
In International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, August 2003.

Generalizing Plans to New Environments in Relational MDPs

Carlos Guestrin Daphne Koller Chris Gearhart Neal Kanodia
Computer Science Department, Stanford University
{guestrin, koller, cmg33, nkanodia}@cs.stanford.edu

Abstract
A longstanding goal in planning research is the ability to gen-
eralize plans developed for some set of environments to a
new but similar environment, with minimal or no replanning.
Such generalization can both reduce planning time and al-
low us to tackle larger domains than the ones tractable for
direct planning. In this paper, we present an approach to
the generalization problem based on a new framework of re-
lational Markov Decision Processes (RMDPs). An RMDP
can model a set of similar environments by representing ob-
jects as instances of different classes. In order to generalize
plans to multiple environments, we define an approximate
value function specified in terms of classes of objects and, in
a multiagent setting, by classes of agents. This class-based
approximate value function is optimized relative to a sam-
pled subset of environments, and computed using an efficient
linear programming method. We prove that a polynomial
number of sampled environments suffices to achieve perfor-
mance close to the performance achievable when optimizing
over the entire space. Our experimental results show that our
method generalizes plans successfully to new, significantly
larger, environments, with minimal loss of performance rel-
ative to environment-specific planning. We demonstrate our
approach on a real strategic computer war game.

1 Introduction
Most planning methods optimize the plan of an agent in a
fixed environment. However, in many real-world settings, an
agent will face multiple environments over its lifetime, and
its experience with one environment should help it to perform
well in another, even with minimal or no replanning.

Consider, for example, an agent designed to play a strate-
gic computer war game, such as the Freecraft game shown
in Fig. 1 (an open source version of the popular Warcraft
game). In this game, the agent is faced with many scenar-
ios. In each scenario, it must control a set of agents (or units)
with different skills in order to defeat an opponent. Most sce-
narios share the same basic elements: resources, such as gold
and wood; units, such as peasants, who collect resources and
build structures, and footmen, who fight with enemy units;
and structures, such as barracks, which are used to train foot-
men. Each scenario is composed of these same basic build-
ing blocks, but they differ in terms of the map layout, types
of units available, amounts of resources, etc. We would like
the agent to learn from its experience with playing some sce-
narios, enabling it to tackle new scenarios without significant
amounts of replanning. In particular, we would like the agent
to generalize from simple scenarios, allowing it to deal with
other scenarios that are too complex for any effective planner.

The idea of generalization has been a longstanding goal in
Markov Decision Process (MDP) and reinforcement learning

Figure 1: Freecraft strategic domain with 9 peasants, a barrack, a
castle, a forest, a gold mine, 3 footmen, and an enemy, executing the
generalized policy computed by our algorithm.

research [15; 16], and even earlier in traditional planning [5].
This problem is a challenging one, because it is often unclear
how to translate the solution obtained for one domain to an-
other. MDP solutions assign values and/or actions to states.
Two different MDPs (e.g., two Freecraft scenarios), are typ-
ically quite different, in that they have a different set (and
even number) of states and actions. In cases such as this, the
mapping of one solution to another is not well-defined.

Our approach is based on the insight that many domains
can be described in terms of objects and the relations between
them. A particular domain will involve multiple objects from
several classes. Different tasks in the same domain will typ-
ically involve different sets of objects, related to each other
in different ways. For example, in Freecraft, different tasks
might involve different numbers of peasants, footmen, ene-
mies, etc. We therefore define a notion of a relational MDP
(RMDP), based on the probabilistic relational model (PRM)
framework [10]. An RMDP for a particular domain pro-
vides a general schema for an entire suite of environments,
or worlds, in that domain. It specifies a set of classes, and
how the dynamics and rewards of an object in a given class
depend on the state of that object and of related objects.

We use the class structure of the RMDP to define a value
function that can be generalized from one domain to another.
We begin with the assumption that the value function can
be well-approximated as a sum of value subfunctions for the
different objects in the domain. Thus, the value of a global
Freecraft state is approximated as a sum of terms correspond-
ing to the state of individual peasants, footmen, gold, etc. We
then assume that individual objects in the same class have
a very similar value function. Thus, we define the notion
of a class-based value function, where each class is associ-
ated with a class subfunction. All objects in the same class
have the value subfunction of their class, and the overall value
function for a particular environment is the sum of value sub-
functions for the individual objects in the domain.

A set of value subfunctions for the different classes imme-

diately determines a value function for any new environment
in the domain, and can be used for acting. Thus, we can com-
pute a set of class subfunctions based on a subset of environ-
ments, and apply them to another one without replanning.

We provide an optimality criterion for evaluating a class-
based value function for a distribution over environments, and
show how it can, in principle, be optimized using a linear pro-
gram. We can also “learn” a value function by optimizing
it relative to a sample of environments encountered by the
agent. We prove that a polynomial number of sampled en-
vironments suffice to construct a class-based value function
which is close to the one obtainable for the entire distribution
over environments. Finally, we show how we can improve
the quality of our approximation by automatically discover-
ing subclasses of objects that have “similar” value functions.

We present experiments for a computer systems admin-
istration task and two Freecraft tasks. Our results show
that we can successfully generalize class-based value func-
tions. Importantly, our approach also obtains effective poli-
cies for problems significantly larger than our planning algo-
rithm could handle otherwise.

2 Relational Markov Decision Processes
A relational MDP defines the system dynamics and rewards
at the level of a template for a task domain. Given a particu-
lar environment within that domain, it defines a specific MDP
instantiated for that environment. As in the PRM framework
of [10], the domain is defined via a schema, which speci-
fies a set of object classes C = {C1, . . . , Cc}. Each class
C is also associated with a set of state variables S[C] =
{C.S1, . . . , C.Sk}, which describe the state of an object in
that class. Each state variable C.S has a domain of possible
values Dom[C.S]. We define SC to be the set of possible
states for an object in C, i.e., the possible assignments to the
state variables of C.

For example, our Freecraft domain might
have classes such as Peasant, Footman, Gold;
the class Peasant may have a state variable
Task whose domain is Dom[Peasant.Task] =
{Waiting, Mining, Harvesting, Building}, and a state
variable Health whose domain has three values. In this
case, SPeasant would have 4 · 3 = 12 values, one for each
combination of values for Task and Health.

The schema also specifies a set of links L[C] =
{L1, . . . , Ll} for each class representing links between ob-
jects in the domain. Each link C.L has a range ρ[C.L] = C ′.
For example, Peasant objects might be linked to Barrack
objects — ρ[Peasant.BuildTarget] = Barrack, and to the
global Gold and Wood resource objects. In a more com-
plex situation, a link may relate C to many instances of a
class C ′, which we denote by ρ[C.L] = {C ′}, for example,
ρ[Enemy.My Footmen] = {Footman} indicates that an instance
of the enemy class may be related to many footman instances.

