Animal Monitoring with Unmanned Aerial Vehicle-Aided Wireless Sensor Networks

Jun Xu, Gürkan Solmaz, Rouhollah Rahmatizadeh, Damla Turgut and Ladislau Bölöni

Department of Electrical Engineering and Computer Science
University of Central Florida - Orlando, FL

October 24, 2015
Outline

1 Introduction
 - Motivation & problem statement

2 Problem analysis
 - Clustering
 - Network modeling
 - Value of information

3 Proposed path planning approach
 - Markov decision process
 - Path planning process for UAV

4 Simulation study
 - Simulation setup and metrics
 - Demo display
 - Performance results

5 Conclusion

Jun Xu (UCF) LCN 2015 October 24, 2015 2 / 21
Outline

1. Introduction
 - Motivation & problem statement

2. Problem analysis
 - Clustering
 - Network modeling
 - Value of information

Jun Xu (UCF) LCN 2015 October 24, 2015 2 / 21
Outline

1 Introduction
 - Motivation & problem statement

2 Problem analysis
 - Clustering
 - Network modeling
 - Value of information

3 Proposed path planning approach
 - Markov decision process
 - Path planning process for UAV
Outline

1. Introduction
 - Motivation & problem statement

2. Problem analysis
 - Clustering
 - Network modeling
 - Value of information

3. Proposed path planning approach
 - Markov decision process
 - Path planning process for UAV

4. Simulation study
 - Simulation setup and metrics
 - Demo display
 - Performance results
Outline

1. Introduction
 - Motivation & problem statement

2. Problem analysis
 - Clustering
 - Network modeling
 - Value of information

3. Proposed path planning approach
 - Markov decision process
 - Path planning process for UAV

4. Simulation study
 - Simulation setup and metrics
 - Demo display
 - Performance results

5. Conclusion
Motivation

Animal monitoring have various goals:

- Tracking their migration paths
- Predict if specific endangered species exist

Goal of this application:

- Providing reliable animal appearance information in large-scale areas
- Do not using mounting devices & not affecting animal activities
Problem statement

How to find these animals?
- Sensors can not directly send data to remote base station
- How the sink (UAV) knows which sensors have the relevant information

How to use those sensed information?
- Latency between animal appearance and information being gathered
- How to quantify this information
Clustering

Real movement trajectories of 4 zebras in 3 days †
Wildlife animals are more likely to having activities in a small area

Clustering

Real movement trajectories of 4 zebras in 3 days

Wildlife animals are more likely to having activities in a small area

Network model

<table>
<thead>
<tr>
<th>s_0</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UAV</td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>s_5</td>
<td>s_6</td>
<td>s_7</td>
</tr>
<tr>
<td>Sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_8</td>
<td>s_9</td>
<td>s_{10}</td>
<td>s_{11}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{12}</td>
<td>s_{13}</td>
<td>s_{14}</td>
<td>s_{15}</td>
</tr>
</tbody>
</table>

- Cluster-heads are responsible for receiving data from other sensors and submitting data to the UAV.
- Single UAV communicates with cluster-heads.
Value of information

The value of information (VoI)†

- Sensed information has the highest value when event occurs
- Our goal is maximizing the VoI in the whole network

\[F_{\text{Vol}}(t) = Ae^{-Bt} \]

A: the initial value of the information
B: the decay speed of the VoI

Markov decision process model

5-tuple \(\{ S, A, P, R, \gamma \} \):

- \(S \) is the set of states (grids) in the network
- \(A \) is the set of possible actions that UAV can do
- \(P \) is the state transition probabilities
- \(R \) is the instant reward when the UAV enters one grid
- \(\gamma \in [0, 1) \) is the discount parameter
Markov decision process model

- Solved this MDP model by Q-learning
- 9 possible actions of S_4: 8 neighbors and staying itself
- $Q(s, a) = R(s) + \gamma \max_{a'} Q(s', a')$
- Instant reward $R(s)$, future potential reward $Q(s', a')$

Possible actions of S_4: {Northwest, North, Northeast, West, Stay, East, Southwest, South, Southeast}
Path planning flow chart

- **Exploitation**: deterministic grid selection by $Q(s, a)$
- **Exploration**: random grid selection
- ϵ: random selection probability

Start at s_i

- **Stochastic selection**
- **ϵ-Greedy policy**
- **Deterministic selection by Q value**

Exploitation

- Move to the selected s_{next}
- Updating information
Simulation setup

- **Movement traces of zebras:**
 - ZebraNet project †
 - 5 zebras in June 2005 at a $10km \times 10km$ area near Nanyuki, Kenya
 - 5682 GPS records in total
 - GPS sampling time interval: 1 minute

- **Definition of sensing events:**
 - If zebra switches grid, record the event
 - If zebra always stays in one grid, record every Δt time

Simulation setup

- Simulator:
 - Java-based discrete time simulator

- Performance metrics:
 - Value of information
 - Average message delay
 - Number of zebras encountered

- Approaches for comparison:
 - Greedy
 - Traveling salesman problem
 - Random
Simulation setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network size</td>
<td>10 km x 10 km</td>
</tr>
<tr>
<td>Number of grids (states)</td>
<td>16</td>
</tr>
<tr>
<td>Grid size</td>
<td>2500 m x 2500 m</td>
</tr>
<tr>
<td>Unit experimental time (round)</td>
<td>10 s</td>
</tr>
<tr>
<td>UAV speed</td>
<td>100 m/round</td>
</tr>
<tr>
<td>Decay speed of VoI (parameter B)</td>
<td>0.05</td>
</tr>
<tr>
<td>Radius r for direct observation</td>
<td>200 m</td>
</tr>
<tr>
<td>Initial reward $IR (\sigma, C_i, I_{dist}, I_{duration})$</td>
<td>10.0 (10.0, 1.0, 1.0, 1.0)</td>
</tr>
</tbody>
</table>
Demo display
Value of information

- MDP (Markov decision process)
- Greedy (Greedy total number of previous events)
- TSP (Traveling salesman problem)
- Random (Random selection from all grids)
Average message delays

- **TSP**: 0 deviation because fixed route
Number of zebras encountered

- MDP (Markov decision process)
- Greedy (Greedy total number of previous events)
- TSP (Traveling salesman problem)
- Random (Random selection from all grids)

Direct observation radius (r)
Performance stability

Results from 4 time experiments

Same parameters
Impact of exploration
Conclusion

- We focused on the animal monitoring in large area
- We proposed a MDP-based approach for UAV path planning
- The evaluation indicated significant improvement compared to Greedy, TSP and Random
- Future work:
 - Other species, other dataset
 - Multi-UAVs