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ABSTRACT
Activity recognition is a key component for creating intel-
ligent, multi-agent systems. Intrinsically, activity recogni-
tion is a temporal classification problem. In this paper,
we compare two models for temporal classification: hidden
Markov models (HMMs), which have long been applied to
the activity recognition problem, and conditional random
fields (CRFs). CRFs are discriminative models for label-
ing sequences. They condition on the entire observation
sequence, which avoids the need for independence assump-
tions between observations. Conditioning on the observa-
tions vastly expands the set of features that can be incorpo-
rated into the model without violating its assumptions. Us-
ing data from a simulated robot tag domain, chosen because
it is multi-agent and produces complex interactions between
observations, we explore the differences in performance be-
tween the discriminatively trained CRF and the generative
HMM. Additionally, we examine the effect of incorporating
features which violate independence assumptions between
observations; such features are typically necessary for high
classification accuracy. We find that the discriminatively
trained CRF performs as well as or better than an HMM
even when the model features do not violate the indepen-
dence assumptions of the HMM. In cases where features de-
pend on observations from many time steps, we confirm that
CRFs are robust against any degradation in performance.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Machine Learn-
ing

General Terms
Algorithms, Design, Performance
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Conditional Random Fields (CRFs), Activity Recognition,
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1. INTRODUCTION
In order to act effectively in the presence of others, an

agent requires information about the other actors in its en-
vironment. Often, these other agents are either neutral, e.g.
shoppers oblivious to a security camera, or hostile, e.g. an
opposing team in robot soccer [3], towards the agent. In
such cases, when an agent cannot rely on others to com-
municate their goals and behaviors, it must rely on activity
recognition to form beliefs from its observations over time.
It follows then that activity recognition is a temporal clas-
sification problem; an agent must generate a sequence of
labels, identifying the roles or behaviors of the other agents,
given a sequence of observations.

In this paper, we compare two models for temporal clas-
sification: hidden Markov models (HMMs) [9] and condi-
tional random fields (CRFs) [5]. Hidden Markov models
have a long history of use in activity recognition, e.g. [2, 11,
14], while conditional random fields, a more recent model,
are just now expanding outside of their original natural lan-
guage processing context into a range of areas such as image
processing [4], gesture recognition [13], motion tracking [10],
and activity recognition [6]. Studying CRFs and their ap-
plication to this last domain is the focus of this paper.

Achieving high classification accuracy in complex tasks,
such as activity recognition, often requires the use of do-
main knowledge to construct sophisticated features of the
input observations. Such features typically incorporate in-
formation from more than a single time step. Features that
span time steps violate the independence assumptions of the
HMM, but not those of the CRF. We investigate whether
or not this affects classification accuracy in either model.
In addition to considering features over multiple time steps,
we also examine features that link state transitions in the
model directly to observations. Such features are difficult
to represent in an HMM due to the way it factorizes prob-
abilities. We investigate the utility of such features to see
whether this difference in representational power can affect
classification accuracy in practice.

In addition to considering features which violate the in-
dependence assumptions of an HMM or features that are
difficult to represent in an HMM, we also consider the dif-
ference between discriminative and generative models for
activity recognition. Specifically, we investigate the case
where a CRF and an HMM are constructed using identi-
cal features. Results in [8], which examines discriminative-
generative pairs of models using logistic regression and naive
Bayes classifiers, suggest that a CRF should provide higher
classification accuracy than an HMM, even when both mod-



Figure 1: A scale representation of the robot tag
domain. A single seeker robot (black circle) tries to
tag one of the other two players by approaching to
within 4 cm. In a simplified variant of the domain,
the non-seeker robots follow an hourglass pattern.
In an unconstrained variant, the non-seeker robots
choose random target points in the playing area and
navigate to those points.

els contain identical features. This is because CRFs and
HMMs can be viewed as a discriminative-generative pair of
models; later, we will provide the construction for converting
an HMM into a CRF. And, as [8] demonstrated, discrimina-
tive models tend to have lower asymptotic error rates than
their generative counterparts.

In the next section, we introduce the simulated robot tag
domain that we used in our experiments. We motivate the
design and properties of the tag domain in the context of
activity recognition as a general problem. Following our
domain description, we present an overview of conditional
random fields, again in the context of activity recognition,
before presenting experimental results..