A particular instance of the schema is defined via a
world ω, specifying the set of objects of each class; we use
O[ω][C] to denote the objects in class C, and O[ω] to de-
note the total set of objects in ω. The world ω also spec-
ifies the links between objects, which we take to be fixed
throughout time. Thus, for each link C.L, and for each

o ∈ O[ω][C], ω specifies a set of objects o′ ∈ ρ[C.L], de-
noted o.L. For example, in a world containing 2 peasants,
we would have O[ω][Peasant] = {Peasant1,Peasant2};
if Peasant1 is building a barracks, we would have that
Peasant1.BuildTarget = Barrack1.

The dynamics and rewards of an RMDP are also de-
fined at the schema level. For each class, the schema
specifies an action C.A, which can take on one of sev-
eral values Dom[C.A]. For example, Dom[Peasant.A] =
{Wait, Mine, Harvest, Build}. Each class C is also associ-
ated with a transition model PC , which specifies the proba-
bility distribution over the next state of an object o in class
C, given the current state of o, the action taken on o, and the
states and actions of all of the objects linked to o:

P
C(S′

C | SC , C.A, SC.L1 , C.L1.A, . . . , SC.Ll
, C.Ll.A). (1)

For example, the status of a barrack, Barrack.Status′,
depends on its status in the previous time step, on
the task performed by any peasant that could build it
(Barrack.BuiltBy.Task), on the amount of wood and gold, etc.

The transition model is conditioned on the state of C.Li,
which is, in general, an entire set of objects (e.g., the set of
peasants linked to a barrack). Thus we must now provide
a compact specification of the transition model that can de-
pend on the state of an unbounded number of variables. We
can deal with this issue using the idea of aggregation [10].
In Freecraft, our model uses the count aggregator], where
the probability that Barrack.Status transitions from Unbuilt to
Built depends on][Barrack.BuiltBy.Task = Built], the num-
ber of peasants in Barrack.BuiltBy whose Task is Build.

Finally, we also define rewards at the class level. We as-
sume for simplicity that rewards are associated only with the
states of individual objects; adding more global dependencies
is possible, but complicates planning significantly. We define
a reward function RC(SC , C.A), which represents the con-
tribution to the reward of any object in C. For example, we
may have a reward function associated with the Enemy class,
which specifies a reward of 10 if the state of an enemy object
is Dead: REnemy(Enemy.State = Dead) = 10. We assume
that the reward for each object is bounded by Rmax.

Given a world, the RMDP uniquely defines a ground fac-
tored MDP Πω , whose transition model is specified (as usual)
as a dynamic Bayesian network (DBN) [3]. The random vari-
ables in this factored MDP are the state variables of the in-
dividual objects o.S, for each o ∈ O[ω][C] and for each
S ∈ S[C]. Thus, the state s of the system at a given point in
time is a vector defining the states of the individual objects in
the world. For any subset of variables X in the model, we de-
fine s[X] to be the part of the instantiation s that corresponds
to the variables X . The ground DBN for the transition dy-
namics specifies the dependence of the variables at time t+1
on the variables at time t. The parents of a variable o.S are
the state variables of the objects o′ that are linked to o. In our
example with the two peasants, we might have the random
variables Peasant1.Task, Peasant2.Task, Barrack1.Status,
etc. The parents of the time t + 1 variable Barrack1.Status′

are the time t variables Barrack1.Status′, Peasant1.Task,
Peasant2.Task, Gold1.Amount and Wood1.Amount.

The transition model is the same for all instances in the
same class, as in (1). Thus, all of the o.Status variables for

Enemy

H’H’HealthHealth

RR

CountCount

F o o t ma n

H’H’HealthHealth

AFootmanAFootmanAFootman

my_ enemymy_ enemy

F1.Health

F1.A

F1.H’F1.HealthF1.Health

F1.AF1.A

F1.H’F1.H’

E1.Health E1.H’E1.HealthE1.Health E1.H’E1.H’

F2.Health

F2.A

F2.H’F2.HealthF2.Health

F2.AF2.A

F2.H’F2.H’

E2.Health E2.H’E2.HealthE2.Health E2.H’E2.H’

R �R �R �

R �R �R �

Footman1Footman1

E ne my 1E ne my 1

E ne my 2E ne my 2

Footman2Footman2

t t+ 1Time t t+ 1Time

(a) (b)
Figure 2: Freecraft tactical domain: (a) Schema; (b) Resulting fac-
tored MDP for a world with 2 footmen and 2 enemies.

barrack objects o share the same conditional probability dis-
tribution. Note, however, that each specific barrack depends
on the particular peasants linked to it. Thus, the actual parents
in the DBN of the status variables for two different barrack
objects can be different.

The reward function is simply the sum of the reward func-
tions for the individual objects:

R(s,a) =
∑

C∈C

∑

o∈O[ω][C]

R(s[So],a[o.A]).

Thus, for reward function for the Enemy class described
above, our overall reward function in a given state will be
10 times the number of dead enemies in that state.

It remains to specify the actions in the ground MDP. The
RMDP specifies a set of possible actions for every object in
the world. In a setting where only a single action can be taken
at any time step, the agent must choose both an object to
act on, and which action to perform on that object. Here,
the set of actions in the ground MDP is simply the union
∪o∈ωDom[o.A]. In a setting where multiple actions can be
performed in parallel (say, in a multiagent setting), it might
be possible to perform an action on every object in the domain
at every step. Here, the set of actions in the ground MDP is a
vector specifying an action for every object: ×o∈ωDom[o.A].
Intermediate cases, allowing degrees of parallelism, are also
possible. For simplicity of presentation, we focus on the mul-
tiagent case, such as Freecraft, where, an action is an assign-
ment to the action of every unit.
Example 2.1 (Freecraft tactical domain) Consider a sim-
plified version of Freecraft, whose schema is illustrated
in Fig. 2(a), where only two classes of units partici-
pate in the game: C = {Footman, Enemy}. Both
the footman and the enemy classes have only one state
variable each, Health, with domain Dom[Health] =
{Healthy, Wounded, Dead}. The footman class contains
one single-valued link: ρ[Footman.My Enemy] = Enemy.
Thus the transition model for a footman’s health will
depend on the health of its enemy: P Footman(S′

Footman |
SFootman, SFootman.My Enemy), i.e., if a footman’s enemy is
not dead, than the probability that a footman will be-
come wounded, or die, is significantly higher. A foot-
man can choose to attack any enemy. Thus each foot-
man is associated with an action Footman.A which se-
lects the enemy it is attacking.1 As a consequence, an

1A model where an action can change the link structure in the

enemy could end up being linked to a set of footmen,
ρ[Enemy.My Footmen] = {Footman}. In this case, the
transition model of the health of an enemy may depend
on the number of footmen who are not dead and whose
action choice is to attack this enemy: P Enemy(S′

Enemy |
SEnemy,][SEnemy.My Footmen, Enemy.My Footmen.A]). Finally, we
must define the template for the reward function. Here there
is only a reward when an enemy is dead: REnemy(SEnemy).

