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Abstract

Learning visual models of object categories notoriously re-
quires thousands of training examples; this is due to the
diversity and richness of object appearance which requires
models containing hundreds of parameters. We present a
method for learning object categories from just a few im-
ages (� � �). It is based on incorporating “generic”
knowledge which may be obtained from previously learnt
models of unrelated categories. We operate in a variational
Bayesian framework: object categories are represented by
probabilistic models, and “prior” knowledge is represented
as a probability density function on the parameters of these
models. The “posterior” model for an object category is ob-
tained by updating the prior in the light of one or more ob-
servations. Our ideas are demonstrated on four diverse cat-
egories (human faces, airplanes, motorcycles, spotted cats).
Initially three categories are learnt from hundreds of train-
ing examples, and a “prior” is estimated from these. Then
the model of the fourth category is learnt from 1 to 5 train-
ing examples, and is used for detecting new exemplars a set
of test images.

1. Introduction
It is believed that humans can recognize between�� ��� and
��� ��� object categories [1]. Informal observation tells us
that learning a new category is both fast and easy, some-
times requiring very few training examples: given� or �
images of an animal you have never seen before, you can
usually recognize it reliably later on. This is to be con-
trasted with the state of the art in computer vision, where
learning a new category typically requires thousands, if not
tens of thousands, of training images. These have to be
collected, and sometimes manually segmented and aligned
[2, 3, 4, 5, 6, 7] – a tedious and expensive task.

Computer vision researchers are neither being lazy nor
unreasonable. The appearance of objects is diverse and
complex. Models that are able to represent categories as

diverse as frogs, skateboards, cell-phones, shoes and mush-
rooms need to incorporate hundreds, if not thousands of pa-
rameters. A well-known rule-of-thumb says that the num-
ber of training examples has to be� to �� times the number
of object parameters – hence the large training sets. The
penalty for using small training sets is over fitting: while
in-sample performance may be excellent, generalization to
new examples is terrible. As a consequence, current sys-
tems are impractical where real-time user interaction is re-
quired, e.g. searching an image database. By contrast, such
ability is clearly demonstrated in learning in humans. Does
the human visual system violate what would appear to be
a fundamental limit of learning? Could computer vision al-
gorithms be similarly efficient? One possible explanation of
human efficiency is that when learning a new category we
take advantage of prior experience. While we may not have
seen ocelots before, we have seen cats, dogs, chairs, grand
pianos and bicycles. The appearance of the categories we
know and, more importantly, thevariability in their appear-
ance, gives us important information on what to expect in
a new category. This may allow us to learn new categories
from few(er) training examples.

We explore this hypothesis in a Bayesian framework.
Bayesian methods allow us to incorporate prior informa-
tion about objects into a “prior” probability density function
which is updated, when observations become available, into
a “posterior” to be used for recognition. Bayesian methods
are not new to computer vision [8]; however, they have not
been applied to the task of learning models of object cat-
egories. We use here “constellation” probabilistic models
of object categories, as developed by Burlet al. [9] and im-
proved by Weber et al. [6] and Fergus et al. [10]. While they
maximized model likelihood to learn new categories, we
use variational Bayesian methods by incorporating “gen-
eral” knowledge of object categories [11, 12, 14]. We show
that our algorithm is able to learn a new, unrelated category
using one or a few training examples.

In Section 2 we outline the theoretical framework of
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recognition and learning. In Section 3 we introduce in de-
tail the method used in our experiments. In Section 4 we
discuss experimental results on four real-world categories
of different objects (Figure 1).

Faces Motorbikes Airplanes Spotted cats Background

Figure 1: Some sample images from our datasets. The first four
columns contain example images from the four object categories used
in our experiments. The fifth column shows examples from the back-
ground dataset. This dataset is obtained by collecting images through the
Google image search engine (www.google.com). The keyword “things”
is used to obtain hundreds of random images. Note only grayscale in-
formation is used in our system. Complete datasets can be found at
http://vision.caltech.edu/datasets.