2. THE ROBOT TAG DOMAIN
We created a simulation domain inspired by the children’s

game of Tag. In this domain, three robots move about on a
playing field. Two of these robots take on passive roles where
they navigate to a series of points on the field, oblivious to
the actions of the other robots. The third robot takes an
active role, which we call being the seeker. The seeker robot
attempts to tag its closest neighbor and thereby transfer
the seeker role to the tagged robot. Tag, in our domain,
simply means approach within 4 cm of the target robot. To
provide a sense of scale, the playing area is 3.5 by 4 meters
in size and the robots are 20 cm in diameter. The domain
is illustrated in figure 1.

We designed the robot tag domain to capture several real
aspects of the activity recognition problem. The primary
property of the domain is that we expect models built around
the raw observations, i.e. the positions of the three robots,
to perform poorly. On the other hand, we expect models

built around carefully crafted feature functions, which take
the raw observations as inputs, to perform well. The need for
sophisticated features that distill meaning from the stream
of raw sensor readings is a general requirement and applies
to most activity recognition problems.

The robot tag domain, again like many activity recogni-
tion problems, has non-Markovian state transition dynam-
ics. The role of seeker does not pass between the robots
according to a multinomial distribution that is sampled at
each time step. Instead, a single robot will remain the seeker
for a period of time until it tags another robot. That is, the
system state cannot transition until specific constraints are
met. The constraints vary widely across activity recogni-
tion tasks, but often activities do have termination criteria.
Models can exploit the ability to recognize these termination
conditions in order to improve classification accuracy.

The final property of activity recognition that entered into
the domain design is simply the fact that some activities
are easier to recognize than others. As we will describe,
some portions of the seeker’s behavior are much easier to
capture with a model than others. Specifically, when a robot
is first tagged, it pauses in place for a moment before it
begins to chase the other robots. It is trivial to recognize
this initial paused state. However, once the seeker begins to
pursue a target, it becomes much harder to identify; when
the seeker is moving, the observations reveal three robots all
executing “Navigate-to-point” behaviors. It just happens
that the seeker chooses the current position of its target at
each time step rather than a fixed point on the field.

In addition to creating easy and difficult portions of the
seeker’s behavior to identify, we also created two variants
of the tag domain, one simple and one more complex, by
giving the non-seeker robots two different strategies to use
when selecting target points on the field. In the first variant,
which we call the hourglass variant, the robots choose points
so that they trace out an hourglass pattern in the arena (see
figure 1). Each robot chooses the next point in the pattern,
navigates to that point, and then selects a new point as its
target. The only variation is when the seeker robot is located
in the target quadrant of the playing field. In these cases,
the robot chooses to move vertically rather than following
the pattern in the correct order. However, once a target
point has been picked, the robot navigates to that point
regardless of the seeker’s position.

With the second point selection strategy, which we call the
unconstrained variant, the non-seeker robots choose random
points anywhere on the playing field. Although we say this
variant is unconstrained, target points that fall within 1 me-
ter of the seeker will be rejected and a new random target
picked until a suitable point is found. However, since the
seeker moves, over time, any point in the player area may
be chosen as a target. Once the target is chosen, the robots
navigate to that position regardless of seeker position and
only choose a new target once they have reached their des-
tination.

As previously stated, when a robot is tagged (when the
seeker approaches within 4 cm of it) and assumes the seeker
role, it pauses in place for 5 seconds. This pause allows the
previous seeker to move away rather than immediately being
tagged in return.

3. CONDITIONAL RANDOM FIELDS
Conditional random fields are undirected graphical mod-



Figure 2: Left: A graphical model view of a hid-
den Markov model. The shaded nodes correspond
to the observations x1, x2, ..., xT . The clear nodes cor-
respond to the label variables y1, y2, ..., yT . Right: A
graphical model view of a conditional random field.
The single, large shaded node corresponds to the en-
tire observation sequence X. As in the HMM, the
clear nodes correspond to the label variables.

els that compactly represent the conditional probability of
a particular label sequence, Y , given a sequence of observa-
tions, X; succinctly, CRFs model P (Y |X). Modeling the
conditional probability of the label sequence rather than
the joint probability of both the labels and observations
P (X,Y ), as done by hidden Markov models, allows CRFs
to incorporate complex features of the observation sequence
X without violating the independence assumptions of the
model. The graphical model representations of an HMM
and a CRF makes this difference explicit.