We now have a template to describe any instance of
the tactical Freecraft domain. In a particular world,
we must define the instances of each class and the
links between these instances. For example, a world
with 2 footmen and 2 enemies will have 4 objects:
{Footman1,Footman2,Enemy1,Enemy2}. Each footman
will be linked to an enemy: Footman1.My Enemy =
Enemy1 and Footman2.My Enemy = Enemy2. Each en-
emy will be linked to both footmen: Enemy1.My Footmen =
Enemy2.My Footmen = {Footman1,Footman2}. The tem-
plate, along with the number of objects and the links in this
specific (“2vs2”) world yield a well-defined factored MDP,
Π2vs2, as shown in Fig. 2(b).

3 Approximately Solving Relational MDPs
There are many approaches to solving MDPs [15]. An ef-
fective one is based on linear programming (LP): Let S(Π)
denote the states in an MDP Π and A(Π) the actions. If
S(Π) = {s1, . . . , sN}, our LP variables are V1, . . . , VN ,
where Vi represents V(si), the value of state si. The LP for-
mulation is:

Minimize:
∑

i α(si)Vi ;

Subject to: Vi ≥ R(si,a) + γ
∑

k P (s′
k | si,a)Vk

∀si ∈ S(Π),a ∈ A(Π).

The state relevance weights α(s1), . . . , α(sN) in the objec-
tive function are any set of positive weights, α(si) > 0.

In our setting, the state space is exponentially large, with
one state for each joint assignment to the random variables
o.S of every object (e.g., exponential in the number of units in
the Freecraft scenario). In a multiagent problem, the number
of actions is also exponential in the number of agents. Thus
this LP has both an exponential number of variables and an
exponential number of constraints. Therefore the exact solu-
tion to this linear program is infeasible.

We address this issue using the assumption that the
value function can be well-approximated as a sum of
local value subfunctions associated with the individual
objects in the model. (This approximation is a special
case of the factored linear value function approach used
in [6].) Thus we associate a value subfunction Vo with
every object in ω. Most simply, this local value function
can depend only on the state of the individual object So.
In our example, the local value subfunction VEnemy1 for
enemy object Enemy1 might associate a numeric value for
each assignment to the variable Enemy1.Health. A richer
approximation might associate a value function with pairs,
or even small subsets, of closely related objects. Thus, the

world requires a small extension of our basic representation. We
omit details due to lack of space.

function VFootman1 for Footman1 might be defined over the
joint assignments of Footman1.Health and Enemy1.Health,
where Footman1.My Enemy = Enemy1. We will repre-
sent the complete value function for a world as the sum
of the local value subfunction for each individual object
in this world. In our example world (ω = 2vs2) with
2 footmen and 2 enemies, the global value function will
be: V2vs2(F1.Health,E1.Health,F2.Health,E2.Health) =
VFootman1(F1.Health,E1.Health) + VEnemy1(E1.Health) +
VFootman2(F2.Health,E2.Health) + VEnemy2(E2.Health).

Let T o be the scope of the value subfunction of object o,
i.e., the state variables that Vo depends on. Given the local
subfunctions, we approximate the global value function as:

Vω(s) =
∑

o∈O[ω]

Vo(s[T o]). (2)

As for any linear approximation to the value function, the
LP approach can be adapted to use this value function rep-
resentation [14]. Our LP variables are now the local compo-
nents of the individual local value functions:

{Vo(to) : o ∈ O[ω], to ∈ Dom[T o]}. (3)

In our example, there will be one LP variable for each joint
assignment of F1.Health and E1.Health to represent the com-
ponents of VFootman1. Similar LP variables will be included for
the components of VFootman2, VEnemy1, and VEnemy2.

As before, we have a constraint for each global state s and
each global action a:
∑

o Vo(s[T o]) ≥
∑

oR
o(s[So],a[o.A])+

γ
∑

s′ Pω(s′ | s,a)
∑

o Vo(s
′[T o]); ∀s,a.

(4)

This transformation has the effect of reducing the number of
free variables in the LP to n (the number of objects) times the
number of parameters required to describe an object’s local
value function. However, we still have a constraint for each
global state and action, an exponentially large number.

Guestrin, Koller and Parr [6] (GKP hereafter) show that,
in certain cases, this exponentially large LP can be solved
efficiently and exactly. In particular, this compact solution
applies when the MDP is factored (i.e., represented as a
DBN), and the approximate value function is decomposed
as a weighted linear combination of local basis functions, as
above. Under these assumptions, GKP present a decomposi-
tion of the LP which grows exponentially only in the induced
tree width of a graph determined by the complexity of the
process dynamics and the locality of the basis function.

This approach applies very easily here. The structure of
the DBN representing the process dynamics is highly fac-
tored, defined via local interactions between objects. Simi-
larly, the value functions are local, involving only single ob-
jects or groups of closely related objects. Often, the induced
width of the resulting graph in such problems is quite small,
allowing the techniques of GKP to be applied efficiently.

4 Generalizing Value Functions
Although this approach provides us with a principled way
of decomposing a high-dimensional value function in certain
types of domains, it does not help us address the generaliza-
tion problem: A local value function for objects in a world ω

does not help us provide a value function for objects in other
worlds, especially worlds with different sets of objects.

To obtain generalization, we build on the intuition that dif-
ferent objects in the same class behave similarly: they share
the transition model and reward function. Although they dif-
fer in their interactions with other objects, their local contri-
bution to the value function is often similar. For example,
it may be reasonable to assume that different footmen have a
similar long-term chance of killing enemies. Thus, we restrict
our class of value functions by requiring that all of the objects
in a given class share the same local value subfunction.

Formally, we define a class-based local value subfunc-
tion VC for each class. We assume that the parameteriza-
tion of this value function is well-defined for every object
o in C. This assumption holds trivially if the scope of VC

is simply SC : we simply have a parameter for each as-
signment to Dom[SC]. When the local value function can
also depend on the states of neighboring objects, we must
define the parameterization accordingly; for example, we
might have a parameter for each possible joint state of a
linked footman-enemy pair. Specifically rather than defin-
ing separate subfunctions VFootman1 and VFootman2, we de-
fine a class-based subfunction VFootman. Now the contri-
bution of Footman1 to the global value function will be
VFootman(F1.Health,E1.Health). Similarly Footman2 will
contribute VFootman(F2.Health,E2.Health).

A class-based value function defines a specific value func-
tion for each world ω, as the sum of the class-based local
value functions for the objects in ω:

Vω(s) =
∑

C∈C

∑

o∈O[ω][C]

VC(s[T o]). (5)

This value function depends both on the set of objects in the
world and (when local value functions can involve related ob-
jects) on the links between them. Importantly, although ob-
jects in the same class contribute the same function into the
summation of (5), the argument of the function for an object
is the state of that specific object (and perhaps its neighbors).
In any given state, the contributions of different objects of the
same class can differ. Thus, every footman has the same local
value subfunction parameters, but a dead footman will have a
lower contribution than one which is alive.

