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1. Introduction

1.1. Background

While there have been many forma studies of plan synthesis in general [McCarthy &
Hayes 1969,Moore 1977, Pednault 1988, Tenenberg 1990,Pelavin 199Q, nealy al work onthe
inverse problem of plan recognition hes focused on spedfic kinds of recognition in spedfic
domains. This includes work on story understanding [Bruce 1981, Schank 1975, Wilensky
1983, psychdogicd modeling [Schmidt 1978, natural languege pragmatics [Allen 1983,
Carberry 1983,Litman 1987,Grosz & Sidner 1987, and intelli gent computer system interfaces
[Genesereth 1979, Huff & Lesser 1982,Goodman & Litman 199(Q. In ead case, the recognzer
is given an impowverished and fragmented description o the adions performed by ore or more
agents and expeded to infer arich and highly interrelated description. The new description fill s
out detail s of the setting and predicts the goals and future adions of the agents. Plan recogntion
can be used to generate summaries, to provide help, and to buld up a context for use in
disambiguating retural language. This chapter develops a formal theory of plan recognition.
The analysis provides a forma foundhtion for part of what is loosely cdled “frame-based
inference’ [Minsky 1979, and acmurts for problems of ambiguity, abstradion, and complex
temporal interactions that were ignored by previous research.
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Plan remgntion problems can be dasdfied as cases of either “intended” or “keyhale”
reagntion (the terminology developed by [Cohen, Perrault, & Allen 1981). In the first kind
but not the second the recognzer can asume that the aent is deliberately structuring hs
adivities in arder to make hisintentions clea. Reagntion problems can also be dasdfied asto
whether the observer has complete knowledge of the domain, and whether the agent may try to
perform erroneous plans [Polladk 1984. This chapter concentrates on keyhale recogntion o
correct plans where the observer has complete knowledge.

Plan synthesis can be viewed as akind d hypaheticd reasoning, where the planner tries
to find some set of adions whose exeaution would entail some goal. Some previous work on
plan recognition viewsit asasimilar kind d hypaheticd reasoning, where the recognizer triesto
find some plan whose exeaution would entail the performance of the observed adions [Charniak
1985. This kind d reasoning is metimes cdled “abduction”, and the onclusions
“explanations’. But it is not clea what the recognizer shoud conclude if many dfferent plans
entail the observations. Furthermore, even if the recognzer has complete knowledge and the
agent makes no errors cases naturally occur where no dan adually entail s the observations. For
example, suppese that the recognze knows abou a plan to get food by buyng it a a
supermarket. The remgnze is told that the agent walks to the A& P on Franklin Stred. The
plan to get food das not entail this observation; it entail s going to some supermarket, bu not the
A&Pin particular. One can try to fix this problem by gving it a more general plan schema that
can beinstantiated for any particular supermarket. But the entailment still fail s, because the plan
still fails to acourt for the fad that the agent chooses to walk instead of driving. Instead of
finding a plan that entail s the observations, ore can orly find a plan that entails sme wegker
statement entail ed by the observations. In order to make aduction work, therefore, the plan (or
explanation) must be &le to aso include dmost any kind d assumption (for example, that the
agent iswalking); yet the asumptions $ioud na be strongasto trivialy imply the observations.
The abductive system described in [Hobbs & Stickel 88] implements this approadh by assgning
costs to various kinds of assumptions, and seaching for an explanation d minimum cost. The
problems of automaticdly generating cost assgnments, and d providing a theoreticd basis for
combining costs, remain open.

Other approachesto plan recognition describe it as the result of applying ursoundrules of
inference that are aeded by reversing namally sound implicaions. From the fad that a
particular plan entails a particular adion, ore derives the unsound rule that that adion “may”
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imply that plan [Allen 1983. Such urmsound rules, however, generate staggering numbers of
paossble plans. The key problems of deading which rules to apply and when to stop applying
the rules remain outside the formal theory.

By contrast, the framework presented in this chapter spedfies what conclusions are
absolutely justified onthe basis of the observations, the recognze’s knowledge, and a number of
explicit “closed world” assumptions. The @nclusions follow by ordinary deduction from these
statements. If many plans could explain the observations, then the recognzer is able to conclude
whatever is common to al the simplest such pans. The technicd achievement of this work is
the aility to speafy the assumptions the recognizer makes withou remurse to a ontrol
mechanism lying outside the theory.

Ancther natural way to view plan recogntion is as a kind d probabili stic reasoning
[Charniak & Goldman 1989. The @nclusions of the recognizer are simply those statements that
are asdgned ahigh probability in light of the evidence A probabili stic goproad is Smilar to the
approacdh taken in this chapter in that ressoning proceels diredly from the observations to the
conclusions and avoids the problems described above with the @nstruction d explanations. The
closed world assumptions employed by ou system correspondto closure assumptions implicitly
made in a Bayesian analysis, where the set of possble hypaheses is assimed to be digoint and
exhaustive. A magjor strength of the probabili stic goproadh over ours is that it allows one to
cgpture the fad that certain plans are apriori more likely than athers. While much progressis
being made in medanizing popcsitional probabilistic reasoning, first-order probabili stic
reasoning is much more difficult. A propcsitional system can include a data dement
representing every possble plan and olservation, and the dfed of the change in probability of
any element on every other element can be computed. Thisisnot always possblein afirst-order
system, where the language can describe an infinite number of plans. The problem is not just
one of seleding between hypdheses, bu aso seledively instantiating the first-order axioms that
describe the parameterized pans. In ou purely logicd theory one can simply deduce the
parameters of the plans that are recognized.

1.2. Overview

In this chapter plans and adions are uniformly referred to as events. The recognze’s
knowledge is represented by a set of first-order statements cdled an event hierarchy, which
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defines the astradion, spedalizaion, and functiona relationships between various types of
events. The functional, or “role’, relationships include the relation d an event to its component
events. Thereisadistingushed type, End, which hdds of events that are not comporents of any
other events. Reaogntion is the problem of describing the End events that generate aset of
observed events.

In this work we ae limited to recognizing instances of plans whose types appea in the
hierarchy; we do nd try to recognize new plans creaed by chaining together the precondtions
and effeds of other plans (asis dorein [Allen 1983). Therefore it is appropriate for domains
where one can enumerate in advance dl the ways of achieving agaoal; in aher words, where one
wants to reaognize stereotypicd behavior, rather than understand truly unique and idiosyncratic
behavior. This assumption d complete knowledge on the part of the system designer is
fundamenta to the gproach. While dandoring this assumption might increase a system’s
flexibility, it would also lead to massve increase in the size of the search space since an infinite
number of plans could be cnstructed by chaining on pecondtions and effeds. We dedded to
maintain the sssumption d complete knowledge, and ony construct plans by spedalizaion and
decompasition (as described below), until we have developed methods of controlling the
combinatorial problem.

An event hierarchy daes not by itself justify inferences from observations to End events.
Consider the following set of plans. There ae four kinds of End events (hiking, huring, robbng
banks, and cashing chedks) and three other kinds of events (going to the woods, getting a gun,
and gangto abank). The event hierarchy can beill ustrated by the following retwork, where the
thick grey arrows denate astradion a “is &', and the thin bladk arrows denote comporent or
“has part”. The labels “s1” and “s2” serve to distingush the cmmporent arcs; they denote the
functions which map an event to the respedive wmporent. (The labels do nd, by themselves,
formally indicate the temporal ordering of the components.)

1 The idea of an End event may be problematic in general; see our comments at the end of this chapter.
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End

Go Hiking Hunt Rob Bank Cash Check

Go ToWoods  Get Gun Go To Bank

We encode this event hierarchy in first-order logic with the following axioms.

0 x . GoHiking(x) O End(x)

0 x . Hunt(x)Od End(x)

0 x . RobBank(x)J End(x)

[ x . CashCheck(x)J End(x)

0 x . GoHiking(x) 0 GoToWoods(s1(x))

0 x . Hunt(x)O GetGun(s1(x)}J GoToWoods(s2(x))

0 x . RobBank(x) GetGun(s1(x))1 GoToBank(s2(x))

[ x . CashCheck(x)J GoToBank(s1(x))
The symbadls “s1” and “s2” are functions which map a plan to its deps. Suppae GetGun(C) is
observed. This datement together with the aioms does not entail [X.Hunt(x), or
[X.[Hunt(x) OO RobBank(x)], or even [X.End(x). The aioms let one infer that getting a gunis

implied by hunting or going to the bank, but not vice versa.

It would na help to strengthen the implicaions to bicondtionals in the last four axioms
abowe, in arder to make them state sufficient as well as necessary condtions for the exeaution o
the End events. Even if every single step of a plan were observed, ore could na deducethat the
plan occurred. For example, suppce that the recognzer leans { GetGun(C), GoToBank(D)},
and believes

0 x . RobBank(x)= GetGun(s1(x)}J GoToBank(s2(x))

The statement [X.RobBank(x) still does not follow, because of the missng pemise that
[X.C=s1(x)[ID=s2(x). One oould further strengthen the aiiom to say that whenever someone
gets a gun and goes to a bank he or she commits a robbery:

[Ox . RobBank(x)]= [y, z .GetGun(y)d GoToBank(z)]
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This change dlows the remgnze to conclude [x.RobBank(x), bu does nat redly solve the
problem. First, ore caana always give sufficient condtionsfor every kind o event. Second, the
reoognze is dill required to olserve every step of the plan to be recognized. This latter
condtion is rarely the cae; indeal, a primary motivation for plan recogntion is the desire to
predict the adions of the agent. Finally, such an axiom doesn’'t allow for a cae where aperson
cashes a check on his way to a hunting trip.

Nonethelessit does sam reasonable to conclude that someone is either hurting a rob-
bing a bank onthe basis of GetGun(C). This conclusionis justified by assuming that the event
hierarchy is complete: that is, whenever a non-End event occurs, it must be part of some other
event, and the relationship from event to comporent appeas in the hierarchy. We will show how
to generate a set of completeness or closed-world assumptions for a given hierarchy. The
assumption needed for this example is simply

0 x . GetGun(x)d [Oy . Hunt(y)O x=s1(y)]OJ [0y . RobBank(y)d x=s1(y)]

We will also show that making these assumptions is equivalent to circumscribing the event
hierarchy inaparticular way [McCarthy 198Q. We borrow the model theory of circumscription
to provide a mode theory for plan rewmgntion. Whatever deductively follows from the
observations, event hierarchy, and assumptions hods in al “covering models’ of the
observations and event hierarchy. (The term “covering model” comes from the fad that every
event in such amodel is explained or “covered” by some End event which containsit.) In this
example, the only covering models are isomorphic to (or contain a submodel isomorphic to) one
of the two models

{End(A), Hunt(A), GetGun(s1(A))GoToWoods(s2(A)) }

{End(A), RobBank(A),GetGun(s1(A))GoToBank(s2(A)) }

Any model containing just an instance of GetGun bu no correspondng End event is not a
covering model.

When several events are observed, additional assumptions are nealed. Suppcse that
{GetGun(C)GoToBank(D)} is observed. These formulas together with the assumptions

0 x . GetGun(x)d [Oy . Hunt(y)O x=s1(y)]OJ [0y . RobBank(y)d x=s1(y)]

[ x .GoToBank(x)d [dy . CashCheck(y)I x=s1(y)]0J [0y . RobBank(y)dx=s2(y)]
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do not entail that an instance of bank robbery occurs. The first observation could be a step of a
plan to hunt and the second could be a step of a plan to cash a check. Yet in this example the
RobBank plan is simpler than the conjunction of two other unrelated plans. It is reasonable to
assume that unless there is reason to believe otherwise, all the observations are part of the same
End event. Given the assumption

0 x,y . End(x) OENd(y) [0 x=y

the conclusion [x.RobBank(x) deductively follows.2 In model theoretic terms, this assumption
corresponds to selecting out the covering models that contain a minimum number of End events:
these are the minimum covering models of the observations and hierarchy. Furthermore, this
assumption can be blocked if necessary. If it isknown that the agent is not robbing the bank, that
is, if theinput is { GetGun(C), GoToBank(D), -y . RobBank(y)}, then the strongest smplicity
assumption is that there are two distinct unrelated plans. It follows that these plans are hunting
and cashing a check.

Why care about a formal theory of plan recognition? One advantage of this approach is
that the proof and model theories apply to almost any situation. They handle digunctive
information, concurrent plans, steps shared between plans, and abstract event descriptions. We
will illustrate the theory with examples of plan recognition from the domains of cooking and
operating systems. The general nature of the theory suggests that it can be applied to problems
other than plan recognition. We will show how amedical diagnosis problem can be represented
in our system, by taking events to be diseases and symptoms rather than plans and actions. The
similarity between the kind of reasoning that goes on in plan recognition and medical diagnosis
has been noted by Charniak [1983]. Reggia, Nau, and Wang [1983] have proposed that medical
diagnosis be viewed as a set covering problem. Each disease corresponds to the set of its
symptoms, and the diagnostic task is to find a minimum cover of a set of observed symptoms.
They work within a purely propositiona logic and do not include an abstraction hierarchy.
Extending their formal framework to first-order would make it quite close to the one presented
here.

The formal theory is independent of any particular implementation or algorithm. It
specifies the goal of the computation and provides an abstract mapping from the input

2 (The careful reader may note that the assumption [x.— Hunt(x) (- RobBank(x) is also needed to make the proof
goes through; this kind of assumption will also be developed below.)
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information to the output. The last sedion d this chapter provides gedfic dgorithms for plan
reagntion. The dgorithmsimplement the formal theory, bu are incomplete; they are, however,
much more dficient than a cmplete implementation which simply used a general-purpose
theorem prover. While the proof theory spedfies a potentially infinite set of justified
conclusions, the dgorithms geafy which conclusions are explicitly computed. The dgorithms
use a ompad graph-based representation o logicd formulas containing badh conjunctions and
disunctions. Logicd operations (such as substitution o equals) are performed by gaph
operations (such as graph matching). The dgorithms use atempora representation which is
related to bu different from that discussed in Part 1. The times of spedfic instances of events
are represented by numeric bounds on the starting and ending instants. This metric information
is constrained by symbolic constraints recorded in the interval algebra.