2. Approach
Our goal is to learn a model for a new object class with very
few training examples (in the experiments we use just���)
in an unsupervised manner. We postulate that this may be
done if we can exploit information obtained from previously
learnt classes. Three questions have to be addressed in or-
der to pursue this idea: How do we represent a category?
How do we represent “general” information coming from
the categories we have learnt? How do we incorporate a
few observations in order to obtain a new representation?
In this section we address these questions in a Bayesian set-
ting. Note that we will refer to our current algorithm the
Bayesian One-Shot algorithm.

2.1. Recognition
The model is best explained by first considering recogni-
tion. We will introduce a generative model of the object
category built upon the constellation model for object rep-
resentation [6, 9, 10].

2.1.1 Bayesian framework

We start with a learnt object class model and its correspond-
ing model distribution����, where� is a set of model pa-
rameters for the distribution. We are then presented with a
new image and we must decide if it contains an instance of
our object class or not. In this query image we have iden-
tified � interesting features with locations� , and appear-
ances�. We now make a Bayesian decision,�. For clarity,
we explicitly express training images through the detected
feature locations�� and appearances��.

� �
��Object�� ���������

��No Object�� ���������
(1)

�
��� ���������Object� ��Object�

��� ���������No object� ��No object�
(2)

�
�
��� �����Object�����������Object� ���

��� �������No Object������ �������No Object� ����
(3)

Note the ratio of ��Object�
��No Object� in Eq.� is usually set manu-

ally to �, hence omitted in Eq.�. Evaluating the integrals in
Eq.� analytically is typically impossible. Various approxi-
mations can be made to simplify the task. The simplest one,
Maximum Likelihood (ML) assumes that���� is a delta-
function centered at� � ��� [6, 10]. This allows the
integral to collapse to��� �������. The ML approach is
clearly a crude approximation to the integral. It assumes a
well peaked���������� so that��� is a suitable estima-
tion of the entire distribution. Such an assumption relies
heavily on sufficient statistics of data to give rise to such a
sensible distribution. But in the limit of just a few training
examples, ML is most likely to be ill-fated.

At the other extreme, we can use numerical methods
such as Markov-Chain Monte-Carlo (MCMC) to give an ac-
curate estimate, but these can be computationally very ex-
pensive. In the constellation model, the dimensionality of�

is large (� ���) for a reasonable number of parts, making
MCMC methods impractical for our problem.

An alternative is to make approximations to the integrand
until the integral becomes tractable. One method of doing
this is to use a variational bound [11, 12, 13, 14]. We show
in Sec.2.2 how these methods may be applied to our model.

2.1.2 Object representation: The constellation model

Now we need to examine the details of the model
��� �����. We represent object categories with a constel-
lation model [6, 10]

��� ��� �� �
�

���

��� ����� �� �
�

���

����� ��� ��� �� �
�������	
�

��������� �� �
�����

(4)

where� is a vector of model parameters. Since our model
only has� (typically 3-7) parts but there are� (up to 100)
features in the image, we introduce an indexing variable�



which we call ahypothesis. � is a vector of length� , where
each entry is between� and� which allocates a particular
feature to a model part. The set of all hypotheses� consists
all valid allocations of features to the parts; consequently
����, the total number of hypotheses in image� is��� � �.

The model encompasses the important properties of an
object: shape and appearance, both in a probabilistic way.
This allows the model to represent both geometrically con-
strained objects (where the shape density would have a
small covariance, e.g. a face) and objects with distinc-
tive appearance but lacking geometric form (the appearance
densities would be tight, but the shape density would now
be looser, e.g. an animal principally defined by its texture
such as a zebra). Note, that in the model the following as-
sumptions are made: shape is independent of appearance;
for shape the joint covariance of the parts’ position is mod-
eled, whilst for appearance each part is modeled indepen-
dently. In the experiments reported here we use a slightly
simplified version of the model presented in [10] by remov-
ing the terms involving occlusion and statistics of the fea-
ture finder, since these are relatively unimportant when we
only have a few images to train from.