Figure 2 shows a hidden Markov model and a conditional
random field as graphical models. The HMM models the
joint probability P (X,Y ). To make inference in this joint
model tractable, the HMM treats the observations as con-
ditionally independent given the state labels. The condi-
tional random field represents a conditional distribution of
a Markov random field. The Markov random field repre-
sents the joint distribution over both X and Y , but the CRF
conditions on X and therefore does not require any indepen-
dence assumptions between the observation variables in X
for tractable inference. When computing the probability of
a single label yt, the CRF can draw on the value of any ob-
servation from the entire sequence X without violating the
assumptions of the model.

While it does eliminate the independence assumptions be-
tween the observations, the conditional random field main-
tains the same first order Markov assumptions as a hidden
Markov model makes over labels. That is, conditioned on
X, past labels are independent from future labels given the
present label. As a result, inference in a CRF with such a
linear chain of labels can be performed with the same time
complexity as HMM inference, although training a CRF
does require significantly more computation than training
an HMM.

The graphical model representation of HMMs and CRFs
clearly illustrates the assumptions made in each model to
enable tractable inference. This graphical view also reveals
the structure of the computation that must take place to
compute P (X,Y ) or P (Y |X) in an HMM or CRF respec-
tively. In the case of an HMM, the joint probability of the
sequence factorizes into pairs of terms, one term correspond-
ing to pairs of labels and a second term for each observation
with its parent label. In other words:

P (X,Y ) =

TY
t=1

P (yt|yt−1) · P (xt|yt)

This equation follows from the familiar rules of Bayesian

networks where distributions are encoded as products of
conditional distributions; P (V ) =

Q
v∈V P (v|parents(v)).

Undirected graphical models provide no such notion of par-
ents and children. To compute P (Y |X) in a CRF, we talk
in terms of cliques1 and clique potentials rather than the
product of conditional distributions as in a directed model.

The probability of a variable configuration in an undi-
rected graph is proportional to the product of a series of
non-negative potential functions, with one potential func-
tion for each clique of the graph. Intuitively, each poten-
tial function computes a value analogous to the probabil-
ity that the variables in its corresponding clique clique take
on a given configuration. The Hammersley-Clifford The-
orem proves that such a composition of clique potentials
produces a distribution that obeys the conditional indepen-
dence assumptions encoded by the graph structure [1]. In
other words, the probability of a variable configuration in
an undirected graph is:

P (V ) =
1

Z

Y
c∈cliques(V )

ψ(c)

where Z is a normalization term which guarantees that the
distribution sums to one. Z can be computed exactly by
summing over all possible configurations of V .

Returning to the specific case of conditional random fields,
the cliques in a CRF consist of an edge between yt−1 and
yt as well as the edges from those two labels to the set of
observations X. As a result, CRFs represent the conditional
probability as:

P (Y |X) =
1

Z

TY
t=1

ψ(t, yt−1, yt, X)

This factorization follows directly from the properties of
undirected graphical models and the Hammersley-Clifford
Theorem. The definition of a conditional random field also
specifies a specific form for the clique potentials ψ, namely
that each potential takes the form ψ(t, yt−1, yt, X) = exp(w ·
f(t, yt−1, yt, X)), yielding the following functional form:

P (Y |X) =
1

Z

TY
t=1

exp(w · f(t, yt−1, yt, X)

Z =
X
Y

TY
t=1

exp(w · f(t, yt−1, yt, X)

where w is a set of weights. These weights are the parame-
ters we fit when learning with the model. The weights are
multiplied by a vector of computed features f(t, yt−1, yt, X),
where the features are fixed functions designed to capture
useful domain information.

It is worth noting that while the normalization constant
Z involves summing over exponentially many sequences, for
the case of linear chain CRFs, which make a first order
Markov assumption between labels, this quantity can be
computed efficiently via dynamic programming. This com-
putation is more fully described in [15].

3.1 Training CRFs
Conditional random fields are commonly trained by max-

imizing the conditional likelihood of a labeled training set
to estimate the weight vector w. As is usually the case with

1A clique is a fully connected subgraph.



maximum likelihood training, it is more convenient to max-
imize the log likelihood, which, along with its gradient, is:

`(Y |X) =

TX
t=1

w · f(t, yt−1, yt, X)− log(Z)

d`

dwi
=

TX
t=1

fi(t, yt−1, yt, X)−
X
Y

P (Y |X) · fi(t, yt−1, yt, X)

The functional form of the gradient supplies intuition about
the model. The gradient will be equal to zero at the max-
imum likelihood solution. In order for this to be true, the
empirical sum of each feature - the expected value of the fea-
ture according to the training set - must equal the expected
value of that same feature under the model. Also of note,
the gradient computation involves an exponential sum over
all possible sequences; again, there is an efficient dynamic
programming algorithm that computes this sum when a first
order Markov assumption on the labels is made.