1.3. Plan Recognition and the Frame Problem

Althoughthe work described in this chapter is the first to suggest that closed world
ressoning and in particular circumscription are relevant to plan recgnition, the insight behind
the @wnredion is implicit in work on the “frame problem”. Given an axiomatization d the
changes adions make on the world, ore wants to generate aioms that describe the properties
that are not changed by ead adion. For example, in the situation cdculus the frame aiom that
states that the color (c) of an object (0) is not changed by picking it up is often written as follows:

s, ¢, 0. Colod,c,s) Color(o, c, result( move( pickup(o) ), s))

(In this particular representation, the last argument to a fluent such as “Color” is the state (s) in
which the fluent holds. The function “result” maps an adion (pickup(o)) and a state (s) to the
resulting state.) One of the primary motivations for the development of circumscription was to
be a formal tool for specifying such frame axioms.

Severa reseachers have observed that there is ancther way of writing frame aioms
[Haas 1987, Schubert 1989, Pelavin 1990(this volume, sedion 4.9]. Thisis to state that if a
particular property did change when any adion was performed, then that adion must be one of
the adions known to change that property. In this example, suppcse painting and buning are the
only actions known to change the color of an object. The frame axiom for Color then becomes:

s, c, 0, a.[ Colog,c,s)]-Color(o,c,resultq,s)) ] [ a=paint(o)]a=burn(o) ]
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This frame aiom looks very much like the asumptions that are needed for plan recogntion.
The frame aioms lead from the premise that a diange occurred to the disunction d al the
adions that could make that change. The recognition assumptions lead from the premise that an
action occurred to the disjunction of all plans that could contain that actiosuastap.

Many dfficult technicd problems have aisen in applying circumscription to the frame
problem. Apparently obvous ways of using circumscription can lead to conclusions that are
much wedker than desirable [Hanks & McDermott 1984, and the formalism is in genera
unwieldy. This chapter shows how circumscription can be succesSully and efficiently applied to
a knowledge base of a particular kind to generate conclusions of a particular form. Like dl
formalisms, circumscription is of interest only if it is of use; and we hope that the use it has
foundin the present work is of encouragement to those @ntinuing to work on unarstanding and
extending circumscription.

2. Representing Event Hierarchies

2.1. The Language

As described in Part 1, the representation language we will use is first-order predicae
cdculus with equality. We make the foll owing extension to the notation: a prefix LI (similarly
[) applied to a set of formulas dands for the @njunction (similarly digunction) of all the
formulas in that set. We will first introduce astandard semantics for this language and then
extend it to ded with the plan recognition problem. A model interprets the language, mapping
terms to individuals, functions to mappings from tuples of individuas to individuals, and
predicaes to sets of tuples of individuals. If M isamodel, then this mappingis made explicit by
applying M to a term, function, or predicate. For example, for any model M:

Loves(Sister(Joe),Bill) is true in M if and only if
M[Sister](M[Joe]), M[Bill] 3 M[Loves]

The domain o discourse of the model M is written Domain(M). The fad that M interprets the
constant Jo€ as an individual in its domain is written

M[Joe] 0 Domain(M)

Meta-variables (not part of the language) that stand for domain individuals begin with a clon.
Models map free variables in sentences to individuals. The expresson M{x/.C} means the
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model that is just like M, except that variable x is mapped to individual :C. Quantificaionis
defined as follows:

[X . pistrue in M if and only if
there existsC [0 Domain(M) such that p is true in M{x/:C}
[x . pistruein M if and only if=[X .- pis true in M

The propasitional conredives are semanticdly interpreted in the usual way. Proofs in
this chapter use natural deduction, fredy appeding to obvous lemmas and transformations. It is
convenient to dstingush a set of constant symbads cdled Skolem constants for use in the
deductive rule of existential elimination. The rule dlows one to replace a existentialy-
quantified variable by a Skolem constant that appeas at no ealier point in the proof. Skolem
constants are distingushed by the prefix “*”. No Skolem constants may appea in the final step
of the proaof: they must be replacel again by existentiall y-quantified variables (or eliminated by
other means). This final step is omitted when it is obvious how it should be done.

2.2. Representation of Time, Properties, and Events

Most formal work on representing adion hes relied on \ersions of the situation caculus
[McCarthy & Hayes 1969. This formalism is awkward for plan recogntion: convdutions are
needed to state that some particular adion actually occurred at a particular time (but see see
[Cohen 1984). We therefore adopt the “reified” representation d time and events described in
detail in Chapter 1.

Recdl from Chapter 1 that time is linea, and time intervals are individuals, ead pair
related by ore of Allen's interval algebra relations. Before, Meets, Overlaps, etc. The names of
several relations may be written in placeof a predicae, in order to stand for the digunction of
those relations. For example, BeforeMeds(T1,T2) abbreviates Before(T1,T2) [1Meds(T1,T2).
Intervals can be identified with pairs of rational numbers on some universal clock; two intervals
Med when the first point of one is the same & the last point of the other [Ladkin & Maddux
1988].

Event tokens are dso individuals, and event types are represented by urary predicaes.
All event tokens are red; there ae noimaginary or “posshle’ event tokens. Various functions
on event tokens, cdled roles, yield parameters of the event. Role functions include the event's
agent and time. For example, the formula
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ReadBook(C) [J object(C)=WarAndPeace [1time(C)=T2

may be used to used to represent the fact that an instance of booking reading occurs; the book
read is War and Peace; and the time of the reading is (the interval) T2. Role functions are aso
used to represent the steps of plans (or any other kind of structured event). For example, suppose
that reading a book is a kind of plan, one of whose steps is to pick up the book. The following
formula could be used to represent the fact that two events have occurred, where oneisreading a
book, and the other is the substep of picking up the book.

ReadBook(C) [ pickupStep(C)=D O Pickup(D)

All other facts are represented by ordinary predicates. For example, the fact that Johnisa
human may be represented by the formula Human(John). Circumstances that change over time
are also represented by predicates whose last argument is atime interval. For example, the fact
that John is unhappy over the interval T1 will be represented by the formula Unhappy(John, T1)

2.3. The Event Hierarchy

An event hierarchy is a collection of restricted-form axioms, and may be viewed as a
logical encoding of a semantic network [Hayes 1985]. These axioms represent the abstraction
and decomposition relations between event types. This section defines the formal parts of an
event hierarchy, and the next provides a detailed example. An event hierarchy H contains the
following parts, Hg, Ha, HEB, Hp, and Hg:

*HE is the set of unary event type predicates. Hg contains the distinguished predicates
AnyEvent and End. Any member of the extension of an event predicate is called an event token.
AnyEvent is the most general event type, and End is the type of al events which are not part of
some larger event.

* Hp isthe set of abstraction axioms, each of the form:

Ox . E1(x) O Ex(X)

for some Ez, Ex O HE. In this case we say that E; directly abstracts E;. The transitive closure
of direct abstraction is abstraction; and the fact that Eo is the same as or abstracts E; iswritten Eo
abstracts= E;. AnyEvent abstracts= all event types. The inverse of abstraction is specialization.
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* HER is the set of basic event type predicates, those members of HE that do not abstract any
other event type.

* Hp isthe set of decomposition axioms, each of the form:
Ox . Eg(x) O E1(f1(x)) OEx(f2(x)) O. . . OER(fR(X)) O K

where Eq, ..., En OHE; f1, ..., f ae role functions;, and « is a subformula containing no
member of HE. The formula k describes the constraints on Eg. E; through Ep, are called direct
components of Eg. Neither End nor any of its specializations may appear as a direct component.

* Hg isthe set of genera axioms, those that do not contain any member of He. Hg includes the
axioms for the temporal interval relations, as well as any other facts not specifically relating to
events.

Two event types are compatible if there is an event type they both abstract or are equal to.

The parameters of an event token are the values of those role functions mentioned in a
decomposition axiom for any type of that token applied to the token.

The direct component relation may be applied to event tokens in a model M as follows.
Suppose :Ci and :Cg are event tokens. Then :Cj is adirect component of :Cgin M if and only if
(i) there are event types E;j and Eq, such that :Cj [ M[E;j] and :Cg [ M[Eq]
(if) Hp contains an axiom of the form:
Ox . Eg(x) O E1(f1(x)) O... OEi(fi(x)) O. .. UER(fn(x)) O K
(iii) :Cj = M[f;](:Co)

In other words, one token is a direct component of another just in caseit is the value of one of the
role functions applicable to the former token. The component relation is the transitive closure of
the direct component relation, and the fact that :Cp, is either the same as or a component of :Cg is
written :Cp, is a component= of :Cg. The component relation over event tokens does not
correspond to the transitive closure of the direct-component meta-relation over event types
because a token may be of more than one type.

A hierarchy is acyclic if and only if it contains no series of event predicates El' E2,
En of odd length (greater than 1) such that:
() Ei is compatible with Ej41 foroddi, 1<j<n-2
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(i) Ei-l is a direct component of, Hor oddi, 3<i<n

(iii) E,=§
RougHy spe&ing, an event hierarchy is agyclic if no event token may have acomporent of its
own type. The definition above dlows for the fad that all events are of type AnyEvent, and

therefore any event token will share & least the type AnyEvent with its comporents. This chapter
only considersacyclic event hierarchies.

24, Example: The Cooking World

The adions invalved in cooking form a simple but interesting danain for planning and
plan reamgntion. The spedalizaion relations between various kinds of foods are mirrored by
speadlizaion relations between the adions that creae those foods. Demmpositions are
asciated with the ad of preparing atype of food,in the manner in which aredpe spell s out the
steps in the foods preparation. A good cook stores information at various levels in his or her
abstradion herarchy. For example, the wok knawvs certain adions that are needed to creae any
crean-based sauce as well as ceatain condtions (constraints) that must hold duing the
preparation. The sauce must be stirred constantly, the hed must be moderate, and so on. A
spedadizaion d the type aeam-sauce such an Alfredo sauce adds geps and constraints; for
example, one should slowly stir in grated cheese at a certain point in the recipe.

We ae assuming that the mwok and the observer have the same knowledge of cooking, a
hierarchicdly arranged cookbook. Actions of the mok are reported to the observer, whotriesto
infer what the wokis making. We do nd assume that the reports are exhaustive — there may be
unolserved adions. A cook may prepare severa different dishes at the same time, so it is not
aways possble to assume that all observations are part of the same redpe. Different End events
may share steps. For example, the aok may prepare alarge batch of tomato sauce, and then use
the sauce in two different dishes.

The following dagram illustrates a very tiny cooking herarchy. Thick grey arrows
dencte the astradion meta-relation, while thin bad arrows dencte the dired comporent meta-
relation. All event types are dstraded by AnyEvent. Here there ae two main caegories of End
events. preparing meds and washing dshes. It isimportant to uncerstand that the astradion
hierarchy, encoded by the aioms in Hp, and the decompasition herarchy, encoded by the
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axiomsin Hp, are interrelated but separate. Work on hierarchical planning often confuses these
two distinct notions in an action or event hierarchy.
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figure 1. Cooking event hierarchy. (The abstraction arc from
MakeSauce to AnyEvent is omitted for clarity.)

The diagram illustrates some, but not al, of the information in the axioms for the cooking
domain. Theformal description of the hierarchy is asfollows.

* The set of event types, HE, includes PrepareMeal, MakeNoodles, MakeFettucini, and so on.

* The abstraction axioms, Hp, relate event types to their abstractions. For instance,
MakeNoodles is an abstraction of both MakeSpaghetti and MakeFettucini. A traditional
planning system might cal MakeSpaghetti and MakeFettucini different bodies of the
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MakeNoodles plan. This relationship is represented by asserting that every instance of the more
specialized type is also an instance of the more abstract type. For example,

[x . MakeSpaghetti(x)] MakeNoodles(x)

[x . MakeFettucini(x)-] MakeNoodles(x)

* The basic event types, HER, appea at the bottom of the @stradion (grey) hierarchy. These
include the types Boil, MakeSpaghettiMarinara, MakeFettucini, and so on. Note that basic event
types may have components (butspecializations).

» The decomposition axioms, Hp, include information that does not appea in the diagram.
Following is an incomplete version d the decompasition axiom for the MakePastaDish event.
Thisad includes at least threesteps: making noodes, making sauce, and bali ng the the noodes.
The equality constraints assert, among dher things, that the agent of ead step is the same & the
agent of the overal ad;3 and that the noodes the ayent makes (spedfied by the result role
function applied to the MakeNoodles step) are the thing baled (spedfied by the input role
function applied to the Boil step). Tempora constraints explicitly state the temporal relations
between the steps and the MakePastaDish. For example, the time of ead step is during the time
of the MakePastaDish, and the Boil must follow the MakeNoodles. The @nstraints in the
deacmpasition include the precondtions and effeds of the events. Prewndtions for
MakePastaDish include that the ayent is in the kitchen duing the event, and that the agent is
dexterous (making pesta by hand is no mean fea!). An effed of the event is that there exists
something which is a PastaDish, the result of the event, which is ready to ea during a time
periodpostTime, which immediately follows the time of the cooking event.