5 Finding Generalized MDP Solutions
With a class-level value function, we can easily generalize
from one or more worlds to another one. To do so, we as-
sume that a single set of local class-based value functions VC

is a good approximation across a wide range of worlds ω. As-
suming we have such a set of value functions, we can act in
any new world ω without replanning, as described in Step 3
of Fig. 3. We simply define a world-specific value function as
in (5), and use it to act.

We must now optimize VC in a way that maximizes the
value over an entire set of worlds. To formalize this intuition,
we assume that there is a probability distribution P (ω) over
the worlds that the agent encounters. We want to find a sin-
gle set of class-based local value functions {VC}C∈C that is a
good fit for this distribution over worlds. We view this task as
one of optimizing for a single “meta-level” MDP Π∗, where

nature first chooses a world ω, and the rest of the dynam-
ics are then determined by the MDP Πω . Precisely, the state
space of Π∗ is {s0}∪

⋃
ω{(ω, s) : s ∈ S(Πω)}. The transi-

tion model is the obvious one: From the initial state s0, nature
chooses a world ω according to P (ω), and an initial state in
ω according to the initial starting distribution P 0

ω(s) over the
states in ω. The remaining evolution is then done according to
ω’s dynamics. In our example, nature will choose the number
of footmen and enemies, and define the links between them,
which then yields a well-defined MDP,e.g., Π2vs2.

5.1 LP Formulation
The meta-MDP Π∗ allows us to formalize the task of finding a
generalized solution to an entire class of MDPs. Specifically,
we wish to optimize the class-level parameters for VC , not for
a single ground MDP Πω , but for the entire Π∗.

We can address this problem using a similar LP solu-
tion to the one we used for a single world in Sec. 3. The
variables are simply parameters of the local class-level value
subfunctions {VC(tC) : C ∈ C, tC ∈ Dom[T C]}. For
the constraints, recall that our object-based LP formulation
in (4) had a constraint for each state s and each action vector
a = {ao}o∈O[ω]. In the generalized solution, the state space
is the union of the state spaces of all possible worlds. Our
constraint set for Π∗ will, therefore, be a union of constraint
sets, one for each world ω, each with its own actions:

Vω(s) ≥
∑

o Ro(s[So], ao) + γ
∑

s′ Pω(s′ | s, a)Vω(s′);
∀ω, ∀s ∈ S(Πω), a ∈ A(Πω);

(6)
where the value function for a world, Vω(s), is defined at

the class level as in Eq. (5). In principle, we should have an
additional constraint for the state s0. However, with a natural
choice of state relevance weights α, this constraint is elimi-
nated and the objective function becomes:

Minimize:
1 + γ

2

∑

ω

∑

s∈Sω

P (ω)P 0
ω(s)Vω(s); (7)

if P 0
ω(s) > 0,∀s. In some models, the potential number

of objects may be infinite, which could make the objective
function unbounded. To prevent this problem, we assume
that the P (ω) goes to zero sufficiently fast, as the num-
ber of objects tends to infinity. To understand this assump-
tion, consider the following generative process for selecting
worlds: first, the number of objects is chosen according to
P (]); then, the classes and links of each object are cho-
sen according to P (ω] |]). Using this decomposition, we
have that P (ω) = P (])P (ω] |]). The intuitive assump-
tion described above can be formalized as: ∀n, P (] = n) ≤
κ]e

−λ]n; for some κ] ≥ λ] > 0. Thus, the distribution P (])
over number of objects can be chosen arbitrarily, as long as it
is bounded by some exponentially decaying function.

5.2 Sampling worlds
The main problem with this formulation is that the size of
the LP — the size of the objective and the number of con-
straints — grows with the number of worlds, which, in most
situations, grows exponentially with the number of possible
objects, or may even be infinite. A practical approach to ad-
dress this problem is to sample some reasonable number of
worlds from the distribution P (ω), and then to solve the LP

for these worlds only. The resulting class-based value func-
tion can then be used for worlds that were not sampled.

We will start by sampling a set D of m worlds according
to P (ω). We can now define our LP in terms of the worlds
in D, rather than all possible worlds. For each world ω in D,
our LP will contain a set of constraints of the form presented
in Eq. (4). Note that in all worlds these constraints share the
variables VC , which represent our class-based value function.
The complete LP is given by:

Variables: {VC(tC) : C ∈ C, tC ∈ Dom[T C]}.

Minimize: 1+γ

2m

∑
ω∈D

∑
C∈C

∑
o∈O[ω][C]

∑
to∈T o

P 0
ω(to)VC(to).

Subject to:
∑

C∈C

∑
o∈O[ω][C] VC(s[T o]) ≥

∑
o∈O[ω][C] R

C(s[So], a[o.A])+

γ
∑

s′ Pω(s′ | s, a)
∑

C∈C∑
o∈O[ω][C] VC(s′[T o]);

∀ω ∈ D, ∀s ∈ S(Πω), a ∈ A(Πω);
(8)

where P 0
ω(T o) is the marginalization of P 0

ω(So) to the vari-
ables in T o. For each world, the constraints have the same
form as the ones in Sec. 3. Thus, once we have sampled
worlds, we can apply the same LP decomposition techniques
of GKP to each world to solve this LP efficiently. Our gener-
alization algorithm is summarized in Step 2 of Fig. 3.

The solution obtained by the LP with sampled worlds will,
in general, not be equal to the one obtained if all worlds are
considered simultaneously. However, we can show that the
quality of the two approximations is close, if a sufficient num-
ber of worlds are sampled. Specifically, with a polynomial
number of sampled worlds, we can guarantee that, with high
probability, the quality of the value function approximation
obtained when sampling worlds is close to the one obtained
when considering all possible worlds.

Theorem 5.1 Consider the following class-based value func-
tions (each with k parameters): V̂ obtained from the LP over
all possible worlds by minimizing Eq. (7) subject to the con-
straints in Eq. (6); Ṽ obtained from the LP with the sampled
worlds in (8); and V∗ the optimal value function of the meta-
MDP Π∗. For a number of sampled worlds m polynomial in
(1/ε, ln 1/δ, 1/(1−γ), k, λ], 1/κ]), the error is bounded by:

‖V∗ − Ṽ‖1,PΩ
≤ ‖V∗ − V̂‖1,PΩ

+ εRmax;

with probability at least 1 − δ, for any δ > 0 and ε > 0;
where ‖V‖1,PΩ

=
∑

ω,s∈Sω
P (ω)P 0

ω(s) |Vω(s)|, and Rmax

is the maximum per-object reward.
Proof: See Appendix A.

The proof uses some of the techniques developed by de Farias
and Van Roy [2] for analyzing constraint sampling in general
MDPs. However, there are two important differences: First,
our analysis includes the error introduced when sampling the
objective, which in our case is a sum only over a subset of the
worlds rather than over all of them as in the LP for the full
meta-MDP. This issue was not previously addressed. Sec-
ond, the algorithm of de Farias and Van Roy relies on the
assumption that constraints are sampled according to some

“ideal” distribution (the stationary distribution of the optimal
policy). Unfortunately, sampling from this distribution is as
difficult as computing a near-optimal policy. In our analy-
sis, after each world is sampled, our algorithm exploits the
factored structure in the model to represent the constraints
exactly, avoiding the dependency on the “ideal” distribution.