Appearance. Each feature’s appearance is represented
as a point in some appearance space, defined below. Each
part � has a Gaussian density within this space, with
mean and precision parameters��� � ���� ��

�
� � which

is independent of other parts’ densities. Each feature se-
lected by the hypothesis is evaluated under the appropri-
ate part density. The distribution becomes����� ����� ���

��� ���������
�
� ��

�
� � where� is the Gaussian distri-

bution. The background model has the same form of
distribution, ������������ ��

�
���, with parameters���� �

����� ��
�
���.

Shape. The shape is represented by a joint Gaussian
density of the locations of features within a hypothesis, af-
ter they have been transformed into a scale-invariant space.
This is done using the scale information from the features in
the hypothesis, in order to avoid an exhaustive search over
scale. For each hypothesis, the coordinates of the leftmost
part are subtracted off the coordinates of all the parts. This
enables our model to achieve translational invariance. The
density can be written as��� ������ ��� �with parameters
�� � ��� ����. The background shape density is uni-
form because we assume the features are spread uniformly
over the image (which has area�) and are independent of
the foreground locations.

2.1.3 Model distribution

Let us consider amixture modelof constellation models
with � components. Each component	 has a mixing co-
efficient 
�; a mean of shape and appearance��� ��

�
� ; a

precision matrix of shape and appearance�
�
� ��

�
� . The

� and� superscripts denote shape and appearance terms
respectively. Collecting all mixture components and their
corresponding parameters together, we obtain an overall pa-
rameter vector� � ����� ������ ����. Assuming we
have now learnt the model distribution���������� from a
set of training data�� and��, we define the model distri-
bution in the following way

���������� � ����
�


���� ����
�
 ��

�
 ����

�
 ����

�
 ��

�
 �

(5)
where the mixing component is a symmetric Dirichlet:
���� � 	�������, the distribution over the shape pre-
cisions is a Wishart����� � � 
���� ��

�
� ��

�
� � and the

distribution over the shape mean conditioned on the preci-
sion matrix is Normal:����� ��

�
� � � ����� ��

�
� � �

�
� �

�
� �.

Together the shape distribution����� ��
�
� � is a Normal-

Wishart density [14, 15]. Note��� ��������� ��� are
hyperparameters for defining their corresponding distribu-
tions of model parameters. Identical expressions apply to
the appearance component in Eq. 5.

2.1.4 Bayesian decision

Recall that for the query image we wish to calculate the ratio
of ��Object�� ��������� and��No object�� ���������.
It is reasonable to assume a fixed value for all model
parameters when the object is not present, hence the
latter term may be calculated once for all. For the
former term, we use Bayes’s rule to obtain the likeli-
hood expression:��� ���������Object� which expands
to
�
��� ����� ���������� ��. Since the likelihood

��� ����� contains Gaussian densities and the parameter
posterior,���������� is its conjugate density (a Normal-
Wishart) the integral has a closed form solution of a multi-
variate Student’s T distribution (denoted by�):

��� ���������Object� �

��
��

�����
���

�� ����� �
�
 ��

�
 ��

�
 � ����� �

�
 ��

�
 ��

�
 �

where � � � � �� � and � �
� � �

��
�

and 	
� �
��
�� ��

Note � is the dimensionality defined in Eq.�
. If the ra-
tio of posteriors,� in Eq. 3, calculated using the likelihood
expression above exceeds a pre-defined threshold, then the
image is assumed to contain an occurrence of the learnt ob-
ject category.

2.2. Learning
The process of learning an object category is unsupervised
[6, 10]. The algorithm is presented with a number of train-



ing images labeled as “foreground images”. It assumes
there is an instance of the object category to be learnt in
each image. But no other information, e.g. location, size,
shape, appearance, etc., is provided.