3 It is not necessarily the case that the agent of an event be the same & the ayent of ead of its comporents. One
could as easily write mnstraints that they be different. For example, a plan for a ok could include steps to be
carried out by the cook’s helper.
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[Ix . MakePastaDish(x) [7
MakeNoodl es(stepl(x)) [J

Components MakeSauce(step2(x)) [T
Boil(step3(x)) [J
Equality agent(stepl(x)) = agent(x) [J
Constraints result(stepl(x)) = input(step3(x)) LJ
Temporal During(time(stepl(x)), time(x)) [J
Constraints BeforeMeets(time(stepl(x)), time(step3(x))) [J
Overlaps( time(x), postTime(x)) [7
Preconditions InKitchen(agent(x), time(x)) [J
Dexterous(agent(x)) [J
Effects ReadyToEat(result(x), postTime(x)) [J

PastaDish(result(x))

Note that the names of the cmponrent roles, stepl, step2, etc., are abitrary; they do not indicae
temporal ordering. The event types that spedalize MakePastaDish add additional constraints
and steps to its decomposition. For example, the event type MakeSpaghettiMarinara further
constrains its decomposition to include MakeSpaghetti (rather than the more generic
MakeNoodles) and MakeMarinaraSauce (rather than smply MakeSauce). One auld also add

completely new steps as well.
[Ix . MakeSpaghettiMarinara(x)
MakeSpaghetti(stepl(x))
MakeMarinaraSauce(step2(x))...

Assertions abou particular event instances take the form of the predicaion d an event
type of a wmnstant, conjoined with equality assertions abou the roles of the event token, and
perhaps a propgsition relating the time of the event to that of other events. The English
statement; Yesterday Joe made the noodles on the tablay be repre&ented afollows:

MakeNoodle(Make33)J
agent(Make33) = Jag
result(Make33) = Noodles72
OnTable(Noodles7Znow) [
During( time(Make33)Tyesterday )

3. The Formal Theory of Recognition

We have see that the kind d inferences performed in plan recognition do nad follow
from an event hierarchy alone. The astradion herarchy is drengthened by assuming that there
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are no event types outside of Hg, and that all abstradion relations between event predicaes are
derivable from Hp. The decomposition herarchy is drengthened by assuming that non-End
events occur only as comporents of other events. These assumptions are reasonable becaise the
hierarchy encodes all of our knowledge of events. If the hierarchy is enlarged, the asumptions
must be revised. Finaly, a simplicity assumption is used to combine information from several
observations. We now consider the various kinds of assumptions in detail.

3.1 Exhaustiveness Assumptions (EXA)

Suppacse you knaw that the agent is making some kind d saucethat is not Alfredo sauce
and nd pesto. Then youcan reasonably conclude that the agent is making marinara sauce. Such
a onclusionisjustified by the asumption that the known ways of spedalizing an event type ae
the only ways of specializing it. In this case, the assumption is

[Ox . MakeSauce(x)]
MakeMarinara(x)]
MakeAlfredoSauce(x))]
MakePesto(x)

Another way to write this same statement is

[x . MakeSauce(x)1-MakeAlfredoSauce(x)] - MakePesto(x)]
MakeMarinara(x)

This kind d assumption alows one to determine that a particular kind d event has
occurred by eliminating all other passhiliti es. Fans of Sherlock Holmes will recognizeit as an
instance of his dictum, “When you have diminated the impossble, whatever remains, hovever
improbable, must be the truth[Doyle 1890]

The set EXA of exhaustiveness assumptions are dl statements of the following form,
where Egisapredicaein Hp, and {Ej, Ep, ... , Ep} are dl the predicates diredly abstraded by
Eo:

Ox . Eg(x) O (E1(x) D Ex(x) O... OER(X))
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3.2. Digointness Assumptions (DJA)

Suppacse the agent is making a pastadish. It isclea from the example hierarchy that this
particular event is not an instance of making a meat dish. That is, we make the assumption that

[Ox . MakePastaDish(x)] - MakeMeatDish(x)

Why is this only an assumption? Suppce a new type were alded to the hierarchy that
specialized botiMakePastaDish andakeMeatDish:

[x . MakeMeatRavioli(x)JJ MakePastaDish(x)

[Ox . MakeMeatRavioli(x)[J MakeMeatDish(x)

Then the asumption that mea dishes and pasta dishes are digoint would no longer be
ressonable. Asauming that one's knowledge of events is complete, however, it is reasonable to
asuume that two types are digoint, urless one astrads the other, or they abstrad a cmmon
type;, that is, if they are compatible. The digointness assuumptions together with the
exhaustivenessasaumptions entail that every event has a unique basic type, where the basic types
are the leaves of the abstraction hierarchy.

The set DJA of digointnessassumptions consists of all statements of the foll owing form,
where event predicateg Bnd B are not compatible:

Ox .= E1(x) O=E2(X)

3.3. Component/Use Assumptions (CUA)

The most important assumptions for recogntion let one infer the disunction d the
possble “causes’ for an event from its occurrence They state that a plan or adion implies the
disunction d the plans which use it as a omporent. The simplest case is when orly a single
type ould have aparticular event as a dired comporent. For instance from the fad that the
agent is bailing water one can conclude that the agent is making a pasta dish. Formally, the
assumption is that

O x . Boil(x) O Oy . MakePastaDish(y])x = step3(y)
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More generally, the conclusion of this kind of assumption is the digunction of al events
that have a component that is compatible with the premise. Consider the assumption for
MakeSauce. This type is compatible with itself and al of its specidizations:
MakeAlfredoSauce, MakePesto, and MakeMarinara. The following formula describes all the
events that could have a component of those types:

0 x . MakeSauce(x) U
(Oy . MakePastaDish(y) O x = step2(y)) O
(Oy . MakeFettuciniAlfredo(y) O x = step2(y)) O
(Oy . MakeSpaghettiPesto(y) [x = step2(y)) U
(Oy . MakeSpaghettiMarinara(y) [Ix = step2(y)) O
(Oy . MakeChickenMarinara(y) [Ix = step5(y))
Note that MakeChickenMarinara has MakeMarinara as a component, which is compatible with

MakeSauce. The formula can be simplified by using the abstraction axioms for M akePastaDish.

0 x . MakeSauce(x) 0
(Oy . MakePastaDish(y) O x = step2(y)) [
(Oy . MakeChickenMarinara(y) [Ix = step5(y))

This example demonstrates that making such a component/use assumption is not the
same as predicate completion in the style of Clark [1978]. Predicate completion yields

0 x . MakeSauce(x) U
(Oy . MakePastaDish(y) 0 x = step2(y))
This assumption is too strong, because it omits the use of MakeSauce as specialized by
MakeMarinarathat isimplicit in event hierarchy.

The definition of the set CUA of component/use assumptions follows. For any E U HE,
define Com(E) as the set of event predicates with which E is compatible. Consider all the
decomposition axioms in which any element of Com(E) appears on the right-hand side. The j-th
such decomposition axiom has the following form, where Eji isthe element of Com(E):

0x . Ejo(x) O Ejl(fj]_(x)) O... DEji(fji(x)) ... DEjn(fjn(X)) 0 K

Suppose that the series of these axioms, where an axiom is repeated as many times as there are
members of Com(E) in its right-hand side, is of length m > 0. Then the following formulais the
component/use assumption for E:
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Ox.E(xX) 0 End(x) O
(Ly . Eq,0(y) Of1i(y)=x) O
(Ly . E20y) Of2i(y)=x)
.. O
(&y . Em,0(Y) Ofmi(y)=x)

CUA is the set of al such formulas for a given hierarchy. It is usually possible to remove
redundant subexpressions from the right-hand side of these formulas, as in the example above.
Throughout the rest of this chapter such simplifications will be made.

34. Minimum Cardinality Assumptions (MCA)

The assumptions described above do not combine information from several observations.
Suppose that the agent is observed to be making spaghetti and making marinara sauce. The first
observation is explained by applying the component/use assumption that the agent is making
spaghetti marinara or making spaghetti pesto. The second observation is similarly explained by
the conclusion that the agent is making spaghetti marinara or chicken marinara. The conclusion
cannot be drawn, however, that the agent is making spaghetti marinara.  The End event that
explains the first observation could be distinct from the End event that explains the second. The
theory as outlined so far sanctions only the statement

[X . [MakeSpaghettiMarinara(x) [1 M akeSpaghettiPesto(x)] [

[y . [MakeSpaghettiMarinara(y) [ MakeChickenMarinara(y)]
In many cases it is reasonable to assume that the observations are related. A simple heuristic is
to assume that there is a minimal number of distinct End events. In this example, al the types
above are specializations of End. The statement above, the digointness assumptions, and the
assumption that there is no more than one End event entails the conclusion that the agent is
making spaghetti marinara.

The three different kinds of assumptions discussed above are computed from the event
hierarchy before any observations are made. The appropriate minimum cardinality assumption
(MCA) is based on both the hierarchy and the specific observations that have been made.
Consider the following sequences of statements.

MAQ. Ox . = End(x)
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MA1. [x,y . End(x)0 End(y) [ x=y

MA. 0x,y,z . End(x)dJ End(y) 0 End(2)
0 (x=y) O(x=2) O(y=2)

The first asserts that no End events exist; the second, nomore than ore End event exists; the
third, nomore than two; and so on. Let the observations be represented by a set of formulas .
The minimum cardinality assumption appropriate for H and I is the formula MAj, wherei is the
smallest integer such that

FOHUOEXADODJAOCUALMA;

is consistent. (This consistency test is, in general, undeddable; the dgorithms described later in
this chapter crede separate data structures correspondng to the gplication o eat assumptionto
the observations, and prune the data structures when an inconsistency is naticed. At any time the
conclusions of the system are represented by the data structure @rrespondng to the strongest
assumption.)

3.5. Example: The Cooking World

The following example shows how the different comporents of the event hierarchy and
kinds of assumptionsinterad in plan recogntion. As noted ealier, constants prefixed with a“*”
stand in placeof existentially-quantified variables. Suppase the observer initially knows that the
agent will not be making Alfredo sauce. Such knawvledge could come from information the
observer has abou the resources avail able to the agent; for example, a lak of crean. Further
suppose that the initial observation is that the agent is making some kind of noodles.

Observation
[1] MakeNoodles(Obsl)

Component/Use Assumption [1] & Existential I nstantiation
[2] MakePastaDish(*11) [Jstepl(*11)=0bsl

Abstraction [2]
[3] PrepareMeal (*11)
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Abstraction [3]

[4] End(*11)
Althoughthe remgnized plan is nat fully spedfied, enoughis known to alow the observer to
make predictions abou future adions of the agent. For example, the observer can predict that
the agent will boil water:

Decomposition [2]
[5] Boil( step3(*11) ) [JAfter(time(Obsl), time(step3(*11)) )

The observer may choose to make further inferences to refine the hypahesis.  The singe
formula “MakePastaDish(*11)” above does not summarize dl the information gained by dan
recognition. The adual set of conclusions is always infinite, since it includes al formulas that
are entailed by the hierarchy, the observations, and the aumptions. (The dgorithms discussed
later in this chapter perform a limited number of inferences and generate a finite set of
conclusions.) Severa inference steps are required to read the mnclusion that the agent must be
making spaghetti rather théettucini.

Given Knowledge
[6] [x . =MakeAlfredoSauce(x)

Exhaustiveness Assumption [2]
[7] MakeSpaghettiMarinara(*11) [7MakeSpaghettiPesto(* 11)
[JMakeFettucini Alfredo(*11)

Decomposition & Universal I nstantiation
[8] MakeFettuciniAlfredo(*11) L7 MakeAlfredoSauce(step2(*11))

Modus Tollens[6,8]
[9] ~MakeFettuciniAlfredo(*11)

Digunction Elimination [7,9]
[10] MakeSpaghettiMarinara(*11) [JMakeSpaghettiPesto(*11)

Decomposition & Universal | nstantiation
[11] MakeSpaghettiMarinara(*11) [J MakeSpaghetti(stepl(*11))
[12] MakeSpaghettiPesto(*11) [7 MakeSpaghetti (stepl(*11))
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Reasoning by Cases[10,11,12]

[13] MakeSpaghetti (stepl(*11))
Suppose that the second observation is that the agent is making marinara sauce. The minimal
cardinality assumption alows the observer to intersect the possible explanations for the first
observation with those for the second, in order to reach the conclusion that the agent is making
spaghetti marinara.

Second Observation
[14] MakeMarinara(Obs2)

Component/Use Assumption [14] & Existential Instantiation
[15] MakeSpaghettiMarinara(*12) [/MakeChickenMarinara(*12)

Abstraction [15]
[16] MakePastaDish(*12) [/MakeMeatDish(*12)

Abstraction [16]
[17] PrepareMeal (*12)

Abstraction [17]
[18] End(*12)

Minimality Assumption
[19] Oxy . End(x) [JEnd(y) [Jx=y

Universal Instantiation & Modus Ponens[4,17,19]
[20] *|11=*12

Substitution of Equals[2,30]
[21] MakePastaDish(*12)

Digointness Assumption
[22] [Jx . =MakePastaDish(x) [7/-MakeMeatDish(x)

Digunction Elimination [21,22]
[23] ~MakeMeatDish(*12)

Abstraction & Existential I nstantiation
[24] MakeChickenMarinara(*12) L[] MakeMeatDish(*12)
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Modus Tollens [23,24]

[25] -MakeChickenMarinara(*12)
Digunction Elimination [15,25]

[26] MakeSpaghettiMarinara(*12)
3.6. Circumscription and Plan Recognition

Earlier we discussed the relation d circumscriptionto plan reagntionin informal terms.
Now we will make that relation predse, and in so ddang, develop a model theory for part of the
plan recognition framework.