As for training, given a function and its gradient, train-
ing the model becomes a matter of numerical optimization.
In the case of CRFs, the objective function is convex and
first order methods, such as gradient ascent are directly ap-
plicable, although in practice more efficient algorithms such
as conjugate gradient offer better performance. In addi-
tion to first order methods, an approximate second order
method, Limited Memory BFGS [7], has also been used suc-
cessfully [16, 12].

3.2 From HMM to CRF
In this section, we describe how to translate a hidden

Markov model into the feature functions and weights of a
conditional random field. This transformation illustrates
that CRFs and HMMs form a discriminative-generative pair
and also provides intuition about how feature functions can
encode domain information such as state transition proba-
bilities using the natural parameterizations of the exponen-
tial family of models.

Our goal is to convert:

TY
t=1

P (yt−1|yt) · P (xt|yt) =⇒
TY

t=1

exp(w · f(t, yt−1, yt, X)

We will then normalize the latter of these expressions to
form a proper conditional distribution that sums to one.
This conversion is made easier by first noticing that both
models involve a product over t and second that the poten-
tial function in the CRF factors into separate terms for each
feature as follows:

Q
i exp(wi ·fi) = exp(w1 ·f1) · ... ·exp(wT ·

fT ) Because the clique potential factors in this fashion, we
can separately represent individual terms in the HMM with
single features or small groups of features in the CRF.

The first terms that we consider are the multinomial dis-
tributions for the transition model P (yt|yt−1) and the obser-
vation model P (xt|yt) for discrete observations. To incor-
porate these distributions into our exponential model, we
introduce features, one for each possible transition and one
for each pairing of xt and yt that take the following form:

fi,j(t, yt−1, yt, X) = I(yt−1 = i) · I(yt = j)

fs,v(t, yt−1, yt, X) = I(yt = s) · I(xt = v)

I represents the indicator function and takes the value 1 if
its argument evaluates to true and 0 otherwise. Each feature

has an associated weight which is simply the logarithm of
the probability from the multinomial distribution, i.e.:

exp(wi,j · fi,j) = P (yt = j|yt−1 = i)

wi,j · fi,j = log(P (yt = j|yt−1 = i))

wi,j = log(P (yt = j|yt−1 = i))

Continuous features may be incorporated in a similar fash-
ion. Assuming that observations are modeled as univariate
Gaussian distributions, features and weights corresponding
the the sufficient statistics for a Gaussian must be added
to the model. The weight calculation is analogous to the
calculation for multinomial distributions above:

exp(~w · ~f) =
1√
πσ2

· exp(− (x− µ)2

2 · σ2
)

exp(~w · ~f) =
1√
πσ2

· exp( −x
2

2 · σ2
) · exp(x · µ

σ
) · exp( −µ

2

2 · σ2
)

~w · ~f =
−1

2 · σ2
· x2 +

µ

σ
· x+

„
−µ2

2 · σ2
− log(

√
πσ2)

«
· 1

We find ourselves with the sufficient statistics of a Gaussian
and a constant term that will be absorbed into the nor-
malization constant. Correspondingly, we add the following
features to the model:

f0,j = I(yt = j) · 1
f1,j = I(yt = j) · xt

f2,j = I(yt = j) · (xt)
2

3.3 A Note about Normalization
Training a CRF amounts to enforcing the moment con-

ditions that the empirical and expected sufficient statistics
agree. This can be seen from the gradient of `(Y |X):

d`

dwi
=

TX
t=1

fi(t, yt−1, yt, X)−
X
Y

P (Y |X) · fi(t, yt−1, yt, X)

which will, of course, be zero at the maximum. At this
point, the empirical sum of each feature, the first term, is
equal to the expected sum of that feature under the model.
With binary features that occur with approximately equal
frequency in the training data, each component of the gra-
dient will make a similar contribution to the over all mag-
nitude of the gradient. In other words, the search direction
in the optimization algorithm will not be dominated by a
single feature.

