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HACs offer a new science for exploring the 
computational and human aspects of society. 

BY N.R. JENNINGS, L. MOREAU, D. NICHOLSON, S. RAMCHURN,  
S. ROBERTS, T. RODDEN, AND A. ROGERS

THE COMPUTER HAS  come a long way from its initial 
role as a scientific tool in the research lab. We 
live in a world where a host of computer systems, 
distributed throughout our physical and information 
environments, are increasingly implicated in our 
everyday actions. Computer technologies impact 
all aspects of our lives and our relationship with 
the digital has fundamentally altered as computers 
have moved out of the workplace and away from the 
desktop. Networked computers, tablets, phones 
and personal devices are now commonplace, as are 
an increasingly diverse set of digital devices built 
into the world around us. Data and information is 
generated at unprecedented speeds and volumes from 
an increasingly diverse range of sources and via ever 
more sensor types. It is then combined in unforeseen 
ways, limited only by human imagination. People’s 
activities and collaborations are becoming ever more 
dependent upon and intertwined with this ubiquitous 
information substrate.

As these trends continue apace, it is becoming 
apparent that many endeavors involve the symbiotic 
interleaving of humans and computers. Moreover, 

the emergence of these close-knit part-
nerships is inducing profound change. 
The ability of computer systems to 
sense and respond to our ongoing ac-
tivities in the real world is transforming 
our daily lives and shaping the emer-
gence of a new digital society for the 
21st century. More specifically, rather 
than issuing instructions to passive 
machines that wait until they are asked 
before doing anything, we are now start-
ing to work in tandem with highly inter-
connected computational components 
that act autonomously and intelligently 
(aka agents42). This shift is needed to 
cope with the volume, variety, and pace 
of the information and services that are 
available. 

It is simply infeasible to expect indi-
viduals to be aware of the full range of 
potentially relevant possibilities and 
be able to pull them together manually. 
Computers need to do more to proac-
tively guide users’ interactions based 
on their preferences and constraints. 
In so doing, greater attention must be 
given to the balance of control between 
people and machines. In many situa-
tions, humans are in charge and agents 
predominantly act in a supporting role, 
providing advice and suggesting op-
tions. In other cases, however, agents 
are in control and humans play the sup-
porting role (for example, automatic 
parking systems on cars and algorith-

Human-Agent 
Collectives

 key insights

    HACs are a new class of socio-technical 
systems in which humans and smart 
software (agents) engage in flexible 
relationships in order to achieve both 
their individual and collective goals. 
Sometimes the humans take the lead, 
sometimes the computer does and this 
relationship can vary dynamically.

    There are major scientific challenges that 
must be addressed in developing systems 
that interact and motivate humans to 
work alongside agents in large, dynamic, 
and uncertain environments where 
privacy and ethical concerns may arise.

    Key research challenges in HACs 
include achieving flexible autonomy 
between humans and the software, and 
constructing agile teams that conform 
and coordinate their activities.
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mic trading on stock markets). More-
over, these relationships may change 
during the course of an activity (for ex-
ample, a human may be interrupted by 
a more pressing request and so takes a 
less hands-on approach to the current 
task or an agent may encounter an un-
expected situation and have to ask for 
human assistance for a task it was plan-
ning to complete autonomously).

We call this emerging class of sys-
tems human‑agent collectives (HACs) 
to reflect the close partnership and the 
flexible social interactions between the 
humans and the computers. As well as 
exhibiting increased autonomy, such 
systems are inherently open and social. 
This openness means participants need 
to continually and flexibly establish and 
manage a range of social relationships. 
Thus, depending on the task at hand, 

different constellations of people, re-
sources, and information must come 
together, operate in a coordinated fash-
ion, and then disband. The openness 
and presence of many distinct stake-
holders, each with their own resources 
and objectives, means participation is 
motivated by a broad range of incen-
tives—extrinsic (for example, money 
or tax-benefit), social or image motiva-
tion (for example, public accreditation 
or leader-board position) or intrinsic 
(for example, personal interest in a so-
cial cause, altruism, or hobby2)—rather 
than diktat. Moreover, once presented 
with such incentives, the stakeholders 
need to be evaluated and rewarded in 
ways that ensure they sustain behaviors 
beneficial to the system they partially 
form.33