Circumscriptionis a syntadic transformation d a set of sentences representing an agent’s
knowledge. Let S[m] be aset of formulas containing alist of predicaes it The expresson §o]
is the set of formulas obtained by rewriting S with eady member of 1t replacal by the
correspondng member of a. The epresson o < 1t abbreviates the formula stating that the
extension d ead predicate in o is a subset of the extension d the @rrespondng predicae in 1t
that is

(Ox.o1(x) O m(x) O... O(@Ex . op(x) O 1(x))

where eat x is alist of variables of the proper arity to serve @ arguments to ead o;. The
circumscription ofitrelative to S, writtel€ircum(S,), is the second-order formula

(0S)OOo. [(US[o]) Do<sm On<o

Circumscription has asimple and elegant model theory. Suppcse M1 and M, are models
of Swhich are identicd except that the extensionin M, of one or more of the predicaesin tisa
proper subset of the extensions of those predicaesin M. Thisis denoted by the expresson M,
>> M, (Where the expressonis relative to the gpropriate S and ). We say that M is minimal
in Ttrelative to S if there is no such,M

The drcumscription Circum(S,m) is true in al models of S that are minimal in the 1
[Etherington 1986. Therefore to prove that some set of formulas S O T entail s Circum(S,m) it
suffices to show that every model of IST is minimal inTtrelative to S.
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The converse does not aways hold, because the notion of a minimal model is powerful
enough to capture such structures as the standard model of arithmetic, which cannot be
axiomatized [Davis 1980]. In the present work, however, we are only concerned with cases
where the set of minima models can be described by a finite set of first-order formulas. The
following assertion about the completeness of circumscription appears to be true, athough we
have not uncovered a proof:

Supposition: If thereisafinite set of first-order formulas T such that the set of modelsof SO T
isidentical to the set of models minimal in Ttrelativeto S, then that set of modelsis also identical
to the set of models of Circum(S,). Another way of saying this is that circumscription is
complete when the minimal-model semanticsis finitely axiomatizable.

Given this supposition, to prove that Circum(S,1) entails some set of formulas S O T it
sufficesto show that T holdsin every model minimal in mtrelativeto S.

3.6.1. Propositions

The maor stumbling block to the use of circumscription is the lack of a genera
mechanical way to determine how to instantiate the predicate parameters in the second-order
formula. The following propositions demonstrate that the first three classes of assumptions
discussed above, exhaustiveness, digointness, and component/use, are equivalent to particular
circumscriptions of the event hierarchy. (Note: the bidirectional entailment sign < is used
instead of the equivalence sign = because the left hand side of each statement is a set of formulas
rather than asingle formula.)

The first proposition states that the exhaustiveness assumptions (EXA) are obtained by
circumscribing the non-basic event types in the abstraction hierarchy. Recall that the abstraction
axioms say that every instance of an event type is an instance of the abstractions of the event
type. This circumscription minimizes all the event types, except those which cannot be further
specialized. Therefore, something can be an instance of a non-basic event type only if it is aso
an instance of a basic type, and the abstraction axioms entail that it is an instance of the non-
basic type. In other words, this circumscription generates the implications from event types to
the digunctions of their specializations.
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1. Hy O EXA < Circum(Hy , HEHEBR)

The seaond popasition states that the digointness assumptions (DJA) are obtained by
circumscribing all event types other than “AnyEvent”, the most genera event type, in the
resulting set of formulas. The minimization means that something is an instance of an event type
only if it has to be, because it is an instance of AnyEvent, and the exhaustiveness assumptions
imply that it is also an instance of a chain of spedalizaions of AnyEvent down to some basic
type. In aher words, noinstanceis a member of two dfferent types unlessthose types dare a
common specialization; that is, unless they are compatible.

2. Hpn O EXA ODJA = Circum( Ha O EXA, HE{AnyEvent})

The third propasition states that the comporent/use asumptions (CUA) result from
circumscribing all event types other than End relative to the complete event hierarchy together
with the exhaustiveness and digointness assumptions. Note that in this case both the
deampasition and abstradion axioms are used. Intuitively, events of type End “just happen”,
and are not explained by their occurrence @ a substep of some other event. Minimizing al the
nonEnd types means that events occur only when they are End, a a step o (a subtype of) End,
or astep of step of (asubtype of) End, etc. Thisis equivalent to saying that a event entail s the
disjunction of all events which could have the first event as a component.

3. HOEXA ODJAOCUA = Circum(HO EXA O DJA , He<{End})

The minimum cadinadity asumption canna be generated by this kind d
circumscription. The minimum cardinality assumption minimizes the number of elementsin the
extension d End, while drcumscription performs setwise minimizaion. A model where the
extension d Endis{:A, :B} would na be preferred to ore where the extension is{:C}, becaise
thethe latter extension is not a proper subset of the former.

3.6.2. Covering Models

The various completeness assumptions are intuitively reassonable and, as we have seen,
can be defined independently of the drcumscription schema. The propasitions above might
therefore be viewed as a technicd exercise in the mathematics of circumscription, rather than as
part of an attempt to gain a deger understanding d plan recogntion. On the other hand, the
propasitions do alow us to use the model theory of circumscription to construct a model theory
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for the plan remgrntion. The origina event hierarchy is mising information reeded for
recgntion — or equivaently, the original hierarchy has too many models. Ead
circumscription throws out some group d models that contain extraneous events. The models of
the final circumscription can be though of as “covering models’, becaise every event in eat
model is either of type End a is “covered” by an event of type End that has it as a comporent.
(This in fact is the lemma that appears below in the proof of proposition 3.)

The minimum cardinality assumption further narrows the set of models, seleding ou
those mntaining the smallest number of End events. Therefore the @nclusions of the plan
recgntion theory are the statements that hold in al “minimum covering models’ of the
hierarchy and olservations. This model-theoretic interpretation d the theory suggests its
similarity to work on dagnasis based onminimum set covering models, such as that of Reggia,
Nau, & Wang [1983].

3.6.3. Proof of Proposition 1
Ha O EXA < Circum(Hy , HEHEB)

() Suppse{Ey, Ep, ..., En} are dl the predicaes diredly abstraded by EginHa. We daim
that the statement:
Ox . Eg(x) U (E1(x) DE2(x) O... OER(X))

istruein all models of Hp, that are minimal in He—Hgg. Let M1 be amodel of Hp in which the

statement does not hold. Then there must be some :C such that
Eo(x) O-E1(x) O... O=Enx(X)

is true in M{x/:C}. Define M2 by
Domain(Mp) = Domain(Vy)
Mo[Z] = M1[Z] for Z # Eg
M2[Eq] = M3[Eq] —{:C}

That is, M2 is the same & My, except that :C [0 Mo[Eg]. We daim that M2 isamodel of Hp.
Every axiom that does not contain Eg onthe right-hand sideis plainly truein M2. Axioms of the

form
Ox . B(x) O Eg(x) 1<i<n

are false in M only if there is a :D such that
:D O M9[Ej] O:D OM3[Eq]
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If :D #:C, then :D OMo[Ej] O :D OM¢[Ej] O :D OM1q[Eg] O :D OM2[Eg] which is a
contradiction. Otherwise if :D = :C, then :D O Mp[Ej] O :D OM¢[Ej] O :C O M1[E;j] which
asoisa mntradiction. Therefore there can be nosuch :D, so Mo isamodel of Ha andM 1 is nat
minimal.

() First we prove the following lemma: Every event in a model of Ha U EXA isof at least
one basic type. That is, if M1 isamodel of Ha O EXA such that :C O M1[Eq], then thereis a
basic event type Ep 00 HEg such that :C O M1[Ep] and Eqg abstrads= Ep,. The proof is by
induction. Define apartial ordering over Hg by Ej < Ey iff Ey abstrads Ej. Suppose Eg U HEB.
Then Ey abstracts= g Otherwise, suppose the lemma holds for a# Eg. Since

Ox . Eg(x) O (E1(x) D Ex(x) O... OER(X))
and :CO M1[Eq], it must the case that

:COM1q[Eq] O... O:COM1[Ep]

Withou lossof generdlity, suppcse :C L M1[E1]. Then there is an Ep such that Eq abstrads=
Ep and :C O M1[Ep]. Since Eq abstrads E1, it also abstrads= Ep. This completes the proof of
the lemma.

We prove that if M1 isamodel of Hp O EXA, then M is amodel of Hp minimal in HE—HEgR.
Suppacse not. Then there is an M2 such that M1 >> Mo, and there is (at least one) Eqg U HE—

Hepg and event :C such that
:C OM1[Eq] O:C O Mo[E(]

By the lemma, thereis an Ep [0 Hgg such that :C [0 M1[Ep]. Since M4 and M2 agreeon HER,
:C O Mo[Ep], and kecause Eq abstrads Eyp, :C U Mo[Eg], which is a contradiction. Therefore
there can be no suchdyl and M is minimal. This completes the proof of the proposition.

3.6.4. Proof of Proposition 2

Ha O EXA ODJA < Circum( Ha O EXA, HEH{AnyEvent})
(') We claim that if event predicateg Bnd B are not compatible, then the statement:

Ox . =E1(x) O=E2(X)
istruein al models of Hp O EXA that are minimal in Hge—<{ AnyEvent}. Let M1 be amodel of
Ha O EXA in which the statement is false and :C be an event such that

E1(x) DE2(X)

is true in M1{x/:C}. Using the lemma from the proof of propasition 1,let E be abasic event
type abstracted byjEsuch that :CJ M 1[Ep]. Define Mp as follows.
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Domain(Mp) = Domain(Vy)

Mo[Z] = M1[Z] for Z O HE

Mo[Ej] = M1[Ej] if Ej abstracts= g

M1[Ej]:C} otherwise

In particular, nae that M1[AnyEvent]=Mo[AnyEvent], since AnyEvent cetainly abstrads Ep,.
We claim that M is a model of K4 O EXA.
(Proof that M is a model of l4.) Suppose not ; in particular, suppose the axiom

0x . Ej(x) O Ej(x)
isfasein M2. Sinceitistruein M1, and Mo differsfrom M1 only in the esenceof :C from the
extension of some event predicates, it must be the case that

:C UMp[Ej] O:COMp2[E{]
while

:C UMq[Ej] O:COMj[Ej]
By the definition o Mp, it must be the cae that Ej abstrads= Ep,. Since Ej abstrads Ej, then Ej
abstrads= Ep as well. But then M1 and M2 would have to agreeon Ej; that is, :C O Mg[Ej],
which is a contradiction.
(Proof that M is a model of EXA.) Suppose not; in particular, suppose

Ox . Ejo(¥) O (Ej1(<) OEjp(x) O... OEjn(x))
is false. Then it must be the case that

:C OMo[Ejo] O:COMpo[Ej1] O... O:COMo[Ejn]
But :C OMo[Ejg] means that Ejg abstrads= Ep. Since Ejg is not basic, at least one of
Ej1, ..., Eln abstrads= Ep. Withou loss of generality, suppcse it is Ejq1. Then :C O M1[Ep]
O :COMg[Ep] O :C0OMo[Ejq], a contradiction.

Note that because Eq and Ep are not compatible, Ep canna abstrad= Ep,. Thus :C O Mo[Ep], so
M1 and M differ at least on E Therefore M >> M2 so M is not minimal.

() First we note the following lemma: Every event in a model of Ha [0 EXA [ DJA is of
exadly ore basic type. By the lemma in the proof of propcsition 1there is at least one such
basic type, and by DJA no event is of two basic types.

We prove that if M1 isan model of Ha O EXA O DJA, then M1 is minimal in He—{ AnyEvent}
relative to Ha O EXA. Suppacse there is an M2 such that M1 >> Ma.and there eists (at least

one) iy 0 He{AnyEvent} and event :C such that
:COM1[Eq] O:COMo[E(]
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Then :C OM1[Eg] U :C OM1[AnyEvent] O :C OO Mg[AnyEvent]. By the lemmain the proof
of propasition 1thereis osme Ep O HEg such that :C O Mo[Ep]. SinceM1 >> Mo, it must be
the case that :C O M1[Ep]. By thelemma @owe, Ep isthe unique basic type of :Cin M1, and Eg
abstrads= Ep. But Eq abstrads= Ep means that :C O Mo[Ep] O :C O M9[Eg], a mntradiction.
Therefore there can be no such Mo, and M1 must be minimal. This completes the proof of
proposition 2.

3.6.5. Proof of Proposition 3
HOEXA ODJAUOCUA < Circum(HO EXA O DJA , HEHEnd})

() First we prove the following lemma: Suppcse M1 isamode of H O EXA [0 DJA that is
minimal in He<{ End}. If :Cq O M1[E4] for any event predicae E1, then either :Cq O M1[End]
or there eists sme event token :Co such that :Cq is a dired comporent of :Cp. Suppacse the
lemma were false. Define vas follows.

Mo[Z] = M1[Z] for Z OHE

Mo[E] = M1[E]{:C1} for E OHE
Note that M1 and M2 agreeon End. We will show that H [0 EXA [0 DJA hdds in M2 which
means that I >> M, a contradiction. We consider each of the types of axioms in turn.

(Case1) Axioms in Hg must hold, because they receive the same valuation iand M.

(Case2) Axioms in Ha are of the form:
0x . Ej(x) O Ej(x)

Suppose one is false; then for some :D,
:D O M[Ej] 0:D O M3[Ej]

But thisisimpaossble, becaise M1 and M2 must agreewhen :D # :C1, as must be cae, because
:C4 does not appear in the extension of any event typein M

(Case 3) Axioms in EXA must hold by the same argument.
(Case4) Axioms in DJA must hold because they contain no positive useg.of H

(Case5) The jth axiom in Hy is of the form:
Ox - o) 0 Eja(fj2(<) DE(fj2(x)) 0. OEjn(fjn()) O k
Suppose it does not hold ingM Then there must be somey:€lich that
Ejo(x) O{-Ej1(fj1(x)) O-~Ej2(fji2(x)) O... 0=k }



Kautz Plan Recognition 09/09/97 page3l

is true in Mo{x/:Co}. M1 and M2 agree on K, so it must the cae that for some j and i,
M2Ifil(:C2) O M2[Eji] while M1][fii](:C2) U M1[Eji]. Becaise M3 and M3, differ on Eji only at
:Cq, it must be the cae that M1][fjj](:C2) = :Cy. But then :Cq is a comporent of :C in My,
contrary to our original assumption. This completes the proof of the lemma.