6 Learning Classes of Objects
The definition of a class-based value function assumes that
all objects in a class have the same local value function. In
many cases, even objects in the same class might play differ-
ent roles in the model, and therefore have a different impact
on the overall value. For example, if only one peasant has
the capability to build barracks, his status may have a greater
impact. Distinctions of this type are not usually known in ad-
vance, but are learned by an agent as it gains experience with
a domain and detects regularities.

We propose a procedure that takes exactly this approach:
Assume that we have been presented with a set D of worlds
ω. For each world ω, an approximate value function Vω =∑

o∈O[ω] Vo was computed as described in Sec. 3. In addi-
tion, each object is associated with a set of features Fω[o]. For
example, the features may include local information, such as
whether the object is a peasant linked to a barrack, or not, as
well as global information, such as whether this world con-
tains archers in addition to footmen. We can define our “train-
ing data” D as {〈Fω[o],Vo〉 : o ∈ O[ω], ω ∈ D}.

We now have a well-defined learning problem: given this
training data, we would like to partition the objects into
classes, such that objects of the same class have similar value
functions. There are many approaches for tackling such a
task. We choose to use decision tree regression, so as to con-
struct a tree that predicts the local value function parameters
given the features. Thus, each split in the tree corresponds to
a feature in Fω[o]; each branch down the tree defines a subset
of local value functions in D whose feature values are as de-
fined by the path; the leaf at the end of the path is the average
value function for this set. As the regression tree learning al-
gorithm tries to construct a tree which is predictive about the
local value function, it will aim to construct a tree where the
mean at each leaf is very close to the training data assigned to
that leaf. Thus, the leaves tend to correspond to objects whose
local value functions are similar. We can thus take the leaves
in the tree to define our subclasses, where each subclass is
characterized by the combination of feature values specified
by the path to the corresponding leaf. This algorithm is sum-
marized in Step 1 of Fig. 3. Note that the mean subfunction at
a leaf is not used as the value subfunction for the correspond-
ing class; rather, the parameters of the value subfunction are
optimized using the class-based LP in Step 2 of the algorithm.

7 Experimental results
We evaluated our generalization algorithm on two domains:
computer network administration and Freecraft.

7.1 Computer network administration
For this problem, we implemented our algorithm in Matlab,
using CPLEX as the LP solver. Rather than using the full LP
decomposition of GKP [6], we used the constraint genera-
tion extension proposed in [13], as the memory requirements

1. Learning Subclasses:
• Input:

– A set of training worlds D.
– A set of features Fω[o].

• Algorithm:
(a) For each ω ∈ D, compute an object-based value function,

as described in Sec. 3.
(b) Apply regression tree learning on {〈Fω[o],Vo〉 : o ∈

O[ω], ω ∈ D}.
(c) Define a subclass for each leaf, characterized by the fea-

ture vector associated with its path.

2. Computing Class-Based Value Function:
• Input:

– A set of (sub)class definitions C.
– A template for {VC : C ∈ C}.
– A set of training worlds D.

• Algorithm:
(a) Compute the parameters for {VC : C ∈ C} that optimize

the LP in (8) relative to the worlds in D.

3. Acting in a New World:
• Input:

– A set of local value functions {VC : C ∈ C}.
– A set of (sub)class definitions C.
– A world ω.

• Algorithm: Repeat
(a) Obtain the current state s.
(b) Determine the appropriate class C for each o ∈ O[ω] ac-

cording to its features.
(c) Define Vω according to (5).
(d) Use the coordination graph algorithm of GKP to com-

pute an action a that maximizes R(s, a) + γ
∑

s′ P (s′ |
s, a)Vω(s′).

(e) Take action a in the world.

Figure 3: The overall generalization algorithm.

were lower for this second approach. We experimented with
the multiagent computer network examples in [6], using vari-
ous network topologies and “pair” basis functions that involve
states of neighboring machines (see [6]). In one of these prob-
lems, if we have n computers, then the underlying MDP has
9n states and 2n actions. However, the LP decomposition
algorithm uses structure in the underlying factored model to
solve such problems very efficiently [6].

We first tested the extent to which value functions are
shared across objects. In Fig. 4(a), we plot the value each ob-
ject gave to the assignment Status = working, for instances
of the ‘three legs’ topology. These values cluster into three
classes. We used CARTr to learn decision trees for our
class partition. In this case, the learning algorithm partitioned
the computers into three subclasses illustrated in Fig. 4(b):
‘server’, ‘intermediate’, and ‘leaf’. In Fig. 4(a), we see that
‘server’ (third column) has the highest value, because a bro-
ken server can cause a chain reaction affecting the whole net-
work, while ‘leaf’ value (first column) is lowest, as it cannot
affect any other computer.

We then evaluated the generalization quality of our class-
based value function by comparing its performance to that of
planning specifically for a new environment. For each topol-
ogy, we computed the class-based value function with 5 sam-
pled networks of up to 20 computers. We then sampled a

0.46 0.462 0.464 0.466 0.468 0.47 0.472 0.474
0

10

20

30

40

50

60

70

80

90

Value function parameter value

N
um

be
r

of
 o

bj
ec

ts

Server

Intermediate

Intermediate

Intermediate

L eaf

L eaf

L eaf

L eaf

L eaf

L eaf

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Ring Star Three legs

E
st

im
at

ed
 p

ol
ic

y
va

lu
e

pe
r a

ge
nt

Class-based value function
'Optimal' approximate value function
Utopic expected maximum value

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ring Star Three legs

M
ax

-n
or

m
 e

rro
r o

f v
al

ue
 fu

nc
tio

n

No class
learning
Learnt
classes

(a) (b) (c) (d) (e)

Figure 4: Network administrator results: (a) Training data for learning classes; (b) Classes learned for ‘three legs’; (c) Generalization quality
(evaluated by 20 Monte Carlo runs of 100 steps); (d) Advantage of learning subclasses. Tactical Freecraft: (e) 3 footmen against 3 enemies.

new network and computed for it a value function that used
the same factorization, but with no class restrictions. This
value function has more parameters — different parameters
for each object, rather than for entire classes, which are opti-
mized for this particular network. This process was repeated
for 8 sets of networks. The results, shown in Fig. 4(c), in-
dicate that the value of the policy from the class-based value
function is very close to the value of replanning, suggesting
that we can generalize well to new problems. We also com-
puted a utopic upper bound on the expected value of the opti-
mal policy by removing the (negative) effect of the neighbors
on the status of the machines. Although this bound is loose,
our approximate policies still achieve a value close to it.

Next, we wanted to determine if our procedure for learn-
ing classes yields better approximations than the ones ob-
tained from the default classes. Fig. 4(d) compares the max-
norm error between our class-based value function and the
one obtained by replanning. The graph suggests that, by
learning classes using our decision trees regression tree pro-
cedure, we obtain a much better approximation of the value
function we would have, had we replanned.

