Clustering Analysis

CAP5610: Machine Learning
Instructor: Guo-Jun Qi
Supervised VS. Unsupervised Learning Algorithms

• Supervised algorithms – training examples are labeled
 • Learning classifiers: KNN, (Naive) Bayes classifiers, SVM
 • Learning low-dimensional subspace: FDA

• Unsupervised algorithms – training examples are unlabeled
 • Learning low-dimensional subspace: PCA, Autoencoder
 • Today’s topic: Clustering analysis: grouping a set of objects into (overlapped/disjoint) partitions of similar ones
Clustering Analysis

• Objective: grouping a set of objects into (overlapped/disjoint) partitions of similar ones
How to measure similarity?

• Similar in semantics or similar in appearance
 • It is hard to define a universal similarity measurement
 • E.g., Visually these two images are similar, but semantically they are not.

• Pragmatically, we define similarity in terms of distance between feature vectors.
 • Euclidean distance
 • L1 distance
 • Manhattan distance
 • Etc.
K-means clustering

• Given a set of examples \(\{X_1, X_2, ..., X_n\} \), partition these \(n \) examples into \(k \) sets \(\{S_1, S_2, ..., S_k\} \), by minimizing the within-cluster sum of squares:

\[
\text{argmin} \sum_{i=1}^{k} \sum_{X_j \in S_i} \| X_j - \mu_i \|^2
\]

Where \(\mu_i \) is the mean of examples in set \(S_i \).
K-means clustering

• The decision variables associated with K-means clustering problem include
 • Assignment of each example to a cluster \(\{S_1, S_2, ..., S_K\} \)
 • Mean vectors \(\{\mu_i\} \) for each cluster

• Jointly optimization of these two sets of decision variables is NP-hard.
 • Heuristic method: K-means algorithm
 • Alternately updating the two sets of decision variables.
K-means: Step 1

• Randomly guess the cluster means
K-means: Step 2

• Assign each example to the nearest cluster mean
K-means: Step 3

• Update the estimates of cluster means based on current example assignment.
K-means: Step 3

• Reassign each example to the assignment.
K-means: Algorithms

• Step 1: randomly initialize the guess of cluster means
• Repeat
 • Step 2: assign each example to the closest cluster mean
 • Step 3: update the estimate of cluster means based on the current example assignments
• Until convergence (the cluster means and example assignments do not change too much)
Formally treatment of K-means

• Denote by $C(j)$ the assignment of example j to a cluster $C(j)$, then the sum of squared distance between examples and cluster means can be written as

$$\text{argmin} \sum_{i=1}^{k} \sum_{X_j \in S_i} \|X_j - \mu_i\|^2 = \sum_{j=1}^{n} \|X_j - \mu_{C(j)}\|^2$$
Optimal solution

• Alternately optimizing μ, C

$$\arg\min_{\mu, C} \sum_{j=1}^{n} \|X_j - \mu_{C(j)}\|^2$$

• Fix μ, the best assignment:

$$\arg\min_{C} \sum_{j=1}^{n} \|X_j - \mu_{C(j)}\|^2 = \sum_{j=1}^{n} \arg\min_{C(j)} \|X_j - \mu_{C(j)}\|^2$$

• It is exactly assigning each example to the closest cluster as in K-means.
Optimal solution

• Alternately optimizing μ, C

$$\arg\min_{\mu, C} \sum_{j=1}^{n} \| X_j - \mu_{C(j)} \|^2 = \sum_{i=1}^{K} \sum_{j:C(j)=i} \| X_j - \mu_i \|^2$$

• Fix C, the optimal means:

$$\arg\min_{\mu} \sum_{i=1}^{K} \sum_{j:C(j)=i} \| X_j - \mu_i \|^2 = \sum_{i=1}^{K} \arg\min_{\mu_i} \sum_{j:C(j)=i} \| X_j - \mu_i \|^2$$

• The best solution is obtained by setting μ_i to the mean of examples assigned to this cluster.
Expectation-Maximization

• K-means algorithm:
 • Expectation: Fix μ, find the assignment
 • “expectation” means to which cluster we expect to assign an example.
 • Maximization: Fix C, find the best mean for each cluster
 • “maximization” means we maximize the likelihood that all assigned examples belong to this cluster by setting a proper mean.

• We will see a generalization of EM to a probabilistic model.
Problems to be addressed

• K-means makes a hard assignment of an example to a cluster.
 • Ambiguity may exist when we assign an example
 • Soft assignment is preferred.
 • Directly characterizing the probability that an example belongs to a cluster
 • A distribution will be used to model each cluster, e.g., Gaussian
 • The whole distribution for all examples is a mixture of distributions for each cluster, i.e., a mixture distribution model
Convergence

• K-means algorithms can be guaranteed to converge.

Proof: In each step, K-means minimizes the objective function monotonically

\[\sum_{j=1}^{n} \left\| X_j - \mu_{c(j)} \right\|^2 \]

This generates a sequence of non-increasing objective values, which is lower bounded by zero. By basic calculus, this sequence surely converges.
Computation Complexity

• In each iteration,
 • It costs $O(Kn)$ to compute the distance between each of n examples and K cluster means
 • It costs $O(n)$ to update the cluster means by adding each example to one cluster
• Assume l iterations are done before terminating the algorithm, the computational complexity is $O(lkn)$
K-means algorithm

• The objective function optimized by k-means is not convex
 • It suffers from many local optima
 • It is sensitive to the initialization of mean vectors (seeds)
 • Bad seeds can result in poor convergence, or converge to bad clustering result.
Bad seeds
Bad seeds
Seed choice

• Choosing good seeds using heuristics
 • Choosing seeds which are least similar to each other
 • Initialize seeds multiple times and choose the results with least objective value (least sum of squares between cluster means and examples)
 • Initialize with the results from another methods
Applications

• Social community discovery – grouping users with the similar profiles
• Image segmentation – grouping pixels with similar values which are spatially close to one another
• Human genetic clustering – clustering similar genetic data to find population structures
• Marketing – grouping customers into market segments based on surveys, sales data, and test panels.
• Etc...
Evaluation metrics

• Internal metrics
 • High intra-cluster similarity and low inter-cluster similarity

• External metrics
 • Assume we have labeled examples
 • Purity – each cluster is assigned to the class with the most frequent label in this cluster, and purity measures the portion of correctly assigned examples.

\[
\text{purity} = \frac{3 + 3}{9}
\]
Evaluation metrics

• External metrics
 • Rand Index – how good the decision made by clusters in terms of the labels
 • For each pair of examples, define
 • True positive (TP): two examples in the same cluster are assigned the same label
 • True negative (TN): two examples in different clusters are assigned the different labels
 • False positive (FP): two examples in the same cluster are assigned the different labels
 • False negative (FN): two examples in the different clusters are assigned the same label

\[
RI = \frac{TP + TN}{TP + FP + FN + TN}
\]
Summary

• Clustering analysis aims to group similar objects into a set of clusters

• K-means is one of most popular methods
 • Implementing a heuristic EM method to optimize sum of squared distance between cluster means and examples.
 • Guaranteed to converge, but not always converge to global convergence.
 • Sensitive to initialization

• Extension of EM to soft assignment, handling mixture distribution model
Mid-term & project

• Tentatively it will be on Oct. 30 (in class)
 • The exam will cover the content until clustering analysis.
 • A mid-term review will be made before the exam (TBA).

• From now on, you can send me your project proposal.
 • Report will be due by Nov 20.