Embryonic examples of future HAC 

systems where people routinely and 
synergistically interact and collaborate 
with autonomous software are starting 
to emerge. For example, as we travel, 
increasingly interconnected transport 
management systems cooperate to 
aid our journey. Systems such as Waze 
(http://www.waze.com/) blend citizen 
and (electronic-) sensor generated con-
tent to aid the user. Furthermore, soft-
ware agents can proactively interact to 
arrange a place to stay and somewhere 
to eat in accordance with the traveler’s 
preferences and current circumstances. 
However, despite relevant work on parts 
of the problem in the AI, HCI, CSCW, 
and UbiComp communities, it is ap-
parent that developing a comprehen-
sive and principled science for HACs 
is a major research challenge, as is the 
process by which such systems can be 
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systems to harness and coordinate the 
endeavors of people.41 Essentially, the 
task has been to manage the means 
through which people are instructed 
and to coordinate their responses in a 
manner that makes sense. This large-
scale, networked collaboration is typi-
cally achieved using software systems 
to coordinate and analyze these human 
endeavors. Moreover, software agents 
have emerged as a key technology for 
observing and reacting to human ac-
tivities.17 This approach has also gained 
popularity with mixed-initiative sys-
tems8 and the development of context-
aware computing approaches within 
ubicomp.1 However, in most of this 
work, the software agents are a tool 
to aid in understanding and manag-
ing user interactions. Users are in the 
foreground and the agents are in the 
background. The challenge of HACs 
is moving from the presumption of a 
dominant relationship, to consider how 
users and agents coexist on a common 
footing and are considered in a man-
ner that allows flexible relationships to 
emerge.

The role of people within HACs also 
brings the incentives of the partici-
pants to the fore. Most current systems 
largely assume altruistic and benevo-
lent behavior, and have not dealt with 
the need to provide incentives to poten-
tially self-interested participants, nor 
have they explicitly handled the inher-
ent uncertainty of participatory content 
in a consistent manner (see Rahwan 
et al.28 for examples of such behavior 
and Naroditskiy et al.23 for the design 
of incentive structures to combat it). 
Similarly, current approaches to ac-
countable information infrastructures 
have focused on augmenting specific 
systems, such as databases3 or compu-
tational workflows,7 with the ability to 
track information provenance. Now, 
emerging efforts, such as the W3C 
PROV Recommendation,21 are starting 
to allow for the tracking of provenance 
across multiple systems and to systems 
where confidentiality of data needs to 
be preserved.14 However, no work deals 
with the simultaneous challenges of 
humans in the loop and long-term and 
online operation.

Human-Agent Collectives in Action
Consider the aftermath of a major natu-
ral disaster. A number of organizations 

designed and built, and the means by 
which HACs will be accepted and de-
ployed in the wild.

What Is Different about 
Human-Agent Collectives?
HAC systems exhibit a number of 
distinctive features that make it par-
ticularly challenging to engineer and 
predict their behavior. Their open na-
ture means control and information is 
widely dispersed among a large number 
of potentially self-interested people and 
agents with different aims and objec-
tives. The various system elements ex-
hibit a range of availabilities; some are 
persistent and others are transient. The 
independent actors need to coordinate 
flexibly with people and agents that are 
themselves adapting their behaviors 
and actions to the prevailing circum-
stances to best achieve their goals. The 
real-world context means uncertainty, 
ambiguity, and bias are endemic and 
so the agents need to handle informa-
tion of varying quality, trustworthiness, 
and provenance. Thus, techniques are 
required to provide an auditable infor-
mation trail from the point of capture (a 
sensor or a human participant), through 
the fusion and decision processes, to 
the point of action, and the agents will 
have to reason about the trust and repu-
tation of their collaborators to take the 
best course of action. Finally, in many 
cases, it is important that the collective 
action of the volitionally participating 
actors results in acceptable social out-
comes (such as fairness, efficiency, or 
stability). When taken together, these 
HACs features require us to:

 ˲ Understand how to provide flexible 
autonomy that allows agents to some-
times take actions in a completely au-
tonomous way without reference to hu-
mans, while at other times being guided 
by much closer human involvement.