Consider now an arbitrary member of CUA as defined abowve, which hes predicate E on its left
hand side. Let M be amodel of H [0 EXA [ DJA that is minimal in He—{ End} such that :C
0 M[E] and :C0 M[End]. By the lemma above there is qo,EEji, and :D such that

:D O M[Ejo]

:CO M[Eji]

.C= M[fji](:D)

where fjj isarole function in a decomposition axiom for Ejo. Becaise M isamodel of DJA, E
and Eji are compatible. By inspedionwe seethat the seoond helf of the formula dowveistruein
M when x is boundto :C, becaise the digunct containing Eji is true when the variable y is
boundto :D. Sincethe doiceof :C was arbitrary, the entire formulais truein M. Finaly, since
the choice of M and the member of CUA was arbitrary, all of CUA is true in al models of H
O EXA O DJA that are minimal in BE{End}.

(O) We prove that if M1 is a model of H O EXA U DJA [0 CUA, then it is a model of H
O EXA O DJA which isminimal in He<{ End}. Suppcse nat; then there is an Mo such that M1
>> Mo, and there exists (at least onq) [ EHg—{End} and event :@ such that

:C1 OMq[E1]

:C1 O Mo[E1]

We daim that there is a:Cp, such that :C,  M1[End] and :Cq is a comporent= of :Cy. Thisis
obviously the cae if :Cq [0 M1[End]; otherwise, for the aioms in CUA to hdd there must be

sequences of event tokens, types, and role functions of the following form:
C1 Cp C3 C3 Cg Gy

such that
For all j, G o Ml[Ej]
For odd j, L]:.and B+ are compatible
For odd j, j= 3, B-1 is a direct component 01] Fand ‘G2 = Ml[fji](:Cj)
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This squence must terminate with a :Cp such that :Cn O M1[End] because H is agyclic.
Therefore :G is acomponent= of q.

Because M1 and M2 agree on End, :C, O Mo[Endl. Now for any oddj, 3 <j <n, if :Gj
U M2[Ej], then since Iy holds in M, :C]'_z U M2[Ej_1]. If we prove that for all odd j,4j <n
:Cj UM2[Ej+1] O :Cj OM2[Ej]

we will be dore; because we would then know that :C, O Mo[End] O :ChnOM2[En+1] O :Ch
OM2[En] O :Ch2 OM2[En1]1 O ... 0O :C3OMo[E3] O :C1OMo[Ep] O :C1 OMo[E1]
which yields the desired contradiction. So assume the antecedent :Cj [ M[Ej+1]. Becaise M3
isamodel of Ha [ EXA [ DJA, thereisaunique Ep [ Heg such that :Cj [ Mo[Ep]. Becaise
M1 >>Mp, :Cj UMy[Ep]. SinceMj isamodel of Ha U EXA [ DJA, by the lemma in the
proof of propasition 2it must be the case that Ej abstrads= Ep. But then sinceHp, hddsin M,
:Cj ] M2[Ej], and we are done. This completes the proof of proposition 3.

4. Examples

4.1, An Operating System

Several reseach groups have examined the use of plan recogntion in “smart” computer
operating systems that could answer user questions, watch what the user was doing, and make
suggestions about potential pitfalls and more dficient ways of acawmplishing the same tasks
[Huff & Lesser 1982, Wilensky 1983. A user often works on several different tasks during a
single sesson at a terminal, and frequently jumps badk and forth between urncompleted tasks.
Therefore aplan recognition system for this domain must be ale to handle multiple concurrent
unrelated pans. The very generality of the present approad is an advantage in this domain,
where the focus-type heuristics used by other plan recognition systems are not so applicable.
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4.1.1. Representation

End

Modify file

edit
move . step
step
Move old Delete file Copy old Edit file
new new

figure 2. Operating System Hierarchy.

Consider the following hierarchy. There are two End plans. to Rename a file, and to
Modify afile.

[Ix . Rename(x) [ End(x)

[x . Modify(x) 00 End(x)

There are two ways to specialize the Rename event. A RenameByCopy involves Copying afile,
and then Deleting the original version of the file, without making any changes in the original file.

[Ix . RenameByCopy(x) [0 Rename(x)
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[Ix . RenameByCopy(x) [
Copy(s1(x)) U
Delete(s2(x)) O
old(s1(x)) = old(x) O
new(s1(x)) = new(x) [J
file(s2(x)) = old(x) O
BeforeM eet(time(s1(x)), time(s2(x))) O
Starts(time(s1(x)), time(x)) O
Finishes(time(s2(x)), time(x))

A better way to rename afile is to RenameByMove, which simply uses the Move command.4 A
helpful system might suggest that a user try the Move command if it recognizes many instances
of RenameByCopy.

[Ix . RenameByMove(x) [J Rename(x)

[Ix . RenameByMove(x) [
Move(sl(x)) O
old(s1(x)) = old(x) O
new(s1(x)) = new(x)

The Modify command has three steps. In the first, the original file is backed up by Copying.
Thenthe original fileis Edited. Finally, the backup copy is Deleted.

[x . Modify(x) O
Copy(s1(x)) U
Edit(s2(x)) O
Delete(s3(x)) O
file(x) = old(sL(x)) O
backup(x) = new(s1(x)) OJ
file(x) = file(s2(x)) O
backup(x) = file(s3(x)) O
BeforeM eet(time(s1(x)), time(s2(x)) ) O
BeforeM eet(time(s2(x)), time(s3(x)))

4 Another way to represent this information would be to make Move a specialization of Rename. This would mean
that every Move would be recognized as a Rename, and therefore as an End event. This alternative representation
would not be appropriate if there were End events other than Rename which included Move as a component.
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4.1.2. Assumptions

Following are some of the statements obtained by minimizing the hierarchy. The
comporent/use asumptions include the statement that every Copy adion is either part of a
RenameByCopy or of a Modify.

[x . Copy(x)O]

(Oy . RenameByCopy(y) x=s1(y))O
(By . Modify(y) Ox=s1(y))

Every Delete event is either the seaond step of a RenameByCopy, a the third step of a Modify,
in any covering model.

[x . Delete(x)

(Oy . RenameByCopy(y) x=s2(y))
(By . Modify(y) Ox=s3(y))

4.1.3. The Problem

Suppacse the plan reaognition system observes ead adion the user performs. Whenever a
new file name is typed, the system generates a mnstant with the same name, and as<erts that that
constant is not equal to any aher file name @nstant. (We do nd alow UNIX[-style “links’.)
During a session the user types the following commands.

(1) %copy foo bar
(2) % copy jack sprat

(3) %delete foo

The system shoud recognizetwo concurrent plans. Thefirst isto rename the file “foo” to “bar”.
The second is to either rename or modify the file “jadk”. Let's examine how these inferences
could be made.

Statement (1) is encoded:

Copy(C1)Oold(C1)=oo Onew(Cl)=bar

The cmporent/use asumption for Copy lets the system infer that C1 is either part of a
RenameByCopy a Modify. A new name *11 is generated (by existential instantiation) for the
disjunctively-described event.
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End(*11) O
( (RenameByCopy(*11)1C1=s1(*11))
U
(Modify(*I1) OC1=s1(*I11))

Statement (2) is encoded:

Copy(C2)Jold(C2)=jackld new(C2)=spratl Before(time(C1), time(C2))

Agan the system credes a digunctive description for the event *12, which has C2 as a
component.

End(*12) O
( (RenameByCopy(*12)1C2=s1(*12))
U
(Modify(*I2) O0C2=s1(*12))

The next step is to minimize the number of End events. The system might attempt to apply the
strongest minimization default, that

Ox,y . End(x)J End(y) O x=y

However, dang so would lead to a ocontradiction. Becaise the types RenameByCopy and
Modify are digoint, *I11=*12 would imply that C1=C2; however, the system knows that C1 and
C2 are distinct -- among dher reasons, their times are known to be not equal. The next strongest
minimality default, that there are two End events, cannot lead to any new conclusions.

Statement (3), the act of deletifigo”, is encoded:

Delete(C3)Ifile(C3)=foo [1Before(time(C2), time(C3))

The system infers by the decomposition completeness assumption for Delete that the user is
performing aRenameByCopy or a Modify. The name *I13 is assigned to feerad event.

End(*13) O
( (RenameByCopy(*I3)1C3=s2(*13))
U
(Modify(*I3) 0C3=s3(*13))
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Again the system tries to minimize the number of End events. The second strongest minimality
default says that there are no more than two End events.

0x,y,z . End(x)J End(y) D End(z)
x=y Ux=z y=z

In this case the formula isstantiated as follows.

*11=*12 O*11=*I13 O*12=*I3

We have already explained why the first alternative is impossible. Thus the system knows

*11=*13 O*12=*13

The system then reduces this digunction by reasoning by cases. Suppase that *12=*13. This
would mean that the sequence

(2) % copy jack sprat
(3) %delete foo

is either part of &#enameByCopy or of a Modify, described as follows.

End(*12) O
( (RenameByCopy(*12)1C2=s1(*12) 1 C3=s2(*12) ]
0  old(*12) = jackOold(*I2) = foo)
O
(Modify(*12) OC2=s1(*I2)0d0C3=s3(*12)1
new(s1(*12)) = jackd
file(*12) = jack OJ
backup(*12) = sprat]
file(s3(*12)) =foo [
O  backup(*12) = file(s3(*12)))
)

But bath diguncts are impossble, sincethe files that appea as roles of eat event do nd match
up (as marked with1's). Therefore, if theninimality default holds, it must be the case that

*11=*I3

This means that the observations
(1) %copy foo bar
(3) %delete foo
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shoud be grouped together, as part of a Rename or Modify. This assumption leads the system to
conclude the disjunction:

End(*11) O

( (RenameByCopy(*I11)JC1=s1(*I11)0C3=s2(*I11)
old(*I1) = foo Onew(*I1) = bar)

O
(Modify(*I1) OC1=s1(*I11)0C3=s3(*I11)[
new(s1(*I1)) = bai]
backup(*I1) = bail
file(s3(*11)) = foo [

0  backup(*I1) = file(s3(*I1)))
)

The second alternative is ruled ou, since the adions canna be part of the same Modify. The
system concludes observations (1) and (3) make up a RenameByCopy ad, and olservation (2) is
part of some unrelated End action.

End(*11) O

RenameByCopy(*11)]

old(*I1) = foo Onew(*I1) = bar(]

End(*12) O

( (RenameByCopy(*12)1C2=s1(*12))

0
(Modify(*I2) O0C2=s1(*12))

)
Further chedking d constraints may be performed, bu no inconsistency will arise. At this point
the planrecognizer may trigger tedvice givet to tell the user:

*** You can renane a file by typing
*** 06 nove ol dnane newnane

4.2. Medical Diagnosis

There ae dose links between the kinds of reasoning involved in plan reagntion, and
that employed in medicd diagnaosis. The vocabulary of events can be mapped to ore gpropriate
for diagnasis in a straightforward way. Events are replacad by pathological states of a patient.
An abstraction hierarchy over pathoogicd states is known as a nosology. The decomposition
hierarchy corresponds to a causation hierarchy. If pathologicd state A aways causes
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pathoogicd state B, then B ads as a comporent of A. If only certain cases of A cause B, then
one can introduce aspedalizaion d A that has comporent B. The most basic spedali zaions of
End (unexplainable) events correspond to specific disease entities, while states that can be
diredly observed are symptoms. (Note that a symptom may also cause other other states: for
example, high blood pressure can be directly measured, and it can cause a heart attack.)

The pattern o inference in pan recgntion and dagnasis is smilar as well. Ead
symptom invokes a number of different diseases to consider, just as ead olserved event in our
framework entails the digunction d its uses. Once severa findings are obtained, the
diagnastician attempts to find a small set of diseases that accourts for, or covers, al the findings.
This gep corresponds to the minimizaion d End events. A general medicd diagnasis g/stem
must ded with patients suffering from multiple diseases, our plan recogrition framework was
designed to acourt for multiple concurrently exeauting dans. Finaly, ou work departs from
previous work in pan recogntion by explicitly deding with dgunctive @wnclusions, which are
winnoved donvn by oliaining more observations. These digunctive sets correspond to the
differential diagnosis sets that play a ceitral role in medicd reasoning. In some ways medicd
diagnasis is easier than pan remgntion. Medicd knowledge can often be represented in
propasitional logic. There is usualy no real for diseases to include parameters, the way plans
do, and most medical expert systems do not need to deal with the passage of time.

The following example is drawn from [Pople 1982, and was handled by CADUCEUS,
an expert system that deds with internal medicine. We have made anumber of simplificaions,
but the key pants of the example remain. These include the nead to consider speaalizaions of a
pathoogicd state (abstrad event type) in arder to explain a symptom, finding, a state, and the
process of combining or unifying the differential diagnosis sets invoked by each finding.

4.2.1. Representation

The figure below ill ustrates a small part of CADUCEUS's knowledge base. The thin
“comporent” arcs are here understood as meaning “can cause”. We have alded the type End as
an abstradion d all pathoogicd states that are not caused by other pathologicd states. The
basic spedalizaions of End are cdl ed specific disease entities. We have simplified the hierarchy
by making the spedalizaions of anemia and shock spedfic disease antities; in the adua
knowledge base, anemia and shock are caused by other conditions.
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End

Anemia Shock Hepatobilary

Pallor

- \ Involvement

Non-Hemolyitic Hemolytic
Anemia Anemia

Gilberts

Hyperbili- / Disease
rubinemia

_Unconjugated

Bilary
Tract

* Hyperbili- H epT
rubinemia Cellular
_ Involvement
Jaundice Conjugated e
Hyperbili-

rubinemia Cirrhosis

figure 3: Medical Hierarchy.

The logicd encoding d this network is as expeded. The symptoms caused by a disease
appea in the decomposition axiom for that disease. This is a cnsiderable simplification ower
the original CADUCEUS modedl, in which the caisa conredions neeal only be probable.
Symptoms of high probability, however, are taken by CADUCEUS as necessary manifestations,
and CADUCEUS will rule out a disease on the basis of the absence of such symptoms. The
constraints that appea at the end d a decompasition axiom would include cndtions of the
patient that are (very nealy) necessary for the occurrence of the disease, bu are not themselves
pathologicd. These wmuld include the age and weight of the patient, his immunizaion history,
and so on. Thus a @nstraint on Alzheimer's disease would include the fad that the patient is
over 40. Constraints are not used in this example.