7.2 Freecraft
In order to evaluate our algorithm in the Freecraft game, we
implemented the methods in C++ and used CPLEX as the LP
solver. We created two tasks that evaluate two aspects of the
game: long-term strategic decision making and local tactical
battle maneuvers. Our Freecraft interface, and scenarios for
these and other more complex tasks are publicly available at:
http://dags.stanford.edu/Freecraft/. For each task we designed
an RMDP model to represent the system, by consulting a
“domain expert”. After planning, our policies were evaluated
on the actual game. To better visualize our results, we
direct the reader to view videos of our policies at a website:
http://robotics.stanford.edu/∼guestrin/Research/Generalization/.
This website also contains details on our RMDP model. It is
important to note that, our policies were constructed relative
to a very approximate model of the game, but evaluated
against the real game.

In the tactical model, the goal is to take out an opposing
enemy force with an equivalent number of units. At each
time step, each footman decides which enemy to attack. The
enemies are controlled using Freecraft’s hand-built strategy.
We modelled footmen and enemies as each having 5 “health
points”, which can decrease as units are attacked. We used a
simple aggregator to represent the effect of multiple attack-
ers. To encourage coordination, each footman is linked to a
“buddy” in a ring structure. The local value functions include
terms over triples of linked variables. We solved this model

for a world with 3 footmen and 3 enemies, shown in Fig. 4(e).
The resulting policy (which is fairly complex) demonstrates
successful coordination between our footmen: initially all
three footmen focus on one enemy. When the enemy be-
comes injured, one footman switches its target. Finally, when
the enemy is very weak, only one footman continues to at-
tack it, while the others tackle a different enemy. Using this
policy, our footmen defeat the enemies in Freecraft.

The factors generated in our planning algorithm grow ex-
ponentially in the number of units, so planning in larger mod-
els is infeasible. Fortunately, when executing a policy, we
instantiate the current state at every time step, and action se-
lection is significantly faster [6]. Thus, even though we can-
not execute Step 2 in Fig. 3 of our algorithm for larger sce-
narios, we can generalize our class-based value function to a
world with 4 footmen and enemies, without replanning using
only Step 3 of our approach. The policy continues to demon-
strate successful coordination between footmen, and we again
beat Freecraft’s policy. However, as the number of units in-
creases, the position of enemies becomes increasingly impor-
tant. Currently, our model does not consider this feature, and
in a world with 5 footmen and enemies, our policy loses to
Freecraft in a close battle.

In the strategic model, the goal is to kill a strong enemy.
The player starts with a few peasants, who can collect gold or
wood, or attempt to build a barrack, which requires both gold
and wood. All resources are consumed after each Build ac-
tion. With a barrack and gold, the player can train a footman.
The footmen can choose to attack the enemy. When attacked,
the enemy loses “health points”, but fights back and may kill
the footmen. We solved a model with 2 peasants, 1 barrack, 2
footmen, and an enemy. Every peasant was related to a “cen-
tral” peasant and every footman had a “buddy”. The scope
of our local value function included triples between related
objects. The resulting policy is quite interesting: the peasants
gather gold and wood to build a barrack, then gold to build a
footman. Rather than attacking the enemy at once, this foot-
man waits until a second footman is built. Then, they attack
the enemy together. The stronger enemy is able to kill both
footmen, but it becomes quite weak. When the next footman
is trained, rather than waiting for a second one, it attacks the
now weak enemy, and is able to kill him. Again, planning in
large scenarios is infeasible, but action selection can be per-
formed efficiently. Thus, we can use our generalized value
function to tackle a world with 9 peasants and 3 footmen,
without replanning. The 9 peasants coordinate to gather re-
sources. Interestingly, rather than attacking with 2 footmen,
the policy now waits for 3 to be trained before attacking. The
3 footmen kill the enemy, and only one of them dies. Thus,

we have successfully generalized from a problem with about
106 joint state-action pairs to one with over 1013 pairs.

8 Discussion and Conclusions
In this paper, we have tackled a longstanding goal in planning
research, the ability to generalize plans to new environments.
Such generalization has two complementary uses: First we
can tackle new environments with minimal or no replanning.
Second it allows us to generalize plans from smaller tractable
environments to significantly larger ones, which could not be
solved directly with our planning algorithm. Our experimen-
tal results support the fact that our class-based value function
generalizes well to new plans and that the class and subclass
structure discovered by our learning procedure improves the
quality of the approximation. Furthermore, we successfully
demonstrated our methods on a real strategic computer game,
which contains many characteristics present in real-world dy-
namic resource allocation problems.

Several other papers consider the generalization problem.
Several approaches can represent value functions in general
terms, but usually require it to be hand-constructed for the
particular task. Others [12; 8; 4] have focused on reusing so-
lutions from isomorphic regions of state space. By compari-
son, our method exploits similarities between objects evolv-
ing in parallel. It would be very interesting to combine these
two types of decomposition. The work of Boutilier et al. [1]
on symbolic value iteration computes first-order value func-
tions, which generalize over objects. However, it focuses on
computing exact value functions, which are unlikely to gen-
eralize to a different world. Furthermore, it relies on the use
of theorem proving tools, which adds to the complexity of the
approach. Methods in deterministic planning have focused on
generalizing from compactly described policies learned from
many domains to incrementally build a first-order policy [9;
11]. Closest in spirit to our approach is the recent work of
Yoon et al. [17], which extends these approaches to stochastic
domains. We perform a similar procedure to discover classes
by finding structure in the value function. However, our ap-
proach finds regularities in compactly represented value func-
tions rather than policies. Thus, we can tackle tasks such as
multiagent planning, where the action space is exponentially
large and compact policies often do not exist.

The key assumption in our method is interchangeability
between objects of the same class. Our mechanism for learn-
ing subclasses allows us to deal with cases where objects
in the domain can vary, but our generalizations will not be
successful in very heterogeneous environments, where most
objects have very different influences on the overall dynam-
ics or rewards. Additionally, the efficiency of our LP solu-
tion algorithm depends on the connectivity of the underlying
problem. In a domain with strong and constant interactions
between many objects (e.g., Robocup), or when the reward
function depends arbitrarily on the state of many objects (e.g.,
Blocksworld), the solution algorithm will probably not be ef-
ficient. In some cases, such as the Freecraft tactical domain,
we can use generalization to scale up to larger problems. In
others, we could combine our LP decomposition technique
with constraint sampling [2] to address this high connectiv-
ity issue. In general, however, extending these techniques to
highly connected problems is still an open problem. Finally,

although we have successfully applied our class-value func-
tions to new environments without replanning, there are do-
mains where such direct application would not be sufficient
to obtain a good solution. In such domains, our generalized
value functions can provide a good initial policy, which could
be refined using a variety of local search methods.

We have assumed that relations do not change over time.
In many domains (e.g., Blocksworld or Robocup), this as-
sumption is false. In recent work, Guestrin et al. [7] show
that context-specific independence can allow for dynamically
changing coordination structures in multiagent environments.
Similar ideas may allow us to tackle dynamically changing
relational structures.