 ˲ Discover the means by which 
groups of agents and humans can ex-
hibit agile teaming and come together 
on an ad hoc basis to achieve joint goals 
and then disband once the cooperative 
action has been successful.

 ˲ Elaborate the principles of incen-
tive engineering in which the actors’ 
rewards are designed so the actions 
the participants are encouraged to take 
generate socially desirable outcomes.

 ˲ Design an accountable information 
infrastructure that allows the veracity 

and accuracy of seamlessly blended hu-
man and agent decisions, sensor data, 
and crowd-generated content to be con-
firmed and audited.

A number of research domains are 
beginning to explore fragments of this 
overarching vision. However, none of 
them is dealing with the totality, nor the 
associated system-level challenges. For 
example, interacting intelligent agents 
are becoming a common means of de-
signing and building systems that have 
many autonomous stakeholders, each 
with their own aims and resources.9 To 
date, much of this work has focused on 
systems where all the agents are either 
software or hardware (for example, ro-
bots or unmanned autonomous sys-
tems (UAS)). However, it is increasingly 
being recognized that it is both neces-
sary and beneficial to involve humans, 
working as active information gather-
ers and information processors, in con-
cert with autonomous software agents, 
within such systems.11,38 For example, 
systems have been demonstrated where 
humans gather real-world information 
and pass it to an autonomous agent 
that performs some basic aggregation 
before presenting it online.30 Such ap-
proaches are often termed participatory 
sensing26 or citizen-sensing.15 Likewise, 
a number of systems have been dem-
onstrated in which autonomous agents 
pass information-processing tasks to 
the human participants, then collect 
and aggregate the results.40 However, 
these broad strands of work typically 
assume the authority relations between 
humans and agents are fixed and that 
there exists a largely static set of skilled 
human participants who participate 
on a voluntary basis.a This contrasts 
with the HAC view of agents operat-
ing within a dynamic environment in 
which the flexible autonomy varies the 
human-agent authority relationships 
in a context-dependent manner and in 
which these actors individually make 
decisions based on their preferences 
and the properties of their owners.

In the areas of HCI and CSCW, re-
search has increasingly turned to the 
crowd and how to exploit computer 

a Amazon Mechanical Turk (AMT), and other 
similar systems, is an exception to this in 
that it allows software systems to automati-
cally generate Human Intelligence Tasks 
and make payments to a large pool of human 
participants who complete them.
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are in the area, including first respond-
ers (FRs), humanitarian aid organiza-
tions, and news reporters, as well as lo-
cals. A key aim for many of these actors 
is to assess the situation to determine 
the areas to focus on in the coming days 
and weeks. To assist in this task, a num-
ber of the organizations have UASs that 
can be used for aerial exploration and a 
number of locals have installed sensors 
to monitor the environment (for exam-
ple, two weeks after the Fukushima inci-
dent, locals had built and deployed over 
500 Geiger counter sensors and were 
uploading their readings; see http://
jncm.ecs.soton.ac.uk/), in addition to 
many locals using social media plat-
forms such as Ushahidi or Google Crisis 
Response to record requests for help 
and complete maps of the stricken area. 
A representative system architecture for 
this HAC is shown in the accompanying 
figure and an associated video is avail-
able at http://vimeo.com/76205207.

As can be seen, the information in-
frastructure contains a wide variety of 
content (for example, maps of roads 
and key amenities, weather forecasts, 
and social media reports from locals in 
the affected areas), from many sources. 
Some of these sources provide higher 
quality, more trustworthy information 
than others (for example, international 
aid organizations versus locally built en-
vironmental sensor readings). To help 
account for and justify the decisions 
that are made, the provenance of in-
formation is stored wherever possible. 
Moreover, the decisions made by both 
responders and autonomous agents (in-
cluding UASs) are tracked to ensure all 
members of the HAC are accountable 
for their actions and the successes and 
failures of the rescue effort can be better 
understood when such data is reviewed 
at a later stage.