For the sake of clarity the names of the role functions have been omitted from comporent
(symptom) arcs in the ill ustration, bu such functions are nealed in the logicd encoding. We
will usethelettersj, h, pfor role functions, where j is used for symptoms of type jaundice, hfor
symptoms of type hyperbilirubinemia, and pfor symptoms of type pallor. The names used is
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really not important, except that al the different symptoms caused by a particular disease must
be related to it by different role functions.

A few of the axioms and assumptions follow. All kinds of hyperbilirubinemia cause
jaundice, and both anemia and shock cause pallor .

Oy . hyperbilirubinemia(y) O jaundice(j(y))
Oy . anemiay) U pallor(p(y))

Oy . shock(y) O palor(p(y))

Unconjugated hyperbilirubinemiais a kind of hyperbilirubinemia, which can be caused by
hemolytic anemia, akind of anemia.

[ x . unconjugated-hyperbilirubinemia(x) [ hyperbilirubinemia(x)
Oy . hemolytic-anemia(y) O hyperbilirubinemia(h(y))
[ x . hemolytic-anemia(x) [J anemia(x)

It may seem abit odd that we need to use a first-order language, when the problem would
seem to be expressible in purely propositional terms. The problem with using propositional logic
arises from the abstract pathological states. A realistic medical knowledge base incorporates
several methods of classifying diseases, leading to a complex and intertwined abstraction
hierarchy. It isvery likely that any patient will manifest at least two distinct pathological states
(perhaps causally related) that specialize the same state. In a purely propositional system such a
pair would appear to be competitors, as in a differential diagnosis set. (This corresponds to the
digointness assumptions in our system.) But this would plainly be incorrect, if the two states
were causally related.

4.2.2. Assumptions

Now we restrict our attention to the covering models of this hierarchy. The ex-
haustiveness assumptions include the fact that every case of hyperbilirubinemia is either
conjugated or unconjugated.
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[ x . unconjugated-hypéili rubinemigx) [
conjugatedaypebilirubinemigx) [
unconjugated-hypérlirubinemigx)

Digjointness assumptions include the fad that the pathoogicd states of anemia, shock, and
hepatobilary involvement are distinct. It is important to nde that this does not mean that the
states cannot occur simultaneously; rather, that none of these states abstract each other.

[ x . ~anemia(x)J-shock(x)
0 x . ~anemia(x)] ~hepatobilary-involvement(x)

[ x . =shock(x)[J ~hepatobilary-involvement(x)

Finaly, the component/use assumptions, better cdled the manifestation/cause assumptions,
alow one to conclude the disunction d causes of apathaogicd state, thus creating a differential
diagnosis set. An important spedal case occurs when there is only one caise, usualy at afairly
high level of abstradion, for a state. An example of this is the assciation d jaundice with
hyperbilirubinemia. (Pople cdlsthis case aconstrictor relationship between the manifestation
and cause, and argues that such cases play a aiticd rolein reducing seach in dagnastic problem
solving.) A less conclusive assumption says pladibr indicatesanemiaor shock

0 x . jaundice(x)d Oy . hypebilirubinemigly) Ox=j(y)

0 x . pallor(x)
(Oy . anemia(y)Ix=p(y)) U
(Qy . shock(y)dx=p(y))

4.2.3. The Problem

We'l sketch the kind d reasoning that goes on when the diagnastician is confronted with
two symptoms, jaundice and pallor. From jaundice the diagncstician concludes hyperbili -
rubinemia. This leals (by exhaustion) to either the conjugated or unconjugated varieties.
Now CADUCEUS (and perhaps a human physician?) may try to perform tests to deade between
these dternatives at this paint. The framework we have developed, havever, al ows us continue
inference in ead dternative. The first leals to either hemolytic anemia and then anemia, or
Gilbert’ s disease and then hepatobilary involvement. The second leals to ether bilary tract
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disease or hepto cellular involvement, both of which lead to hepatobilary involvement. The
following graph shows the final conclusion.
nd(E])

Anemia(ET) : Hepatobilary
. Involvement(ET)

Hemolytic

Anemja(ET) .
Gilberts
Hyperbill / Disease(E1)
rubinemia(H1) Bilary )
Unconjugated Tract(ET)

Hep’ro
Cellular

. Involvement(E1)
Jaundice(J1) Conjugated
Hyperbili-

rubinemia(H1)

Hyperbili-
rubinemia(H1)

figure 4: Conclusions from Jaundice.

The graph represents the following logical sentence. (Further steps in this example will be
illustrated only in the graphical form.)
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jaundice(*J1)J hyperbilirubinemia(*H1)]
( ( unconjugated-hyperbilirubinemia(*H1L)
( ( hemolytic-anemia(*E1))anemia(*E1) )

U
(Gilberts-disease(*E1) hepatobilary-involvement(*E1) )
)
)
U
( conjugatedivyperbilirubinemia(*H1)
( bilary-tract(*E1)
U
bilary-tract(*E1)
) O
heptocellular-involvement(*E1)
)
) O
End(*E1)

Next the diagnostician considgyallor. This leads to a simple disjunction.

End(E2)

Anemia(E2) Shock(E2)

\ /
Pallor(P2)

figure 5. Conclusions from Pallor.

Finaly, the diagnastician applies Occan's razor, by making the assumption that the symptoms
are caused by the same disease. This corresponds to equating the spedfic disease antities at the
highest level of abstradion (End) in ead of the previous conclusions. In ather words, we gply
the strongest minimum cardinality default. This alows the diagnastician to conclude that the
patient is suffering from hemolytic anemia, which hes led to unconjugated hyperbilirubin-

emia.
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End(ET)

Anemia(E1)

Pallor(P2)

Hemolytic
Anemija(E1)

Hyperbili-
rubinemia(H1)

_ Unconjugated
Hyperhbili-
rubinemia(H1)

Jaundice(J1)

figure 6: Conclusions from Jaundice and Pallor.

A pradicd medicd expert system must ded with a gread many problems nat illustrated
by this smple example. We have nat dedt with the whde problem of generating appropriate
tests for information; we cana asuume that the epert system is passively soaking in
information, like aperson reading a book. The full CADUCEUS knowledge base is enormous,
and it isnot clea whether the mmplete dgorithms discussed in the next chapter could ded with
it.

It does am plain, howvever, that our framework for plan recogntion dces formalize
some key parts of diagnastic reasoning. In particular, we show how to “invert” a knowledge
base which all ows inferences from causes to effeds (diseases to symptoms) to ore which all ows
inferences from effeds to causes. Like the minimum set covering model of [Reggia, Nau, &
Wang 1983 we combine information from several symptoms by finding the smallest set(s) of
diseases which explains al the symptoms. One shoud nde that our framework depends on
having a model of disease, bu not a model of hedthy processes. Thisis to be mntrasted with
work on “diagnasis from first principles’, such as [Reiter 1987, which models the crred or
hedthy functioning o a system, and which derives a diagnasis by trying to resolve
inconsistencies between this model and the actual observations.
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5. Algorithms for Plan Recognition

5.1 Directing I nference

An implementation of this theory of plan recognition must limit and organize the
inferences drawn from the observations, hierarchy, and assumptions. As noted before, the formal
theory sanctions an infinite set of conclusions. An implementation, on the other hand, must
compute some finite data structure in a bounded amount of time.

The framework developed in this chapter does not pose the plan recognition problem in
such away that a solution is simply the name of a specific plan. Instead, a solution is a partial
description of the plansthat are in progress. Different encodings of this description make aspects
of the plan more or less explicit. For example, an encoding that leaves most aspects of the plans
in progress implicit is ssmply the set of sentences in the observations, hierarchy, and
assumptions. A more explicit encoding would be a disiunction of al the possible End plan
types that explain the observations. A very explicit encoding may not only be expensive to
compute, but may also involve aloss of detail. All information is contained in the observations,
hierarchy, and assumptions, but the more explicit representation may include (for example)
unnecessary digunctions due to the incompleteness of the inference method employed. In fact,
some degree of incompleteness is necessary in any implementation of our formal theory, because
the definition of the minimum cardinality assumption appeals to the consistency of a set of
sentences, an undecidable property.

The less inference the plan recognition system performs, the more inference must be
formed by the programs that call the plan recognizer as a subroutine. The implementation
described in this section tries to strike a balance between efficiency and power. The choices we
have made are to some degree arbitrary. We have not tried to develop a formal theory of limited
inference to justify these choices, although that would be an interesting and useful project.
Instead, we have been guided by the examples of plan recognition discussed in this chapter and
elsewhere in the literature, and have tried to design a system that makes most of inferences
performed in those examples, and that outputs a data structure that makes explicit most of the
conclusions drawn in those examples.

The implementation performs the following pattern of reasoning: from each observation,
apply component/use assumptions and abstraction axioms until an instance of type End is
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reated. Reducethe number of aternatives by cheding constraintslocdly. In arder to combine
information from two olservations, equate the instances of End inferred from ead and propagate
the equality, further reducing digunctions. If al aternatives are diminated, then conclude that
the observations belongto distinct End events. Multi ple simultaneous End events are recogn zed
by considering all ways of groupng the observations. Asnoted ealier, it isnot possbleto deted
al inconsistencies. Therefore the “best” explanation returned by the system (by the function
minimum-Hypoths, described below) may in fad be inconsistent, becaise observations were
grouped together which logically could not be combined.

The dgorithms presented here only hande event hierarchies in which the dstradion
hierarchy is aforest. That is, they do nd ded with “multiple inheritance’. (But note that the
decompasition herarchy is not necessarily a forest — one event type may be acomponrent of
many ohers. For example, MakeMarinara fals below both MakeSpaghettiMarinara and
MakeChickenMarinarain the decomposition hierarchy.) Furthermore, in order to limit i nference,
the implementation daes naot perform inferences that correspond to applicaions of the
decompasition axioms. This restriction limits the predictive power of the system to some degree
The implementation could na read ore of the nclusions drawn in the example presented in
sedion 3.5,where the observer concludes that the agent is making spaghetti because the agent is
known to be making either spaghetti marinara or spaghetti pesto. However, the implementation
described here does make explicit al the other conclusions presented in the examples in this
chapter.

5.2. Explanation Graphs

Chaining through al the comporent/use asumptions raises the prosped of generating
extremely long dgunctive conclusions. The first assumption generates a disunction; applying
the assumptions to ead digunct in this formula generates another disjunction; and so on. In
generd this processmultiplies out the event hierarchy from the bottom up, creding a number of
literals exporential in the size of the original hierarchy. This problem has led ather plan
recognition systems to limit component/use type inferences to a single application.

Our implementation meds this problem by using a nonclausal representation d the plan
description. The representation takes the form of alabeled acyclic graph, cdled an “explanation
graph” or “e-graph’. These graphs can encode digunctive assrtionsin a mwmpad form through
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structure-sharing.  While in the worst case the e-graph generated by an observation can be
exponential in the size of the event hierarchy, in all the examples we have considered structure
sharing allows the e-graph to be smaller than the hierarchy.

The figure below shows the e-graph that is generated for an observation of
MakeMarinara.

End(N7)

T

PrepareMeal(N6)

SR

MakePasta MakeMeat

Dish(N4) Dish(N5)
Make'Spaghetti MakeChicken
Marinara(N2) Marinara(N3)

o

MakeMarinara(N1)

figure 7. e-graph for MakeMarinara(N1).

An e-graph contains the following three kinds of nodes. Event nodes consist of an event
token and a single associated event type. An event token N appears at most once in an e-graph,
so we can simply identify the token with the node, and recover the associated type with the form
type(N). In the figure above, N1 through N7 are all event nodes. Proper names are unique
names for objects other than events and times. Fuzzy temporal bounds are 4-tuples of real
numbers. (No proper names or fuzzy temporal bounds appear in the figure above.)

There are two kinds of arcs, both of which can only lead out of event nodes. A
parameter arc is labeled with arole function f; and points to its value v. When the value is an
event node or a proper name, the arc means that f(N)=v. The figure above contains two
parameter arcs, labeled s2 and s5. When the value is a fuzzy tempora bound, the arc means that
according to some universal clock, the beginning of the time interval f (N) falls between the first
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two numbers and the end letween the last two numbers. Below we will discusshow fuzzy time
bound can be combined, so that temporal constraint propagation can be performed withou
recourse to a separate temporal database program.

The second knd d arcs are alternative arcs, which always point at event nodes. The
meaning d these acsis that the (event token identified with the) origin noce is equal to ore of
the nodes pointed to by an alternative ac. Note that event nodes (tokens) are not unique names
for events; in general, several nodesin an e-graph will represent the same red-world event. The
dternative acs point from a node of a particular type to a node of a more spedalized type. The
alternative arcs in the figure above are labeled with=arsign.

Every e-graph G contains exadly one noce N of type End. The trandation d that graph
into sentential logic is given by TRANS(N), where TRANS is given by the following reaursive
definition.