When features take on continuous values, it is common for
their empirical sums in the training set to vary significantly.
This imbalance can cause optimization algorithms, such as
conjugate gradient, to converge slowly or not at all. In such
cases, it is important to normalize the features to be zero
mean and have a variance of one. Intuitively, this normal-
ization puts all of the features on equal footing during the
optimization so that features with large values do not create
a poorly scaled objective function.

4. EXPERIMENTS
In this section, we first present the notation we use to

describe the feature functions that we use with the CRF
and HMM and then present experimental results from the
robot tag domain.



4.1 Notation
In the robot tag domain, we wish to identify which robot is

the seeker at each time step of the simulation. We will refer
to the ID of the seeker at time t as the label yt and define the
set of labels for the entire sequence Y = {y1, y2, ..., yT }. Sim-
ilarly, we define the input observations X = {x1, x2, ..., xT }
where xt is a vector of the observations from time step t.
In the tag domain, the observation vector contains the two
dimensional position of each robot in the environment; in
other words, the position of the robot in the Cartesian plane,
but not its orientation.

We use the following notation when describing the fea-
tures used by the models: ~pr,t refers to the position of robot
r in the two dimensional environment at time t. Position
values are available directly from the observation xt at each
time step. Positions are measured in millimeters and the
origin (0, 0) corresponds to the center of the environment.
We also use ~vr,t = (~pr,t−~pr,t−1) ·dt to refer to the estimated
velocity of robot r at time t.

4.2 Results
We generated experimental data from both the hourglass

and the unconstrained tag domains. This data was gener-
ated from a physics-based simulator for holonomic robots
that included realistic acceleration and velocity constraints
on the robots. We generated training and test sets that
were each approximately 20 minutes in length. Since the
simulator operates at a rate of 60 hz, this means that each
sequence contained more than 70,000 observation vectors,
each labeled with the identity of the seeker at that time
step. The observation vectors themselves consisted of three
two-dimensional positions, one for each robot. These posi-
tions form the basis of the features passed to the models for
classification.

The goal of our experiments was to compare HMMs and
CRFs using identical features in each model. Features in a
conditional random field are functions that take the form
f(t, yt−1, yt, X). It is difficult to use these functions di-
rectly as input to an HMM due to the presence of yt−1

in the feature definitions. Because of this difficulty, we
dropped the yt−1 terms of functions when constructing the
HMM observation model and instead had the HMM model
P (g(t,X)|yt), where g(t,X) is the portion of the CRF’s fea-
ture function that does not depend on either yt−1 or yt. We
used a Gaussian observation model in the HMM where each
feature was treated independently from the other features.

In all experiments, the CRF included intercept features
(f = I(yt = j)) as well as transition features (f = I(yt−1 =
i) · f(yt = j)) as a base model. We added more specialized
features on top of these. Because the HMM’s transition
model and Gaussian observation model provide equivalent
functionality, these features were not passed to the HMM as
observations.

4.2.1 Raw Positions Only
In the initial set of experiments, we trained the HMM and

CRF on the raw positions of each robot; in other words, the
models were given xt as input at each time step. The goal of
these experiments was to verify that some sort of computed
features are indeed required for reasonable classification ac-
curacy.

To complement the HMM’s Gaussian observation model,
the CRF included features for xt[k] and (xt[k])

2 for each of

the k features of xt. Taken with the intercept features in the
CRF, this provided the sufficient statistics for a Gaussian
observation model. This choice of features makes the CRF
a discriminatively trained HMM. Concretely, we added the
following features to the CRF:

fj,k = I(yt = j) · xt[k]

fj,k = I(yt = j) · xt[k]
2

The results in table 1 show two things. First, the raw ob-
servations by themselves do not provide enough information
for either model to perform well. In the case of the hour-
glass domain, the problem is simple enough that the CRF
performs far better than the baseline performance achiev-
able by random guessing (approximately 33%). For this
simple domain, at least, there is an advantage to training
the model discriminatively as the CRF does better than the
HMM, although this advantage seems to disappear with the
more complex, unconstrained data set where both models
perform poorly.