At the start of a day, the various actors 
(for example, FRs or local volunteers) 

register their availability and relevant 
resources (for example, UAS, ground 
transport vehicles or medical supplies) 
and indicate specific tasks they would 
like to perform (for example, search 
the area near the school or determine 
if there is running water in a particular 
district). These tasks will be informed 
by their current assessment of the situ-
ation and may be influenced by particu-
lar requests from locals for assistance.

As a first step, some actor constructs 
a plan to achieve one or more of the 
tasksb (that is, the HAC forms). This 
plan is likely to involve constructing 
teams of people, agents, and resources 
to work together on a variety of subtasks 
because many activities are likely to be 
beyond the capability of just one team 

b It may be a human or a software agent that pro-
poses the initial plan. Moreover, multiple ac-
tors may attempt to construct plans simultane-
ously, some of which may not come to fruition.

HAC system for disaster response.
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may need to rely more on autonomous 
agents to compute plans and allocate 
resources and actions to individuals 
and UASs. Moreover, when the coordi-
nators detect the agents are less able 
to judge human abilities (for example, 
because fatigue reduces human per-
formance) or the nature of a task (for 
example, complex digging operations 
or surveillance), the coordinators may 
choose to step in to change the plan or 
input more information.

Over a number of days, responders 
may notice that locals are less willing to 
support the rescue effort and that those 
who do only work on tasks in their own 
areas. This means some areas do not 
receive sufficient attention. To help fill 
this gap, a number of additional incen-
tive schemes could be put in place. First, 
volunteers could be rewarded if they 
sign up friends and family to assist with 
the rescue effort, such rewards could 
be financial (for example, payment for 
hours worked or vouchers for fuel) or 
nonfinancial (for example, promise of 
quicker return of their amenities). Sec-
ond, individuals who complete tasks 
outside their local area and on high-pri-
ority tasks could receive additional cred-
it, such as community service awards or 
double time pay. Finally, to encourage 
accurate reporting of the importance 
and urgency of tasks, an incentive struc-
ture that increases the reputation of in-
dividuals who make assessments that 
accord well with those of the profession-
al responders may be introduced and 
bonus payments made to recruiters who 
hire the top task performers.

Key Research Challenges
HACs present research challenges in, 
among other things, how we balance 
control between users and agents (flex-
ible autonomy), dynamically (dis)as-
sembling collectives (agile teaming), 
motivating actors (incentive engineer-
ing) and how we provide an information 
infrastructure to underpin these en-
deavors. While none of these are entire-
ly new areas, the HAC system context 
introduces additional complexity and 
brings new elements to the fore.

Flexible autonomy. HACs provoke 
fundamental questions about the re-
lationship between people and digital 
systems that exhibit some form of au-
tonomy. Specifically, the emergence of 
HACs highlights the growing extent to 

member. As they join, the various re-
sponders may accept the plan as is and 
be ready to start enacting it. However 
they may wish to make minor modifica-
tions (for example, putting in waypoints 
en route to the chosen area to maximize 
the value of the information obtained 
or requesting help from volunteers for 
some parts of the plan). Some may even 
desire to make more major modifica-
tions (for example, indicating that a par-
ticular subtask that has initially been 
excluded is more important than one 
of the suggested ones or that significant 
extra resources are needed for the plan 
to be successful). This plan co-creation 
iterates until agreement is reached, 
with various cycles of the humans tak-
ing charge and the agents replanning 
to account for the responders’ prefer-
ences.