In summary, we believe that the class-based value func-
tions methods presented here will significantly further the ap-
plicability of MDP models to large-scale real-world tasks.

Acknowledgements We are very grateful to Ron Parr for many
useful discussions. This work was supported by the DoD MURI
program, administered by the Office of Naval Research under Grant
N00014-00-1-0637, and by Air Force contract F30602-00-2-0598
under DARPA’s TASK program.

References
[1] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic pro-

gramming for first-order MDPs. In IJCAI-01, 2001.
[2] D.P. de Farias and B. Van Roy. On constraint sampling for

the linear programming approach to approximate dynamic pro-
gramming. Submitted to Math. of Operations Research, 2001.

[3] T. Dean and K. Kanazawa. Probabilistic temporal reasoning.
In AAAI-88, 1988.

[4] T. G. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artificial
Intelligence Research, 13:227–303, 2000.

[5] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and execut-
ing generalized robot plans. Artf. Intel., 3(4):251–288, 1972.

[6] C. E. Guestrin, D. Koller, and R. Parr. Multiagent planning
with factored MDPs. In NIPS-14, 2001.

[7] C. E. Guestrin, S. Venkataraman, and D. Koller. Context
specific multiagent coordination and planning with factored
MDPs. In AAAI-02 , 2002.

[8] M. Hauskrecht, N. Meuleau, L. Kaelbling, T. Dean, and
C. Boutilier. Hierarchical solution of Markov decision pro-
cesses using macro-actions. In UAI, 1998.

[9] R. Khardon. Learning action strategies for planning domains.
Artificial Intelligence, 113:125–148, 1999.

[10] D. Koller and A. Pfeffer. Probabilistic frame-based systems.
In AAAI, 1998.

[11] M. Martin and H. Geffner. Learning generalized policies in
planning using concept languages. In KR, 2000.

[12] R. Parr. Flexible decomposition algorithms for weakly coupled
markov decision problems. In UAI-98, 1998.

[13] D. Schuurmans and R. Patrascu. Direct value-approximation
for factored MDPs. In NIPS-14, 2001.

[14] P. Schweitzer and A. Seidmann. Generalized polynomial ap-
proximations in Markovian decision processes. J. of Mathe-
matical Analysis and Applications, 110:568 – 582, 1985.

[15] R. Sutton and A. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

[16] S. Thrun and J. O’Sullivan. Discovering structure in multiple
learning tasks: The TC algorithm. In ICML-96, 1996.

[17] S. W. Yoon, A. Fern, and B. Givan. Inductive policy selection
for first-order MDPs. In UAI-02, 2002.

A Proof of Theorem 5.1
Notation:
• k — number of parameters;

• V̂ — value function obtained by LP from the LP with infinitely many worlds in constraints and objective;
• V — value function obtained by LP from the LP with sampled many worlds in constraints,but infinitely many in the objective;

• Ṽ — value function obtained by LP from the LP with sampled worlds in constraints and objective;
• Vmax — maximum value function over all possible worlds times the probability of that world;
• π∗ — optimal policy;
• µ∗ — stationary distribution of optimal policy;
• µ∗

ω — stationary distribution of optimal policy for world ω;
• D — sampled worlds;
•][ω] — number of objects in ω;

Assumption A.1
∀ω, P (][ω]) ≤ κ]e

−λ]][ω]; for some κ] ≥ λ] > 0.

Theorem A.2 Let V̂ be the value function obtained from the linear program with all of the constraints and the correct objective
function; let Ṽ be the value function from the linear program with the sampled objective and constraints; and let V∗ be the
optimal value function. If the number m of sampled worlds is at least:

m ≥ 2

(
24

(1 − γ)ε

)2{
ln

8

δ
+ k

[
1 + 2 ln

24

(1 − γ)ε
+ ln

(
1 + 2 ln

24

(1 − γ)ε

)]}
+

16e2

ε2κ2
]

ln3

[
63 4eλ]−1

δε2λ]κ]

]
;

then: ∥∥∥V∗ − Ṽ
∥∥∥

1,PΩ

≤
∥∥∥V∗ − V̂

∥∥∥
1,PΩ

+ ε
3κ]Rmax

eλ](1 − γ)
;

with probability at least 1 − 2δ, for any δ > 0 and ε > 0.

Proof:
We will start by proving an auxiliary lemma which considers only sampled constraints, but not the sampled objective:

Lemma A.3

m ≥ 2

(
24

(1 − γ)ε

)2{
ln

8

δ
+ k

[
1 + 2 ln

24

(1 − γ)ε
+ ln

(
1 + 2 ln

24

(1 − γ)ε

)]}
;

then: ∥∥V∗ − V
∥∥

1,PΩ
≤
∥∥∥V∗ − V̂

∥∥∥
1,PΩ

+ ε
κ]Rmax

eλ](1 − γ)
;

with probability at least 1 − δ

Proof: There are two main differences between our proof and the proof of de Farias and Van Roy’s Theorem 5.1 [2] for
standard MDPs: The first is that, in our relational models, the stationary distribution decomposes as the mixture of the stationary
distributions of each world. The second is that we only sample part of the state, in particular, we sample the world, but represent
the constraints for each world in closed form.

For our generalization problem, the stationary distribution decomposes as:

µ∗(ω, s) = P (ω)µ∗
ω(s).

We must now bound the probability that V violates any constraints with respect to the constraints defined by the optimal
policy:

∑

ω,s

µ∗(ω, s) 1
(
V < Tπ∗V

)
=

∑

ω

P (ω)
∑

s

µ∗
ω(s) 1

(
V(s) < Tπ∗V(s)

)
;

≤
∑

ω

P (ω) 1
(
∃s ∈ S(Πω),∃a ∈ A(Πω) : V(s) < TaV(s)

)
.

If a world ω has been sampled, i.e., ω ∈ D, then the indicator over ∃s ∈ S(Πω),∃a ∈ A(Πω) : V(s) < TaV(s) is guaranteed
to be zero. Thus, the last term is less than or equal to ψ

(
ω : V(s) < TaV(s)

)
(in de Farias and Van Roy’s notation), which in

turn is bounded in their Theorem 4.1.

Therefore, using de Farias and Van Roy’s Theorem 4.1 and our sampling distribution for constrains (i.e, sample a world and
use all constraints for that world), we obtain a new bound for their Equation (18):

(
(1 − γ)ε

6

) p
p−1

≥
∑

ω,s

µ∗(ω, s) 1
(
V < Tπ∗V

)
.

Continuing with the same derivation as de Farias and Van Roy, but letting p→ ∞, we obtain the bound onm in our Lemma.
Our last task is to bound the term Mπ∗,p in de Farias and Van Roy as p→ ∞:

Mπ∗,p = max

(
sup
w

∥∥V
∥∥

p,µ∗
, ‖R‖p,µ∗

)
;

In our bound, the first term will dominate. For max-norm (p→ ∞), we have that:

sup
w

∥∥V
∥∥
∞,µ∗

= sup
w

sup
ω
P (ω)max

s
|Vω(s)| ≤ sup

ω
P (ω)

][ω]Rmax

1 − γ
.