TRANS(n) =
type(n) (n)U
D{v:fr(n) OTRANS(v) |n,f,vJ G and v is an event nodé}

D{v:fr(n) | [, fr,v G and v is a proper namé}
D{rl 2fe(n)y 2r20r3 2 f(n)* 2 r4 |[,fy, (11, r2, r3, r40 G} U
[kn=mDOTRANS(mM) |d, =,m00 G}

In the first line of the trandation, the expresson “type(n)” stands for the event type predicae
asociated with noce n. The full expresson “type(n)(n)” means that this predicate is applied to
thelogicd constant n. Arcsin the graph are represented by triples, consisting d anode, a label,
and a noce. In the definition abowe, [hf ,vlis an arc from event node n, labeled with role
function fy, to event nocev. Similarly, [nf, i1, r2, r3, r4[dis an arc from event noce n, labeled
with temporal parameter f, to fuzzy temporal bound i1, r2, r3, r4ll The triple h, =, mQ
indicaes that node m is an dternative for node n in the graph. The postfix functions — and +
apply to a time interval and return the metric time of the start and end d interval respedively.
The event tokens in the trandation are interpreted as Skolem constants (existentially quantified
variables). The translation of figure 7 is the sentence
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End(N7) ON7=N6 [JPrepareMeal (N6) []
( (N6=N4 O MakePastaDish(N4) [J
N4=N2 [0 MakeSpaghettiMarinara(N2) []
step2(N2)=N1 O MakeMarinara(N1) )
[J( N6=N5 [DMakeMeatDish(N5) [
N5=N3 [0 MakeChickenMarinara(N3) [J
step5(N3)=N1 O MakeMarinara(N1) ) )

An e-graph describes asingle End event. When the plan recognizer determines that more
than one End event is in progress it returns a set of End events, whose interpretation is the
conjunction of the interpretations of each e-graph. When the observations can be grouped in
different ways the recognizer returns a set of sets of End events, whose interpretation is the
disiunction of the interpretation of each set. For example, given three observations where no
plan contains all three, but some plans contain any two, the recognizer returns a set of the form
{{91&2, g3}, {91, 92&3}, {g1&3, g2}}.

5.3. | mplementing Component/Use Assumptions

A component/use assumption leads from an event to the digunction of all events that
have a component that is compatible with the premise. Isis desirable that this digunction not be
redundant; for example, it should not contain both an event type and a more specialized version
of the event type. The agorithm below implements the component/use assumptions by first
considering the cases that explicitly use the premise event type (plus a few others, as we shall
explain in a moment); next considering the cases that explicitly use a type that specializes the
premise type, and that are not redundant with respect to the first group of cases;, and finally
considering the cases that explicitly use a type that abstracts the premise type, and are not
redundant with respect to the previous cases.

A useis atriple, [Eg, fr, Eyl) and stands for the possibility that (some instance of) E¢
could fill ther role of some instance of E;,. The set Uses contains all such triples considered by
the algorithm. We shall say that (4, 1, Eqyabstracts [Eg, r, EyjCexactly when Eg abstracts Eg
and Eg, abstracts E;. The inverse of abstraction is as before called speciaization. This notion
of abstraction is used to eliminate redundancy in the implementation of the component/use
assumptions. For example, (MakeNoodles, s1, MakePastaDish[abstracts [IMakeSpaghetti, sq,
MakeSpaghettiMarinarall Therefore once the algorithm has considered the possibility that an
event of type MakeSpaghetti is a component of an event of MakeSpaghettiMarinara, it would be
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reduncint to consider the possbility that the more &strad description d the premise,
MakeNoodles, is a component of an event of tylakePastaDish.

Uses contains the inverse of the dired comporent relation, together with certain ather
“implicit” uses. Consider the following modified cooking hierarchy.

Make
Pasta
Dish
sl il i) wis
Make (. gy,
Noodles I 4 | iy,
b W ! Wy
P % Make Make Make
| |, Fettucini  Spaghetti Noodles
% Alfredo Marinara Primavera
\ N \e =
i 4 s2 s2
i 23
| Make
'}J Fettucini
| Make Make Make
Make Afredo - rinara Primavera
Spaghetti Sauce Sauce

figure 8: Example of implicit Use.

This new hierarchy introduces the type MakeNoodesPrimavera which has no dred comporent
filling the s; role, and which therefore inherits the wmporent MakeNoodes from
MakePastaDish. Suppase the observation is of type MakeSpaghetti. It would be wrong to
conclude

Ox . MakeSpaghettiMarinara(x)

because the observation could have been a stdpl@NoodlesPrimavera. The conclusion

Ox . MakeSpaghettiMarinara(x) MakePastaDish(x)
is ound bu too wed; the dhedk for redundancy would ndicethat the type of the second disunct
abstracts the first. The correct conclusion is

Ox . MakeSpaghettiMarinara(x) MakeNoodlesPrimavera(x)

Therefore the set Uses dodd corntain the implicit use [MakeSpaghetti, sq,
MakeNoodlesPrimaveraas well asMakeSpaghettis;, MakeSpaghettiMarinata
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Define Explicit as the set of explicit uses corresponding to the direct-component relation.
Then Usesis the union of Explicit together with the following set:

{ tEc, 1, EjO| (1) Thereisan Ey such that (e, r, Ey0d Explicit and

(2) Thereisan tEge, I, Eqyd Explicit that abstracts (e, r, EyyCand

(3) Eq abstracts Ej and

(4) Thereisno Ej that either specializes, abstracts, or is equal to
Ej such that thereis an g, r, EjLI Explicit that
specializes [(Eg, 1, Egyand

(5) Thereisno Eg that abstracts Ej for which conditions (3) and (4)
hold (with Eg;j in place of Ej). }

In this construction, Ej is a type such as MakeNoodlesPrimavera that inherits a role without
further specializing it. The final condition (5) prevents redundant uses that simply specialize this
new use from being added (for example, if there were atype MakeSpicyNoodlesPrimavera).

54. Constraint Checking

The agorithms check the various constraints that appear in the decomposition axioms by
failing to prove that the constraint is false. As a side effect of constraint checking, the values of
non-component parameters are propagated to a node from its components. (The agorithms
presented here do not propagate values from a node to its components.) There are three different
kinds of constraints.

An equality constraint equates two roles of a node or its components whose values are
neither events nor times. An equality constraint fails if the values of the two items are distinct
proper names. Asaside effect, when avalue is known for a parameter of a component, but none
for an equal parameter of the node, the value is assigned to the parameter of the node.

Temporal constraints take the form of binary predicates over the time parameters of a
node or its components. As noted above, rather than passing around precise values for time
parameters, the implementation passes fuzzy temporal bounds. It is straightforward to check if
any particular temporal relation could hold between two times that have been assigned temporal
bounds. For example, if time(N) is bounded by [1 3 7 9[) and time(step1(N)) is bounded by [4 5
6 70 it is clearly impossible for the relation started-by(time(N), time(stepl(N))) to hold.



Kautz Plan Recognition 09/09/97 page53

Furthermore, it is easy to generate aset of rules that can tighten the fuzzy bound on an interval
given its relation to another interval and the fuzzy bounds on that interval. One such rule is:

IF T1 is bounded bya b cdland T is bounded bye f ghll
and started-by(f, T9) THEN
T4 is bounded bymax(@,e) minp,f) max(,g) dl]

The implementation wes such rules to updite the fuzzy bound assgned to the temporal

parameters of a node during constraint cheding. The foll owing table describes the rules for the
13 hesic temporal relations, where [a b ¢ dUis the original bound onT1q, [&f g hlisthe bound on
To, andllj k ITis the updated bound on .T

relation i J k |
equals max@,e) min(b,f) max(c,qg) min(d,f)
before a min(b,f) C min(d,f)
after max@,q) b max(c,q) d
meets a min(b,f) max(c,e) min(d,f)
met by max@,q) min(b,h) max(c,q) d
overlaps a min(b,f) max(c,e) min(d,h)
overlapped by max(@,e) min(b,h) max(c,qg) d
starts max@,e) min(b,f) max(c,e) min(d,h)
started by max@,e) min(b,f) max(c,qg) d
during max@,e) min(b,h) max(c,e) min(d,h)
contains a min(b,f) max(c,qg) d
finishes max@,e) min(b,h) max(c,qg) min(d,h)
finished by a min(b,f) max(c,qg) min(d,h)

All unknowvn timesareimplicitly bouned by [ + — + [J When the “matching” algorithm
below equates two event tokens the “intersedion” of the fuzzy time bounds is taken. An
advantage of this approach over a purely symbalic implementation d Allen’stemporal algebrais
that the system does not need to maintain atable relating every interval to every other interval (as
in [Allen 1983l). A singe data structure — the egraph — maintains both temporal and non
temporal information. The use of fuzzy time bound predudes the expresson d certain kinds of
relationships between spedfic event instances. For example, it is not possble to record an
observation that the times of two event instances are digoint, withou saying that one is before or
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after the other. (It ispossble, of course, to include a onstraint that two times are digoint in the
decompasition axioms for an event type.) In many danains, howvever, it is reasonable to assume
that spedfic observations can be “timestamped”, and it seans important to provide some
mechanism for metric information, even if symbolic information is not handled in full generality.

Fact constraints include the precondtions and effeds of the event along with type
information abou the event’s non-comporent parameters. Fads are diedked only if values are
known for all the aguments of the predicates in the constraint. The constraint is stisfied if a
limited theorem prover fails to prove the negation d the anstraint from a global database of
known fads. A limitation d the implementation described here is that the global database is not
augmented by the conclusions of the plan reagnzer itself. A worthwhile extension d the
system would make it assrt in the global database the precmndtions and effeds of any
unambiguowsly reamgnized pans. The would be useful for the kind d predictive reasoning
discussed in Part 1. A difficult problem we have avoided deding with is reamgnzing that a fad
constraint isviolated because it isinconsistent with al the possble digunctions encoded in the e
graph.

5.5. Algorithms

The dgorithm explain-observation implements the comporent/use assumptions, and the
algorithms match-graphs and group-observations implement the minimum cardinality
assumptions. Code for each algorithm is followed by commentary on its operation.

55.1L Explain-observation

[* explain-observation
Ec : type of observed event
parameters : list of role/value pairs that describe the observation
returns
G : explanation graph
*/
function explain-observation(Ec, parameters) is
Let G be a new empty graph
G := explain(Ec, parameters, [, {Up, Down})
return G
end build-explanation-graph
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[* explain
Ec : type of event to be explained
parameters : list of [rble value/[pairs that describe the event
visited : set of event types visited so far in moving through abstraction hierarchy
direction : direction to move in abstraction hierarchy; subset of {Up, Down}
returns
N : node that represents the event of type Ec
newVisited: updated value of visited
*/
function explain(Ec, parameters, visited, direction) is
visited := visited O {Ec}
if G has a node N of type Ec with matching parameters then
return N, visited
Add a new node N of type Ecto G
Add the parameters of N to G
if Ec=End then return [N, visited[]
Propagate constraints for N
if constraints violated then return [N, visited[]
for all [Ec, r, EulJOJ Uses do
if (Ec, r, EulJdoes not abstract or specialize a use
for any member of visited then
explain(Eu, {i,N, O, {Up, Down})
if Down [ direction then
for all Esc O direct-specializations(Ec)
(M, visited[I:= explain(Esc, parameters, visited, {Down})
if Up O direction then {
Eac := direct-abstraction(Ec)
p := the role/value pairs for N restricted to those roles defined
for Eac or higher in the abstraction hierarchy
M, visited[:= explain(Eac, p, visited, {Up})
Add M, =, N[to G }
return [N, visited
end explain

The function explain-obser vation builds an e-graph on the basis of a single observation.
For example, for the observation that Joe is making marinara sauce starting between times 4 and
5 and ending between times 6 and 7 the function call would be

explain-observation( MakeMarinara, { [agent Joel] [iime [4 56 7010} )
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Explain-observation calls the subroutinexplain which operates as follows:

* Chedk whether the graph unar construction already contains a node of the given type that
exadly matches the given parameters. If thisis the cae, then the graph merges at this paint,
rather than getting wider and wider as one moves upward. Consider the egraph shown in figure
7 (sedion 5.3abowve). Suppcse the left-hand side of the graph hes been constructed (nodes N1,
N2, N4, N6, and N7). Seach is proceealing along the right-hand part of the graph, through N3.
The invocdion d explain that cregded MakeMeaDish(N5) is considering abstradions of
MakeMeaDish (seebelow), and reaursively cdls explain with type PrepareMed. The spedfic
call would be:

explain(PrepareMeal, {.}, { MakeMeatDish}, {Up})

This description exadly matches previously-creaed node N6, which is returned. Then N5 is
made an aternative for N6 (in the third to last line of the procedure). Thus the left path through
N2 and N4 merges with the right path throughN3 and N5. This kind d merging can prevent
combinatorial growth in the size of the graph.

» Create a new node of tyge, and link all thgparametersto it.
» Check whether the type of the newly-created node is End, and return if so.

* Propagate and ched constraints. Suppase this is the invocaion d explain that creaed
MakeSpaghettiMarinara(N2). Parametersis{$tep2 N1}, meaning that component step2 d N2
is N1. The euality constraints inherited from MakePastaDish say that the agent of any
MakeSpaghettiMarinara must equal the agent of its MakeMarinara step. If initially [IN1 agent
Jodlappears in the graph, after this St agentlod Jalso appears.

Fuzzy time bounds are dso propagated. N2 is constrained to occur over an interval that contains
thetime of N1. Suppase the graphinitially contains [IN1 time [4 5 6 71] After this gep, it also
containsIN2 time[3_56 +_[I

This 4ep can aso eliminate nodes. The aent of every specidizaion d MakePastaDish is
constrained to be dexterous. If the genera world knowledge base mntains the asertion
- Dexterous(Joekgxplain does not continue to build a path to End from this node.
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» Consider Uses of Ec, as described above. If Ecis MakeMarinara, then explain isreaursively
invoked forMakeSpaghettiMarinara amdakeChickenMarinara.

» Explain Ec by considering its spedalizaions. This gep isnot performed if Ec was reated by
abstrading some other type. Suppcse explain were initially invoked with Ec equa to
MakeSauce Then the speaadlizaion MakeMarinarais considered. In the reaursive invocaion d
explain, the Uses of MakeMarinara ae eamined. The use [MakeMarinara, step2,
MakeSpaghettiMarinarallis eliminated (by the test in the if statement within the first for all
statement in the procedure) becaise it spedalizes IMakeSauce, step2, MakePastaDish[] The use
[MakeMarinara, step3lakeChickenMarinarid howeverdoes lead to a path to End.

» Explain Ec by considering its abstradions. This gep is not performed if Ec was reated by
spedalizing some other type. The node beaomes an alternative for its abstradions. Suppase the
current invocation has creatbthkePastaDish(N4). This step calls

explain(PrepareMeal, fagentloéIiime 3- 56 + [T, { MakePastaDish}, {Up})

which returns N6.