Due to the nature of the problem and 
environment, the HAC’s plan execution 
(operation) phase may not go smoothly. 
New higher-priority tasks may appear, 
planned ones may turn out to be unnec-
essary, new actors and resources may 
become available, or committed ones 
may disappear (for example, due to FRs 
being exhausted or UASs running out 
of power). All of these will involve the 
agents and the humans in an ongoing 
monitoring and replanning endeavor, 
potentially involving the disbanding of 
existing teams and the coming together 
of new ones with different combina-
tions of capabilities that are a better 
fit for certain types of rescue missions. 
Moreover, the autonomy relationship 
between the humans and the agents 
may change during the course of plan 
execution. For example, a team of UASs 
may initially be instructed to gather im-
agery from a particular area in an en-
tirely autonomous fashion and not to 
disturb the FRs until the whole task is 
complete. However, in performing this 
task the UASs might run into difficulty 
and request assistance with a complex 
operation (for example, maneuvering in 
a tight space to get a particular view of 
a building) or the UASs might discover 
something important they believe is 
worth interrupting the responders for 
or worth requesting help from an online 
crowd to analyze the images collected. 
As unforeseen events happen and the 
complexity of the effort grows to involve 
hundreds of responders, volunteers, 
and UASs, the response coordinators 

Different 
constellations of 
people, resources, 
and information 
must come 
together, operate 
in a coordinated 
fashion, and  
then disband. 
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which computer systems can no longer 
be thought of as entirely subservient. 
We routinely obey navigation systems 
without question or follow computer-
generated instructions delivered on our 
phones. As such autonomous systems 
increasingly instruct us, new forms of 
relationship are emerging. This shift 
not only raises issues about how we 
might design for interaction within 
these systems, it also brings into focus 
larger social and ethical issues of re-
sponsibility and accountability.

HACs are fundamentally socio-tech-
nical systems. Relationships between 
users and autonomous software sys-
tems will be driven as much by user-
focused issues (such as responsibility, 
trust, and social acceptability), as tech-
nical ones (such as planning or coordi-
nation algorithms). Consequently, we 
need to uncover the interactive prin-
ciples of flexible autonomy that shape 
these systems. A critical issue here is the 
balance of control between the agents 
and the users involved in the collective. 
In particular, when do users need to be 
in control and when should software 
systems override them?

Given this, a key challenge is how to 
ensure a positive sense of control within 
HACs. Core to this issue is the sense of 
social accountability and responsibility 
inherent in our everyday activities. Our 
professional and personal actions are 
routinely available to others and we are 
held accountable for them. In fact, it 
could be argued that this shapes many 
of our broader societal relations and un-
derstandings. But how will we feel when 
we are sharing our world with computa-
tional elements that exert as much con-
trol over the environment as us? Will 
the relationship be an easy or a tense 
one and how might we manage that re-
lationship? What checks and balances 
are needed to allow a fruitful relation-
ship to mature between software agents 
and humans in HACs as the balance of 
control shifts between them?

Tackling these questions requires 
us to think about how software agents 
might reveal their work to users. At 
present, such software often operates 
“behind the scenes” with limited vis-
ibility to users. They might make a rec-
ommendation on our behalf or sched-
ule activities with the result of their 
endeavors presented to users. However, 
little if anything is conveyed of the ratio-

nale leading to this result. In contrast, 
computational agents within HACs will 
need to make their actions and ratio-
nale available so they can be socially ac-
countable.

Revealing the role and actions of 
software agents to users will bring into 
focus a raft of questions that require us 
to consider the broader social and ethi-
cal issues, potentially prompting signif-
icant reflection on the legal and policy 
frameworks within which these systems 
operate. For example, given the collec-
tive nature of the endeavor, it is impor-
tant to determine who or what will ul-
timately be responsible for a particular 
outcome and what this might mean for 
the application of this approach. More 
routinely, to what extent will people al-
low the software agents in these collec-
tives the trust and latitude they might 
give to other trained and qualified pro-
fessionals? Will it be acceptable for 
software agents to make mistakes as 
they learn how to do a job as part of a 
collective?