From Assumption A.1, we have that:

sup
ω
P (ω)

][ω]Rmax

1 − γ
≤ sup

ω

][ω]Rmax

1 − γ
κ]e

−λ]][ω];

=
κ]Rmax

eλ](1 − γ)
;

concluding the proof of this lemma.
We will conclude the proof of our main theorem by considering the sampled objective function. Our LP’s objective has the

form:
1 + γ

2

∑

ω,s∈Sω

P (ω)P 0
ω(s)Vω(s).

Using our samples, we are going to approximate this value by:

1 + γ

2

1

m

∑

ωi∈D,s∈Sωi

P (ωi)P
0
ωi

(s)Vωi
(s).

The question is how close the approximation obtained from the sampled objective is to the true objective. Denote the free
variables in our LP by w. We can define a random variable

Y
w(ω) =

∑

s∈Sω

P 0
ω(s)Vw

ω (s),

which represents the value added to the LP by the world ω. Note that the true objective is 1+γ
2 E[Y w], while our sampled

objective becomes 1+γ
2

1
m

∑
ωi∈D

Y
w(ωi).

Thus, we must bound the probability that the difference
∣∣ 1
m

∑
ωi∈D

Y
w(ωi) − E[Y w]

∣∣ will be large.
Using a simple union bound, for any θ > 0, we have that:

P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε

)
≤ P

(
∃ωi ∈ D : |Y w(ωi)| > θ +

Rmax

(1 − γ)

)

+ P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε

∣∣∣∣∣ |Y
w(ωi)| ≤ θ +

Rmax

(1 − γ)

)
.

The first term can be bounded, exploiting Assumption A.1, by:

P

(
∃ωi ∈ D : |Y w(ωi)| > θ +

Rmax

(1 − γ)

)
≤

∑

i

P

(
|Y w(ωi)| > θ +

Rmax

(1 − γ)

)
;

≤
∑

i

P

(
Rmax

(1 − γ)
][ωi] > θ +

Rmax

(1 − γ)

)
;

=
∑

i

P

(
][ωi] >

θ(1 − γ)

Rmax

+ 1

)
;

≤ m

∞∑

t=d θ(1−γ)
Rmax

+1e

κ]e
−λ]t;

≤ m

∫ ∞

θ(1−γ)
Rmax

κ]e
−λ]tdt;

≤ m
κ]

λ]

e−λ]
θ(1−γ)
Rmax .

By Hoeffding’s inequality, we can bound the second term by:

P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε

∣∣∣∣∣ |Y
w(ωi)| ≤ θ +

Rmax

(1 − γ)

)
≤ 2e

−mε2

2(θ+
Rmax
(1−γ))

2

.

Putting the two bounds together, we have that:

P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε

)
≤ m

κ]

λ]

e−λ]
θ(1−γ)
Rmax + 2e

−mε2

2(θ+
Rmax
(1−γ))

2

.

We will use θ = 3

√
mε2Rmax

2λ](1−γ) − Rmax

(1−γ) , which will yield:

P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε

)
≤

(
m
κ]

λ]

eλ] + 2

)
e
−

3

√
mε2λ2

]
(1−γ)2

2R2
max ;

≤ 2m
κ]

λ]

eλ]e
−

3

√
mε2λ2

]
(1−γ)2

2R2
max ;

=

2m

κ]

λ]

eλ]e
−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max

 e

−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max .

The second step hinges on the fact that λ] > 0, κ]

λ]
≥ 1 and m > 2.

Note that the term 2m
κ]

λ]
eλ]e

−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max will increase until a maximum m value, and then monotonically decrease.

Thus, we can bound this term by finding the maximizing value of m:

d

dm
2m

κ]

λ]

eλ]e
−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max = 2

κ]

λ]

eλ]e
−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max −

1

6
3

√
ε2λ2

] (1 − γ)2

2m2R2
max

2m
κ]

λ]

eλ]e
−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max .

Setting the derivative to 0, we obtain:

m = 63 2R2
max

ε2λ2
] (1 − γ)2

.

Substituting this value into our bound, we obtain the inequality:

P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε

)
≤ 63 4κ]R

2
maxe

λ]−3

ε2λ3
] (1 − γ)2

e
−1
2

3

√
mε2λ2

]
(1−γ)2

2R2
max ≤ δ.

We will be using ε = ε′
κ]Rmax

eλ](1−γ) , which plugged into the bound yields:

P

(∣∣∣∣∣
1

m

∑

ωi∈D

Y
w(ωi) − E[Y w]

∣∣∣∣∣ ≥ ε
κ]Rmax

eλ](1 − γ)

)
≤ 63 4eλ]−1

ε2κ]λ]

e
−1
2

3

√
mε2κ2

]

2e2 ≤ δ. (9)

Now, we want to find the number of samples such that this probability this less than δ > 0. With some standard manipulation,
we obtain:

m ≥
16e2

ε2κ2
]

ln3

[
63 4eλ]−1

δε2λ]κ]

]
. (10)

Thus, we have shown that, if m is chosen appropriately, with probability at least 1 − δ, we will have that∣∣ 1
m

∑
ωi∈D

Y
w(ωi) − E[Y w]

∣∣ ≤ ε, for any choice of w.
To conclude the proof of our main theorem, we must revisit the proof of de Farias and Van Roy’s Theorem 5.1 [2] and of

our Lemma A.3. Recall that we are dealing with two approximate value functions V and Ṽ . They are both solutions of linear
programs with the same set of constraints. However, the first one uses the true objective function, while the second one uses
our sampled objective function.

The proofs of Theorem 5.1 of [2] and of our Lemma A.3 were written in terms of V . However, these two proofs carry
through almost unchanged (with the extra samples required in Eq. (10)), when we use Ṽ in place of V . The only remaining
caveat is Equation (21) of [2], which we will now reformulate for our context.

Note that V̂ is also a feasible solution for our LP with sampled constraints and objective. Given that Ṽ is the optimal solution,
we have that:

1

m

∑

ωi∈D

Y
V̂(ωi) ≥

1

m

∑

ωi∈D

Y
Ṽ(ωi).

Using Eq. (9), we know that:

E[Y V̂] + ε
κ]Rmax

eλ](1 − γ)
≥ E[Y Ṽ] − ε

κ]Rmax

eλ](1 − γ)
.

Subtracting E[V∗] from both sides, we obtain:

E[Y V̂ − V∗] + ε
κ]Rmax

eλ](1 − γ)
≥ E[Y Ṽ − V∗] − ε

κ]Rmax

eλ](1 − γ)
.

By noting that
∥∥∥V∗ − V̂

∥∥∥
1,PΩ

= E[Y V̂ − V∗], we obtain the necessary form for Equation (21) of [2]. Thus, we can use the

proofs of Theorem 5.1 of [2] and of our Lemma A.3, along with a simple union bound for δ to obtain the proof of our main
theorem.