4.2.2 Velocities
The poor performance resulting from training models on

the raw locations of the robots suggests that additional fea-
tures, which reflect domain knowledge about the classifica-
tion task, are required for high classification accuracy. The
most obvious such features are the velocities of the robots,
which can be estimated by subtracting adjacent pairs of xt

observations. As domain experts, we know that velocity is
an informative feature because the seeker robot pauses in
place for five seconds when it is first tagged. As such, we
introduced the following features into the CRF:

fr,j = I(yt = j) · ‖~vr,t‖
fr,j = I(yt = j) · ‖~vr,t‖2

As table 1 shows, simply providing the models with robot
velocities rather than raw positions causes a dramatic im-
provement in classification accuracy.

4.2.3 Velocity Thresholds
Incorporating velocity information into the models greatly

improved accuracy. One obvious reason for this is the five
second pause the seeker makes when first tagged. Rather
than feeding raw velocities into the models, we constructed
features to test if the velocity is below a certain threshold for
a single time step or for a series of consecutive time steps.
Such features more clearly capture the notion of a stopped
or stopping robot. As a natural complement to testing if
a robot’s velocity is below a threshold, it makes intuitive
sense to test if the robot’s velocity is above a threshold as
well. This second form of feature will be correlated with
non-seeker robots as well as the seeker when it has finished
pausing after first being tagged. The particular features
used took the form:

fr,j(k,w) = I(yt = j) ·
tY

i=t−w+1

I(‖~vr,i‖ ≤ k)

fr,j(k,w) = I(yt = j) ·
tY

i=t−w+1

I(‖~vr,i‖ > k)

In our experiments, we chose the velocity threshold k to
be 20% of the robots’ maximum velocity.



Hourglass Unconstrained
Features HMM Acc. CRF Acc. `(Y |X) HMM Acc. CRF Acc. `(Y |X)
Positions 33.1 53.6 -959.7 37.1 37.8 -1354.5
Velocities 68.4 89.4 -717.1 55.7 70.4 -1206.5
Velocity Thresholds

W = 1
60

th sec. 62.5 71.2 -818.0 46.8 58.6 -1148.6
W = 0.1 sec. 63.0 73.9 -784.3 46.0 62.4 -1099.2
W = 0.5 sec. 63.6 80.6 -708.8 68.9 71.9 -983.1
W = 1.0 sec. 60.2 83.1 -721.8 67.8 75.3 -980.9
W = 1.5 sec. 56.9 85.5 -731.7 68.8 77.8 -1004.7
W = 2.0 sec. 53.7 87.1 -751.1 72.1 77.3 -1036.3

Chasing 75.8 95.4 -622.3 65.5 80.4 -1058.3
Distance (U) 46.6 49.5 -779.7 43.5 42.3 -604.4
Distance (N) 46.6 49.9 -200.6 43.5 58.0 -223.4
Distance & Chasing (U) 75.6 99.3 -90.6 65.8 93.9 -181.8
Distance & Chasing (N) 75.6 99.3 -115.3 65.8 97.6 -112.2
Many Features 72.4 98.1 -172.2 63.4 98.5 -178.9
Redundant Features 72.4 95.7 -509.3 52.7 93.8 -6432.3

Table 1: CRF and HMM accuracy for identifying the seeker in the simplified hourglass and unconstrained
tag domains. (U) and (N) indicate that the binary distance threshold features were either unnormalized or
normalized in the corresponding trials.

In addition to testing the effectiveness of incorporating
specific domain knowledge into the models, these velocity
thresholds allow us to perform another test as well; hid-
den Markov models assume that observations are indepen-
dent given their labels. Creating features from overlapping
portions of the observation sequence X, invalidates the as-
sumptions of the model. An HMM with such overlapping
features is no longer a proper generative model and the likeli-
hood function for the HMM is no longer correct due to over
counting of the evidence. By testing the HMM and CRF
with differently sized windows, we can test how much, if
at all, violating the independence assumptions of the HMM
harms classification accuracy.

The results for the CRF in table 1 are unambiguous. The
conditional random field becomes more accurate as the size
of the window is increased. Incorporating information from
many different time steps into feature functions does not
violate any of the independence assumptions made by the
CRF.

The HMM results are less clear cut. With the hourglass
data set, the accuracy of the HMM decreases as the window
size is increased, perhaps due to the increasingly severe vi-
olation of the independence assumptions of that model. In
contrast, HMM performance increases as the window size is
increased with the more complex, unconstrained data set.
It is not clear why performance suffers with larger window
sizes on the simple dataset but then improves on the more
complex data.