In order to estimate a posterior distribution����������
of the model parameters given a set of training data
������� as well as some prior information, we formulate
this learning problem as variational Bayesian expectation
maximization (“VBEM”), applied to a multi-dimensional
Gaussian mixture model. We first introduce the basic con-
cept and assumptions of the variational method. Then we
illustrate in more detail how such learning is applied to our
model.

2.2.1 Variational methods

We have some integral we wish to evaluate:� �
�
	
������.

We write���� as a function of its parameters and some hid-
den variables,�: ���� �

�


���� �� ��. Applying Jensen’s

inequality to give us a lower bound on the integral, we get:

� �

�
	�


���� �� �� �� (6)

� ��

��
	�


���� �� ���
���� ��

���� ��
�� ��

�
(7)

providing

�
	�


���� �� �� �� � � (8)

Variational Bayes makes the assumption that���� �� is
a probability density function that can be factored into
�	����
���. We then iteratively optimize�	 and�
 using
expectation maximization (EM) to maximize the value of
the lower bound to the integral (see [15, 16]). If we con-
sider���� �� the “true” p.d.f., by using the above method,
we are effectively decreasing the Kullback-Leibler distance
between���� �� and���� ��, hence obtaining a���� �� that
approximates the true p.d.f.

2.2.2 Variational Bayesian EM (“VBEM”)

Recall that we have a mixture model with� components.
Collecting all mixture components and their corresponding
parameters together, we have an overall parameter vector
� � ����� ������ ����. For � training images, we
have�� �

� ��
�
� �with � � ����� . In the constellation model,

each image� has���� hypotheses, each one of which picks
out� features from�� ����� to give�� �

� ��
�
��. We have

two latent variables, the hypothesis� and the mixture com-
ponent�. We assume that the prior on any hypothesis
always remains uniform, namely���� ��, so it is omitted
from the update equations since it is constant. We can now
express the likelihood of an image� as:

���	��	��� �

��
��

�����
���

���	 � �������	
� ��

�
 ��

�
 ����

	
���

�
 ��

�
 � (9)

where��� � 	��� � 
� . Both the terms involving� ��
above have a Normal form. The prior on the model param-
eters has the same form as the model distribution in Eq. 5

���� � ����
�


���� ����
�
 ��

�
 ����

�
 ����

�
 ��

�
 � (10)

where the mixing prior is ���� � 	�������,
and the shape prior is a Normal-Wishart distribution
����� ����

�
� ��

�
� � � ����� ��

�
� � �

�
� �

�
� �
���� ��

�
� ��

�
� �.

Identical expressions apply to the appearance component of
Eq. 10.

The E-Step. The central idea of VBEM is to approxi-
mate the posterior distribution����� ��� by an optimal
approximation�������� that is factorizable�������� �
����������, where� and� are hidden variables while
� is the actual model parameter. In the E-step of VBEM,
������ is updated according to

���� �� � ��� 		��� ��
 (11)

where 	����� �
 �� ��� ����� ���� �� (12)

and the expectation is taken w.r.t.���� [15]. The above
equation can be further written as

	��� �� �
 �� ��� ��� ����������� ��� �� �� (13)

The rule for updating the indicator posterior is

�	�� � �����
	
� � � ���

	
�� (14)

where ������ � �������
�
�

��� (15)

���
	
� � � ���

�
�
�

�
��	

� ���
 �

� ��
�
 ��

	
� ���

 �

�
�

���� �
������

�
���

���

�
(16)

�� ��� �

���
���

����� � �� ������ �� ���� �� �� �� � (17)

��
�
 � �� ��

�

� ��� (18)

where��� is the Digamma function and�� is the dimen-
sionality of� �

� . Superscript� indicates the parameters are
related to the shape component of the model. The RHS of
the above equations consist of hyperparameters for the pa-
rameter posteriors (i.e., �, �, � and �). 	����

�
�� is

computed exactly the same way as	�����
� �, using the cor-

responding parameters of the appearance component. We
then normalize to give

	�� �
�	���

���� �
	
����

(19)



which is the probability that component	 is responsible for
hypothesis� of the��� training image.

