_t}\)

(h(x, f, p, \theta)) thus consists of a feature \((f)\), a threshold \((\theta)\) and a polarity \((p)\) indicating the direction of the inequality:

\[
 h(x, f, p, \theta) = \begin{cases}
 1 & \text{if } pf(x) < p\theta \\
 0 & \text{otherwise}
 \end{cases}
\]
Weak Classifiers

- 4 types of rectangular filters (24x24 picture)

Figure 1. Example rectangle features shown relative to the enclosing detection window. The sum of the pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles. Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a four-rectangle feature.
Step 2

The weak classifier selection algorithm proceeds as follows. For each feature, the examples are sorted based on feature value. The AdaBoost optimal threshold for that feature can then be computed in a single pass over this sorted list. For each element in the sorted list, four sums are maintained and evaluated: the total sum of positive example weights T^+, the total sum of negative example weights T^-, the sum of positive weights below the current example S^+ and the sum of negative weights below the current example S^-. The error for a threshold which splits the range between the current and previous example in the sorted list is:

$$e = \min \left(S^+ + (T^- - S^-), \; S^- + (T^+ - S^+) \right),$$
Step 2

Threshold level

Sorted Filter Output
Step 2

Threshold level

Sorted Filter Output
Step 2

Threshold level

Sorted Filter Output

T-
Step 2

Threshold level

Sorted Filter
Output

T+
Step 2

Threshold level

Sorted Filter Output

Errors
Step 2

\[e = \min \left(S^+ + (T^- - S^-), S^- + (T^+ - S^+) \right), \]
Step 2

\[e = \min \left(S^+ + (T^- - S^-), S^- + (T^+ - S^+) \right), \]
function TrainData = Boosting(PosData, NegData, T)

W=19; H=19;
np = size(PosDatafeat, 1);
nn = size(NegDatafeat, 1);

ys = [ones(np, 1); zeros(nn, 1)];
ws = [ones(np, 1)/(2*np); ones(nn, 1)/(2*nn)];

alphas = zeros(T, 1);
Thetas = zeros(T, 3);
feat = [PosDatafeat; NegDatafeat];

for t=1:T
 ws = ws / sum(ws);
 [theta, p, err] = LearnThreshClassifier(ws, feat, ys);
 [val, j] = min(err);
 e = err(j);
 beta = e/(1-e);
 hs = p(j).*feat(:,j) < p(j).*theta(j);
 wsu = (beta.^((1-abs(hs-ys))));
 Thetas(t,:) = [j, theta(j), p(j)];
 alphas(t) = log(1/beta);
 ws = ws .* wsu;
 disp(sprintf('Boosting iteration %d complete', t));
end

TrainData.alphas = alphas;
TrainData.Thetas = Thetas;
TrainData.featMat = PrepareFeatMat(PosData.featTypes(Thetas(:,1,:),W,H));
TrainData.featTypes = PosData.featTypes;
Train. Learn Classifier

```matlab
function [theta, p, err] = LearnThreshClassifier(ws, feat, ys)
    nof = size(feat, 2);
    theta = [];
    p = [];
    err = [];
    
    ysl = logical(ys);
    wspos = ws;
    wspos(~ysl) = 0;
    wsneg = ws;
    wsneg(ysl) = 0;
    
    Tp = sum(wspos);
    Tn = sum(wsneg);
    
    for i=1:nof
        fsi = feat(:,i);
        [fsis,idx] = sort(fsi);
        Spc = cumsum(wspos(idx));
        Snc = cumsum(wsneg(idx));
        
        [emin,eminInd] = min(min(Spc + (Tn - Snc),Snc + (Tp - Spc)));
        theta(i) = fsis(eminInd);
        
        p(i)=1;
        err(i) = sum(ws.*abs((p(i).*fsi<p(i).*theta(i)) - ys));
        
        etmp = sum(ws.*abs((-1.*fsi<-1.*theta(i)) - ys));
        if etmp < err(i)
            p(i)=-1;
            err(i) = etmp;
        end;
    end;
```
function newDet = DetectFace(TrainData, im, min_scale, max_scale)
W=19; H=19;
threshold = TrainData.thresh;
featMat = TrainData.featMat';
alphas = TrainData.alphas';
theta = TrainData.Thetas(:,2);
p = TrainData.Thetas(:,3);
pTheta = p.*theta;
STEP = .1;
SAMPLE_RATE = 1;
EDGE = 25;
sz = [W H];
im = double(im);
detections= [];
for s= min_scale:STEP:max_scale
 ims = imresize(im,s);
 for indY=EDGE :SAMPLE_RATE:size(ims,1) - EDGE
 for indX=EDGE:SAMPLE_RATE:size(ims,2) - EDGE
 limy = indY-floor(H/2):indY+floor(H/2);
 limx = indX-floor(W/2):indX+floor(W/2);
 imw = ims(limy,limx);
 m = mean(imw(:));
 stnd = std(imw(:));
 if stnd > 20
 imw = (imw-m)/stnd;
 fs = featMat * imw(:);
 Score = alphas*(p.*fs<pTheta);
 if Score>threshold
 scaleddetloc = [limy(1) limx(1) sz(1) sz(2) Score]./s;
 detections = [detections;scaleddetloc];
 end
 end
 end
end
end;