Not all abstradions leal to End; some ae pruned, and do na appea in the final graph. Consider
the invocation that creaged MakeMarinara(N1). It cdls explain for MakeSauce. The only Use
for MakeSauce however, is IMakeSauce step2, MakePastaDishl] bu that use is eliminated by
the redundancy test. Therefore no node of ifpkeSauce appears in the final graph.

The worst-case amplexity of explain is exporential in the size of the event hierarchy,
becaise an event can have several different comporents of the same type.  In pradice the first
step in explain frequently finds asimilar node and cuts off search. For example, suppcse that the
event hierarchy contains no norcomporent roles, and if a type has comporents, only its
abstradions (but not itself or its spedalizaions) appea as comporents of ancther type. Under
this restriction, the worst case cmmplexity of explain is O(|[Hg[). If the dgorithm did na merge
search paths at abstraction points, its worst-case complexity would still be exponential.

55.2. Match-graphs

[* match-graphs
G1, G2 : graphs to be matched
returns
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G3: result of equating End nodes of G1 and G2 or FAIL if no match possible
*/
function match-graphs(G1, G2) is
Create a new empty graph G3
Initialize Cache, a hash-table that saves results of matching event nodes
if match(End-node-of(G1), End-node-of(G2)) = FAIL
then return FAIL
else return G3
end match-graphs

/* match
nl, n2 : nodes to be matched from G1 and G2 respectively
returns
n3 : node in G3 representing match or FAIL if no match
*/
function match(nl, n2) is
if n1 and n2 are proper names then
if n1=n2 then return nl else return FAIL
else if n1 and n2 are fuzzy temporal bounds then {
[Abcdl=nl
(@ fg hll=n2
ij k IC:= Onax(a,e) min(b,f) max(c,g) min(d,h)O
ifi>jork>lori>Ithen return FAIL else return [j k 100}
else if n1 and n2 are event nodes then {
if Cache(nl1,n2) is defined then return Cache(nl1,n2)
if type(nl) abstracts= type(n2) then n3Type :=type(n2)
else if type(n2) abstracts type(nl) then n3Type = type(nl)
else {Cache(n1,n2) := FAIL
return FAIL }
Add a new node n3 of n3Type to G3
Cache(nl1,n2) :=n3
for all roles r defined for n3Type or higher do {
Let V1 be the value such that h1,r,V1IDG1 (or undefined)
Let V2 be the value such that h2,r,V2[IIG2 (or undefined)
if either V1 or V2 is defined then {
if V1 is defined but not V2 then V3 := match(V1,V1)
elseif V2 is defined but not V1 then V3 :=match(V2,V2)
else V3 := match(V1,V2)
if V3=FAIL then { Cache(nl1,n2) := FAIL
return FAIL }
Add h3, r, V3[lto G3 } }
Propagate constraints for n3
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if constraints violated then { Cache(n1,n2) := FAIL
return FAIL }
altsl :={ Al | n1, =, A1LNG1 }
alts2 := { A2 | n2, =, A2[I0G2 }
if altsl 0 alts2 _ [0 then {
if altsl = [0 then altsl := {n1}
if alts2 = [0 then alts2 := {n2}
noneMatched := TRUE
for all a1 O alts1 do
for all a2 [J alts2 do {
A3 := match(Al, A2)
if A3 _ FAIL then {
Add 3, =, A3[to G3
noneMatched := FALSE } }
if noneMatched then { Cache(n1,n2):=FAIL
return FAIL } }
return n3}
else return FAIL
end match.

The function match-graphs creates a new e-graph that is the result of equating the End
nodes of the two e-graphs it takes as inputs and propagating that equality. The following
diagram shows two e-graphs, the first built from an observation of MakeMarinara, and the
second from an observation of MakeNoodles. Match isinitially invoked on the End nodes of the
two graphs, match(N7, N11), and returns N12, the End node of the combined graph. The
following section steps through the operation of M atch.
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End(n7) End(N11) End(N12)
Prepare Prepare Prepare
Meal(N6) Meal(N10) Meal(N13)

g9 7

Make Make Make —
Pasta Meat Pasta o
Dish(N4) Dish(N5) Dish(N9) Dish(N14)

A v

Make Make Make
Spaghetti Chicken Noodles(N8) Spaghetti
Marinara(N2) Marinara(N3) Marinara(N15)
Make Make Make
Marinara(N1) Noodles(N16) Marinara(N17)

figure9: Matching e-graphs.
« If the objects to be matched are proper names, they must be identical.

* If the obeds are fuzzy temporal bound, then take their intersedion. If nlis3- 56+ [and
n2is[3_87+_[thenmatch returnsi+-_57+_[]

» Ched whether n1 and n2 have dready been matched, and if so, reuse that value. Suppacse that
the first e-graph in the diagram above were matched against an e-graph o identicd shape; for
example, there were two olservations of MakeMarinara that may have been identicd. During
the match dawvn the left hand side of the graphs, throughN4 and N2, MakeMarinara(N1) would
match against the MakeMarinara noce in the second gaph (say, N1'), resulting in some final
node, say N1". Then the right-hand side of the graphs would match, through N5 and N3. N1
would match against N1' a second time, and the value N1" would be used again. This would
retain the shape of the digraph, and prevent it from being multiplied out into a tree.

* Add anew noce to the graph, n3, to represent the result of the match, which is of the most
speafic type of n1 and n2. Matching MakeSpaghettiMarinara(N2) against MakePastaDish(N9)
results in MakeSpaghettiMarinara(N15). The match fails if the types are not compatible. Thus
MakeMeatDish(N5) fails to match agaifdakePastaDish(N9)
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* Match theroles of n1 and n2. If a parameter is defined for one node but not the other, match
the role against itself in order to simply copy the structure into the resulting graph. This what
happens when N2 matches N9, yielding N15. The new node gets both the step2 parameter from
N2 (acopy of N1, whichisN17) and the step1 parameter from N9 (a copy of N8, which is N16).
If N2 had the role stepl defined, that value would have had to match against N8.

» Check and propagate the constraints on n3. New constraint violations may be detected at this
point because more of the roles of the nodes arefilled in.

* Try matching every aternative for nl against every alternative for n2. The successful
matches are alternatives for n3. If one of the nodes has some alternatives, but the other does not,
then match the aternatives for the former against the latter directly. This occurs in the example
above. MakePastaDish(N4) matches against MakePastaDish(N9). N4 has the alternative N2,
but N9 has none. Therefore MakeSpaghettiMarinara(N2) matches against MakePastaDish(N9)
aswell. If there were some alternatives but all matches failed, then n3 fails as well.

Caling match-graphs(G1,G2) frequently returns a graph that is smaller than either Gq
or Go. Unfortunately, sometimes the resulting graph can be larger. This occurs when two nodes
are matched that have several aternatives, al of which are mutually compatible. Therefore the
worst case complexity of match-graphs(G1,G2) is O(|G1|*|G2[). The key feature of match-
graphs is the use of a cache to store matches between nodes. Without this feature, match-graphs
would aways multiply the input digraphs into a tree, and the algorithm would be no better than
O(2G1*Galy.

5.5.3. Group-observations

global Hypoths

/* A set (disjunction) of hypotheses, each a set (conjunction) of explanation graphs.
Each hypothesis corresponds to one way of grouping the observations. Different
hypotheses may have different cardinalities. */

function minimum-Hypoths is

smallest := min { |H| | H O Hypoths}

return { H | H O Hypoths O card(H)=smallest }
end minimum-Hypoths

procedure group-observations is
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Hypoths := {(1}
while more observations do {
Observe event of type Ec with specified parameters
Gobs := explain-observation(Ec, parameters)
for all H 00 Hypoths do {
remove H from Hypoths
Add H [0 {Gobs} to Hypoths
forall GOHdo {
Gnew := match-graphs(Gobs, G)
if Gnew _ FAIL then
Add (H — {G}) O Gnew to Hypoths } } }
end group-observations

The function group-observations continually inpus observations and goups them into sets to
be acounted for by particular e-graphs. The function minimum-Hypothsis cdled to retrieve a
disjunctive set of current hypaheses, ead of which isa wnjunctive set of e-graphs that acourts
for all of the observations, using as few End events as possible. It works as follows:

* Input an observation and generate a new e-g&ahls.

» Conjoin Gobs with ead hypdhesis. This handes the cae where Gaobs is unrelated to the
previous observations. Note that this case is included in Hypoths even when Gobs matches one
of the previous e-graphs. This is necessary because alater observation may be &le to match
Gobs aone, bu not be @le to match Gobs combined with that previous e-graph. In any case,
the function minimum-Hypoths will seled thase members of Hypoths which are of minimum
cadinality, so hypdheses containing an “extra’ unmatched Gobs will be dfedively invisible to
user until needed.

» Try to match Gobs with eat e-graph in ead hypdhesis. This handes the cae where obs-
graph isrelated to a previous akervation.

» The current conclusion corresponds todiggunction of all hypotheses of minimum size.

Sometimes a member of Hypoths may contain an undeteded inconsistency. In this case
the answer returned by minimum-Hypoths may be incorred: for example, it may return an
inconsistent e-graph which groups all the observations as part of a single End event, rather than
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as part of two or more distinct End events. However, if thisinconsistency is deteded when later
observations are being incorporated, the system can usualy recover. In the inner loop d the
agorithm group-observations, the new e-graph Gobs will fail to match against every member
of the inconsistent hypahesis H. AlthoughHypoths is updated to contain H O {Gobs}, if any
matches against other hypaheses containing the same or few number of e-graphs do succeel, H
0O {Gobs} will nat be returned by minimum-Hypoths. Furthermore, it would na be difficult to
modify group-observations to explicitly eliminate H O {Gobs} from Hypoths in this geda
case.

Some of the most intimidating complexity results arise from this algorithm. In the worst
case there muld be O(2M) consistent ways of groupng n olservations, and Hypaoths could
contain that number of hypaheses. In pradiceit appeas that stronger assumptions than simply
minimizing the number of End events are needed. One such stronger assumption would be that
the aurrent observation is part of the End event whaose previous deps were most receitly
observed— or if that is inconsistent, then the next more recent End event, and so on. This
asumption limits Hypoths to size O(n). All previous plan recogntion systems implement some
version of this stronger assumption.

6. Conclusions & Caveats

This chapter has developed a framework for plan recognition that includes a proaf theory,
amodel theory, and a set of algorithms. It would na be an exaggeration to say that the most
difficult task was to define the rather amorphows problem of “plan recogntion” at the most
abstrad level. Similar algorithms for plan recogntion problems have been hashed ower for yeas,
sincethe ealy work of Schmidt and Genesereth. The formal theory we have developed suggests
what some of these algorithms are algoritfions

The theory is extremely general. It does nat assume that there is a singe plan underway
that can be uniquely identified from the first input, nar that the sequence of observations is
complete, na that al the stepsin aplan are linealy ordered. We know of no aher implemented
plan recogrition system that handes arbitrary tempora relations between steps. On the other
hand, there ae some limitations inherent in ou representation d plans. In particular, the aurrent
framework does nat explicitly represent propasitional attitudes, such as goals or beliefs. The use
of quantification and dgjunction in the event hierarchy is restricted, athough some of these
limitations can be eaily circumvented. For example, existential quantifiers canna appea in the
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axioms which make up the event hierarchy, bu in most cases it shoudd be possble to use
function symbadls instead. Digunctions canna appea in the body (the right-hand side) of a
deacmpasition axiom. One way around this limitation is to creade anew event event type to
stand for the digunctive formula, and then assert that ead disunct is a different speaadlizaion o
the new type.

Ancther expressve limitation d the theory revolves aroundthe whale ideaof End events.
We have used End events as a way to determine when “nothing more” neals to be explained.
But in general it may prove difficult to define aset of End events (perhaps “stay aive’ is the
only one). Context must ultimately play a role in determine the scope of explanation.

It is important to nde that the inpu to the dgorithms presented here is gill more
expressvely limited. For example, the dgorithms do nd hand e theories in which an event type
can have more than ore dired abstradion (that is, multiple inheritance), and they do nd
explicitly handle “general axioms’ which lie outside the event hierarchy. (The adua LISP
implementation included some spedal purpase inference procedures; for example, to infer that
certain pairs of predicates could not hold true of the same time period.)

The theory islimited in its ability to recognizing erroneous plans. We have asumed that
al plans are internally consistent and that all ads are purposeful. Yet red people frequently
make planning errors and change their minds in midcourse. Some simple kinds of errors can be
handed by introduwcing an End event cdled Error. For ead observable adion there is a
speddizaion d Error that contains that adion as its only comporent. Therefore every
observation can be recognized as being part of some meaningful plan or simply an error.

Ancther serious limitation d the theory is the inability to reagnze new plans whose
types do nd arealy appea in the remgnzea’s knowledge base. One might argue that plan
reoogntion essentially deds with the remgntion o stereotypicd behavior, and the
understanding of new plans is better treated as an advanced kind of learning.

In some domains the theory described in this chapter is Smply too weg. Rather than
inferring the digunction d all the plans that could explain the observations, the recognzer may
need to know the most likely such pan. Nothing in this theory contradicts the laws of
probability, and it should be possible to extend the theory with quantitative measures.
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A more philosophicd problem is the whole isaue of what serves as primitive input to the
remgntion system. Throughou this chapter we have a@asumed that arbitrary high-level
descriptions of events are simply presented to the recognizer. This assumption is reasonable in
many damains, such as understanding written stories, or observing the words typed by a
computer operator at atermina. But ared plan reamgnze — a person — does nat aways get
his or her inpu in this way. How are visua impressons of simple bodly motions — Johnis
moving hs hands in such and such a manner — translated into the impresson that Johnisrolli ng
out doughto make pasta? Thereis agrea ded of work in low-level perception, and a grea ded
in high level recogntion. The semantic gap between the output of the low-level processes and
the high-level inference engines remains wide, and few have ventured to cross it.
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