The M-Step. In the M-step,���� is updated according to

���� � ��� 		���
���� (20)

where 	��� �
 �� ��� ����� ���� ���� (21)

Again, the above equation can be written as

	��� �
 �� ��� ��� ����������� ��� �� ���� (22)

and the expectation is taken w.r.t.���� ��.
We show here the update rules for the shape components.

The equations are exactly the same for the appearance com-
ponents. We define the following variables

�
� �
�

�

�
���

�����
���

����� (23)

��� � � �
� (24)

��� �
�
���

�
���

�����
���

������
�
� (25)

��
�
 �

�
��

��
	��

�����
���

	����
	
� � ��� ���

	
� � ��� �

� (26)

We then update the hyperparameters as follows. For
the mixing coefficients we have a Dirichlet distribution
���� � 	���	� where the hyperparameters are updated by:
� � ��� � �. For the means, we have����� ��

�
� � �

����
� � �

�
� �

�
� � where

�
�
 �

�� ��
�
 � ��� �

�
�

�� � ��
�

(27)

��� � ��� � ��� (28)

For the noise precision matrix we have a Wishart density
����� � �
���� ��

�
� � where

�
�
 �

���
�
� ���� ���

� ����
�
 ���

� �
�

��� � ��
�

� ��
��
�
 ��

�
�

�� � �� � ��� (29)

3. Implementation

3.1. Feature detection and representation
We use the same features as in [10]. They are found using
the detector of Kadir and Brady [17]. This method finds
regions that are salient over both location and scale. Gray-
scale images are used as the input. The most salient re-
gions are clustered over location and scale to give a reason-
able number of features per image, each with an associated
scale. The coordinates of the center of each feature give us
� . Figure 2 illustrates this on two images from the motor-
bike and airplane datasets. Once the regions are identified,

they are cropped from the image and rescaled to the size
of a small (��  ��) pixel patch. Each patch exists in a
��� dimensional space. We then reduce this dimensional-
ity by using PCA. A fixed PCA basis, pre-calculated from
the background datasets, is used for this task, which gives
us the first�� principal components from each patch. The
principal components from all patches and images form�.
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Figure 2: Output of the feature detector

3.2. Learning
The task of learning is to estimate the distribution
of ����������. VBEM estimates the hyperparameters
��� � �� � �� ��� ���� ��� ������ that define the dis-
tributions of the parameters����� ������ ����. The
goal is to find the distribution of���� that best explains the
data������� from all the training images.
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(b) Motorbike prior
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(c) Spotted cat prior
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(d) Airplane prior

Figure 3: Prior distribution for shape mean (�� ) and appearance

mean (��) for faces, motorbikes, spotted cats and airplanes. Each

prior’s hyperparameters are estimated from models learnt with

maximum likelihood methods, using “the other” datasets [10]. For

example, face prior is obtained from models of motorbikes, spot-

ted cats and airplanes. Only the first three PCA dimensions of the

appearance priors are displayed. All four parts of the appearance

begin with the same prior distribution for each PCA dimension.