A critical issue here is how to repre-
sent both human and agent endeavors 
in HACs, at multiple levels of scale and 
aggregation. Along with promoting a 
sense of social accountability, the ability 
to recognize and understand the activi-
ties of others and to flexibly respond to 
these actions is necessary to enable co-
operation and to coordinate actions as 
part of broader social endeavors. Thus, 
the provision of mechanisms to make 
users aware of the actions of others is 
central to the design of many coopera-
tive systems. In particular, the following 
are central issues: What mechanisms 
are needed to allow us to do this with 
users and autonomous software agents 
alike? How might we sense human ac-
tions and recognize the various activi-
ties a user is involved in and how might 
these be conveyed to software agents? 
What are the most appropriate tech-
niques for presenting agents’ actions 
and ongoing progress to users?

Agile teaming. Humans and agents 
will form short-lived teams in HACs and 
coordinate their activities to achieve the 
various individual and joint goals pres-
ent in the system before disbanding. 
This will be a continual process as new 
goals, opportunities and actors arrive. 
To date, research within the multi-agent 
systems community has generated a 
significant number of algorithms to 

form and coordinate teams; specifically 
those algorithms found within the areas 
of coalition formation and decentral-
ized coordination.27,32 However, many of 
these approaches focus on interactions 
between software agents alone and do 
not consider the temporal aspects of ag-
ile teaming.36

In HAC settings, these assumptions 
are challenged. Centralized control is 
simply not possible for large scale dy-
namic HACs. Moreover, approaches 
must be developed to consider not just 
what the optimal coalition looks like, 
but how the individual humans and 
agents, each with their own limited 
communication and computation re-
sources, can negotiate with one anoth-
er to form a coalition, without having 
explicit knowledge of the utilities and 
constraints of all the other actors within 
the system.

Addressing the decentralization is-
sues is likely to involve local message 
passing approaches that draw on in-
sights from the fields of probabilistic 
inference, graphical models, and game 
theory. These allow coordination and 
coalition formation problems to be ef-
ficiently represented as a graph by ex-
ploiting the typically sparse interaction 
of the agents (that is, not every agent has 
a direct interaction with every other). To 
date, however, these approaches have 
only addressed teams with tens of ac-
tors, while HACs will scale to hundreds 
or possibly thousands. Similarly, extant 
approaches have been developed with 
the explicit assumption that all of the 
actors engaged in the coordination have 
similar computational and communi-
cation resources; an assumption that 
will almost certainly not be valid within 
most HACs. Addressing the challenge of 
scaling up these approaches, such that 
they can deal with large numbers of ac-
tors with heterogeneous computational 
and communication resources, is likely 
to require principled approximations to 
be made (see Rahwan et al.29 for prom-
ising work in this vein that uses well 
founded network flow optimization 
algorithms to address large-scale coali-
tion formation problems).

Furthermore, previous approaches 
to forming teams and coordinating ac-
tors have typically assumed that com-
plete and accurate knowledge regard-
ing the utilities and constraints of the 
system is available to all. Although such 
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systems make use of non-monetary in-
centives. Those that do, often focus on 
reputational issues. For example, they 
cite avvo.com, which attracts large num-
bers of lawyers in the U.S. to provide free 
response and advice to people visiting 
the website, and generates a reputation 
ranking of these lawyers based on the 
quality and timeliness of responses they 
provide. Now, the online ranking can 
clearly impact the chances of attracting 
customers to their private practices, but 
the effect is indirect, and admits a great-
er range of personal motivation, com-
pared to a direct monetary payment. To 
date, however, comparatively little work 
has attempted to formally define this 
style of incentive mechanism. This is an 
important omission because we believe 
that bringing insights from behavioral 
economics and “nudge” approaches to 
behavior change,10,38 into the formal de-
scriptions of mechanism design provid-
ed by game theory, is a promising point 
of departure to engineer the types of in-
centives HACs require.