4.2.4 Chasing Features
The velocity threshold features showed that using domain

knowledge to create features can improve model accuracy.
Aside from the seeker pausing in place after being tagged,
the other defining characteristic of the seeker role is that
the seeker chases other robots. To capture this property of
the tag domain, we created a “chasing” feature to capture
whether each robot was moving towards one of the other
robots. This feature computes the cosine of the angle be-

tween a robot’s velocity and the position of its nearest team-
mate, where r1 is the potential seeker and r2 is its closest
neighbor:

fr1,r2,j = I(yt = j)· 1

‖~pr2,t − ~pr1,t‖
·(~pr2,t−~pr1,t)·

1

‖~vr1,t‖
·~vr1,t

As with the velocity threshold functions, incorporating
domain knowledge in the form of feature functions improves
accuracy. Table 1 shows that classification accuracy in the
hourglass domain breaks 95% for the first time while accu-
racy in the unconstrained domain breaks 80% for the first
time.

Up until this point, we have been creating features that
can be incorporated into both conditional random fields and
hidden Markov models. Some of these features, such as the
velocity thresholds, broke independence assumptions made
by the HMM, but it was clear how to add them to the model
in spite of this. Now we turn our attention to a class of
features that can be represented in a CRF, but not in an
HMM because the HMM splits yt−1 and xt into separate
factors.

4.2.5 Distance Thresholds
Activity recognition in the game of tag is a matter of

detecting transitions. In one time step, robot 1 is the seeker.
During the next time step, robot 1 approaches close enough
to tag a different robot and that new robot becomes the
seeker. We are interested in detecting the points where the
seeker role is passed between players.

By looking at the distances between pairs of robots over a
series of adjacent time steps, we can create features to detect
when a hand off of the seeker role may have occurred. At
first, this simply appears to be a matter of tracking whenever
two robots are in close proximity and having a feature act
as a flag at these points, with one flag for each pair of robots
that could be involved in the transaction.

However, there are many time steps when robots will be
close to each other and no hand off will take place; when a



robot is first tagged, it halts in place. It takes the former
seeker time to deaccelerate and move away from the newly
created seeker. During this time, both robots will be within
the threshold distance, although no hand off is possible. In
other words, it is only possible for a hand off to occur dur-
ing the first frame that two robots are within the threshold
distance.

A second complication arises because the execution order
of the robot behaviors is not fixed in the simulator. In some
situations, the non-seeker will close the gap between itself
and the seeker and in others the seeker will close the gap
with its action. Depending on which order these events take
place, the hand off of the seeker role can occur in either
the first time step when the robots are below the threshold
distance or during the second time step. Accounting for
both possible times when a hand off could have occurred,
our distance threshold feature takes the form:

fr1,r2,i,j = I(yt−1 = i) · I(yt = j)·
I(distt(r1, r2) ≤ k ∨ distt−1(r1, r2) ≤ k)·

I(distt−2(r1, r2) > k)

We also include an inverted version of the above features
to indicate situations where it would be impossible for a
transition to have occurred:

fr1,r2,i,j = I(yt−1 = i) · I(yt = j)·
I(distt(r1, r2) > k ∧ distt−1(r1, r2) > k)

The model is able to learn negative weights to make label
sequences Y in which such transitions occur less likely than
sequences that lack forbidden state transitions.

The results in table 1 are somewhat surprising. These
distance threshold based state transitions exactly capture
the underlying dynamics of the process that generated the
data, yet using only these features results in lackluster per-
formance. The first set of results, labeled “Distance (U)”,
show what happens when the feature values are not normal-
ized to have mean zero and a variance of one. After all, such
normalization is rarely necessary with binary features.

However, consider how often two robots will first approach
close enough together for a tag event to take place. These
are the only situations where the distance threshold features
will take on a non-zero value. This situation happens ap-
proximately 200 times in the twenty minute training set.
Now consider how often the features corresponding to self-
transitions take on a non-zero value. One of these features
fires for virtually each of the roughly 70, 000 time steps in
the training set. The expected value of the regular transi-
tion features is much larger than the expected value of the
distance threshold features. Any difference in the empiri-
cal value of the regular transitions and their expected value
under the model will dominate the function gradient during
optimization.