One critical issue is the choice of priors for the Dirichlet
and Norm-Wishart distributions. In this paper, learning is
performed using a single mixture component. So is set
to �, since
� will always be�. Ideally, the values for the
shape and appearance priors should reflect object models in
the real world. In other words, if we have already learnt
a sufficient number of classes of objects (e.g. hundreds or
thousands), we would have a pretty good idea of the aver-
age shape (appearance) mean and variances given a new ob-
ject category. In reality we do not have the luxury of such
a number of object classes. We use four classes of object



models learnt in a ML manner from [10] to form our pri-
ors. They are: spotted cats, motorbikes, faces and airplanes.
Since we wish to learn the same four datasets with our algo-
rithm, we use a “leave one out” strategy. For example, when
learning motorbikes we obtain priors by averaging the learnt
model parameters from the other three categories(i.e. spot-
ted cats, faces and airplanes), hence avoiding the incorpora-
tion of an existing motorbike model. The hyperparameters
of the prior are then estimated from the parameters of the
existing category models. Figure 3.2 shows the prior shape
model for each category.

Initial conditions are chosen in the following way. Shape
and appearance means are set to the means of the train-
ing data itself. Covariances are chosen randomly within
a sensible range. Learning is halted when the parameters
change per iteration falls below a certain threshold (����)
or exceeds a maximum number of iterations (typically���).
In general convergence occurs within less than��� itera-
tions. Repeated runs with the same data but different ran-
dom initializations consistently give virtually indistinguish-
able classification results. Since the model is a generative
one, the background images are not used in learning except
for one instance: the appearance model has a distribution
in appearance space modeling background features. Esti-
mating this from foreground data proved inaccurate so the
parameters are estimated from a set of background images
and not updated within the VBEM iteration. Learning a
class takes roughly about� � � seconds on a��� GHz ma-
chine when number of training images is less than�� and
the model is composed of� parts. The algorithm is imple-
mented in Matlab. It is also worth mentioning that the cur-
rent algorithm does not utilize any efficient search method
unlike [10]. It has been shown that increasing the number
of parts in a constellation model results in greater recog-
nition power provided enough training examples are given
[10]. Were efficient search techniques used,�-
 parts could
be learnt, since the VBEM update equations are require the
same amount of computation as the traditional ML ones.
However, all our experiments currently use� part models
for both the current algorithm and ML.

3.3. Experimental Setup
Each experiment is carried out in the following way. Each
dataset is randomly split into two disjoint sets of equal size.
� training images are drawn randomly from the first. A
fixed set of�� are selected from the second, which form
the test set. We then learn models using both Bayesian and
ML approaches and evaluate their performance on the test
set. For evaluation purposes, we also use�� images from
a background dataset of assorted junk images from the In-
ternet. For each category, we vary� from � to �, repeating
the experiments�� times for each value (using a different
set of� training images each time) to obtain a more robust

estimate of performance. When� � �, ML fails to con-
verge, so we only show results for the Bayesian One-Shot
algorithm in this case.

When evaluating the models, the decision is a simple ob-
ject present/absent one. All performance values are quoted
as equal error rates from the receiver-operating characteris-
tic (ROC) (i.e.�(True positive) = 1 -�(False alarm)). ROC
curve is obtained by testing the model on�� foreground test
images and�� background images . For example, a value of
���means that��� of the foreground images are correctly
classified but��� of the background images are incorrectly
classified (i.e. false alarms). A limited amount of prepro-
cessing is performed on some of the datasets. For the mo-
torbikes and airplanes some images are flipped to ensure all
objects are facing the same way. In all the experiments, the
following parameters are used: number of parts in model
� �; number of PCA dimensions for each part appearance
� ��; and average number of detections of interest point
for each image� ��. It is also important to point out that
except for the different priors obtained as described above,
all parameters remain the same for learning different cate-
gories of objects.

4. Results

Our experiments demonstrate the benefit of using prior in-
formation in learning new object categories. Fig.�-
 show
models learnt by the Bayesian One-Shot algorithm on the
four datasets. It is important to notice that the “priors”
alone are not sufficient for object categorization (Fig.�-

(a)). But by incorporating this general knowledge into the
training data, the algorithm is capable of learning a sensible
model with even� training example. For instance, in Fig.
�(c), we see that the 4-part model has captured the essence
of a face (e.g. eyes and nose). In this case it achieves a
recognition rate as high as���, given only 1 training ex-
ample. Table 1 compares our algorithm with some pub-
lished object categorization methods. Note that our algo-
rithm has significantly faster learning speed due to much
smaller number of training examples.

Algorithm Training

number

Learning

speed

Categories Error Rate

(�)

Remarks

Bayesian

One-Shot

1 to 5 ��min faces, motorbikes, spot-

ted cats, airplanes

���� 4-part model, un-

supervised

[6] [10] 200 to

400

hours faces, motorbikes, spot-

ted cats, airplanes, cars

������ 6-part model, un-

supervised

[7] ��� ��� weeks faces �������� aligned manually

[5] ����� days faces, cars ������ aligned manually

[2] ���� days faces �����	�� aligned manually

Table 1: A comparison between the Bayesian One-Shot learning

algorithm and alternative approaches to object category recogni-

tion. The error rate quoted for the Bayesian One-Shot model is for

� training images.
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Figure 4: Summary of face model.(a) Test performances of the algo-

rithm given�� � number of training image(s) (red).� number of training

image is the case of using the prior model only. Note this “general” in-

formation itself is not sufficient for categorization. Each performance is

obtained by�� repeated runs with different randomly drawn training and

testing images. Error bars show one standard deviation from the mean

performance. This result is compared with the maximum-likelihood (ML)

method (green). Note ML cannot learn the degenerate case of a single

training image.(b) Sample ROC curves for the algorithm (red) compared

with the ML algorithm (green). The curves shown here use typical mod-

els drawn from the repeated runs summarized in(a). Details are shown in

(c)-(f). (c) A typical model learnt with� training example. The left panel

shows the shape component of the model. The four�’s and ellipses indi-

cate the mean and variance in position of each part. The covariance terms

are not shown. The top right panel shows the detected feature patches in

the training image closest to the mean of the appearance densities for each

of the four parts. The bottom right panel shows the mean appearance distri-

butions for the first� PCA dimensions. Each color indicates one of the four

parts. Note the shape and appearance distributions are much more “model

specific” compare to the “general” prior model in Fig.3.2.(e) Some sample

foreground test images for the model learnt in(c), with a mix of correct and

incorrect classifications. The pink dots are features found on each image

and the colored circles indicate the best hypothesis in the image. The size

of the circles indicates the score of the hypothesis (the bigger the better).

(d) and(f) are similar to(c) and(e). But the model is learnt from	 training

images.
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Figure 5:Summary of motorbike model.
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Figure 6:Summary of spotted cat model.
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Figure 7:Summary of airplane model.

5. Conclusions and future work
We have demonstrated that given a single example (or just
a few), we can learn a new object category. As Table 1
shows, this is beyond the capability of existing algorithms.
In order to explore this idea we have developed a Bayesian
learning framework based on representing object categories
with probabilistic models. “General” information coming
from previously learnt categories is represented with a suit-
able prior probability density function on the parameters of
such models. Our experiments, conducted on realistic im-
ages of four categories, are encouraging in that they show
that very few (1 to 5) training examples produce models
that are already able to discriminate images containing the
desired objects from images not containing them with error
rates around�� ���.

A number of issues are still unexplored. First and fore-
most, more comprehensive experiments need to be carried
out on a larger number of categories, in order to understand
how prior knowledge improves with the number of known
categories, and how categorical similarity affects the pro-
cess. Second, in order to make our experiments practical
we have simplified the probabilistic models that are used for
representing objects. For example a probabilistic model for
occlusion is not implemented in our experiments [6, 9, 10].
Third, it would be highly valuable for practical applications
(e.g. a vehicle roving in an unknown environment) to de-

velop an incremental version of our algorithm, where each
training example will incrementally update the probability
density function defined on the parameters of each object
category [18]. In addition, the minimal training set and
learning time that appear to be required by our algorithm
makes it possible to conceive of visual learning applications
where real-time training and user interaction are important.
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