Rather than eliminating the regular transition features,
which would leave the optimizer stranded in a plateau and
unable to make any progress, we normalize the distance
thresholded transitions. Normalizing the distance threshold
features produces no appreciable change in the accuracy in
the hourglass domain and the accuracy in the unconstrained
domain improves slightly. However, there is a major differ-
ence in the log likelihood of the test set for both domains,
so clearly the model achieves a better fit on the test set

even if this improvement is not enough to greatly change
the accuracy of the models.

4.2.6 Distance Thresholds with Chasing Features
A natural question that arises is whether or not the dis-

tance threshold features are capable of increasing the ac-
curacy of the CRF. In theory, they perfectly capture the
characteristics of the domain, but in practice training the
model with only these features is difficult. As a test, we
combined the distance threshold features with the chasing
features to see if the combination of the features together
would out perform either set of features on its own.

As the results in table 1 illustrate, there is indeed a syn-
ergistic effect between the two feature sets. One set of fea-
tures, the chasing features, captures the behavior of the
seeker when it is moving. The other set, the distance thresh-
old features, captures when the seeker role transitions from
one robot to another. The resulting models exhibit higher
log likelihoods on the test set as well as, when the distance
thresholds are normalized, better accuracies than any other
features tried thus far.

4.2.7 Many Features
In the final set of experiments, we examined how the mod-

els perform when all of the previously discussed features
were used at the same time. In the case of the windowed
velocity thresholds, only a single threshold corresponding to
a window size of 1 was used to avoid deliberately breaking
the independence assumptions of the HMM.

As a second experiment, we included all of these “helpful”
features, as well as redundant features to test how vulnerable
the models are to over fitting. The extra features we added
were the raw position observations, the change in distance
between each robot and its closest neighbor, each robots
vx and vy velocity components, and a series of dot prod-
ucts along each robots trajectory to measure how linearly
the robot was moving as non-seeker robots tend to travel in
straight lines. While all of these additional features poten-
tially include information about the domain, this informa-
tion is either provided by the existing features or somewhat
dubious in quality.

The results in table 1 show an initial increase in accuracy
for the CRF when the first collection of features are added
to the model and then a decrease with the addition of redun-
dant features on the unconstrained data set. On the hour-
glass dataset, even the addition of the first set of features
lowers the final accuracy of the model, probably because of
over fitting. Over fitting reduces accuracy immediately with
the simple data set but only with the addition of redundant
features for the more complex data. The degree of over fit-
ting is especially evident from the large decrease in the log
likelihood of the test set for the unconstrained data set with
redundant features.

In our experiments, we did not apply any regularization to
the models. Regularization would probably help avoid the
obvious over fitting that took place, particularly in the case
of the unconstrained data set moving from the full com-
pliment of helpful features to the larger set that included
irrelevant features. It is trivial to apply L2 regularization
during CRF training. Regularization is discussed in more
detail in [15].



5. CONCLUSIONS
We have presented a comparison of conditional random

fields and hidden Markov models on a simple activity recog-
nition task. We have demonstrated how CRFs are able to
easily incorporate a wide variety of computed features which
allow domain knowledge to be added to the models. Fur-
thermore, we have shown that due to the independence as-
sumptions inherent in HMMs, such computed features are
not nearly as effective for improving classification accuracy.

In all of our experiments, conditional random fields scored
higher or on par with hidden Markov models in terms of
classification accuracy. This was the case even in those sit-
uations where the CRF was effectively a discriminatively
trained HMM. These results make sense when placed in the
context of [8], in which Ng and Jordan compare the effec-
tiveness of generative versus discriminative classifiers. In
their case, they consider Naive Bayes versus Logistic Re-
gression because those two classifiers form what they term
a discriminative-generative pair. The same thing can be
said for HMMs and CRFs. And, as we would expect, the
discriminative model has a lower asymptotic error rate.

We have also demonstrated how conditional random fields
are able to incorporate features that are difficult to repre-
sent in a hidden Markov model, namely features that link
state transitions directly to observations, e.g. the distance
threshold features, which exactly captured the dynamics of
the process.

Sophisticated computed features which link observations
to transitions or incorporate observations from several time
steps are often required for good classification accuracy in
activity recognition tasks. It then follows that conditional
random fields are suitable models for activity recognition.
As a model, CRFs do not make independence assumptions
between the observations, they can link a particular observa-
tion (or any function computed on the observation sequence)
to state transitions, and, as discriminatively trained models,
they will often have lower error rates than the corresponding
generative model.
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