Now, even if the right incentives can 
be ascertained, the actors in the system 
may not perform to their best, either be-
cause they have limited capabilities or 
are inherently byzantine. For example, 
in systems such as AMT, where thou-
sands of workers attempt micro-tasks 
for a few cents, strategic workers at-
tempt to complete as many tasks as pos-
sible with minimum effort. Similarly, in 
citizen science projects such as Zooni-
verse, amateur scientists often select 
the tasks they most enjoy rather than 
those needed most for the project.34 
Moreover, in long-lived interactions, 
human actors may suffer from fatigue 
and therefore their performance may 
degrade over time. However, naïvely 
filtering out the actors that cannot per-
form some tasks may mean their ability 
to perform other tasks properly is wast-
ed. Hence, it is crucial to design mecha-
nisms to ensure the incentives given to 
the actors to perform the tasks assigned 
to them are aligned with their capabili-
ties and reliabilities. Against this back-
ground, initial work in crowdsourcing, 
and citizen science has, for example, 
demonstrated how to set the price paid 
for micro-tasks or how many tasks, of a 
particular type, each actor should be al-
located to incentivize them to perform 
well.39 Gamification approaches have 
also been successful in incentivizing 

assumptions may be valid within the 
small-scale systems studied to date, 
they will not apply to larger HACs op-
erating within dynamic environments 
where the sensing and communication 
capabilities of the actors are unknown. 
Previous work in this domain has ad-
dressed such uncertainty through the 
frameworks of Markov decision pro-
cesses (MDPs) and partially observable 
MDPs. Now, while the Bayesian frame-
work implicit in these approaches is 
well founded and principled, again it 
does not currently scale sufficiently 
to allow its use in large systems where 
time-critical decisions must be made. 
As in the previous case, this requires 
novel computational and approxima-
tion approaches to be devised.

Most importantly, the novel ap-
proaches to HAC formation and opera-
tion must also address the needs of the 
humans within the system. Users will 
have to negotiate with software agents 
regarding the structure of the short-
lived coalitions they will collectively 
form, and then coordinate their activi-
ties within the resulting coalition. This 
represents a major departure for the 
mechanisms and techniques that have 
predominantly focused on computa-
tional entities with little regard for the 
ways in which users might form teams 
or consideration of their relationship to 
groupings such as teams. Consequent-
ly, the computational exploration must 
be balanced by a focus on the persua-
sion and engagement of human partici-
pants within collectives. For example, 
how might we understand and manage 
the conflict between the need to break 
up and reform teams with natural hu-
man preferences for stability and trust? 
How might users feel about the possi-
bility of working across multiple teams 
simultaneously, and how might they 
feel about taking instructions from soft-
ware agents? Initial work has begun to 
explore these questions within the con-
text of mixed reality games20 and social 
robotics.6 However, to fully understand 
how these dynamics impact the require-
ments of the underlying team forma-
tion and coordination algorithms, we 
need to build, deploy, and evaluate pro-
totypical HACs in realistic settings.

Incentive engineering. What will cause 
HACs to form and what will motivate 
them to work well together? How do we 
align the incentives of a set of actors, ei-

ther individually or as a group, with the 
goals of the system designers to gener-
ate particular outcomes? Both of these 
endeavors are challenging whenever 
the behavior of the actors is guided by 
individual and potentially conflicting 
motives.4 Now, while it is acknowledged 
that such actors may be influenced by 
incentives of many different types, most 
research to date has drawn upon mi-
croeconomics, focusing on monetary 
incentives and assuming the actors’ 
utility functions are well defined and 
linear. Moreover, actors are typically 
considered to be rational in that they 
carry out complex computations to de-
duce their best action in equilibrium. 
Unfortunately, these assumptions often 
result in incentive mechanisms that are 
centralized and brittle in the context of 
open systems such as HACs.

HACs require us to reconsider many 
of the presumptions central to most 
current approaches to incentive engi-
neering. They will involve actors that are 
boundedly rational10 and whose behav-
ior cannot always be controlled. For ex-
ample, in disaster response settings, lo-
cal volunteers (of different reliabilities) 
can be co-opted by their family mem-
bers and friends (through their social 
network) and need to be coordinated to 
work alongside emergency responders 
from different agencies (with different 
capabilities). Moreover, humans and 
software agents may not always be re-
ceptive to monetary payments and may 
react better to social or intrinsic incen-
tives. For example, in the DARPA Red 
Balloon Challenge, the incentive mecha-
nism of the winning team was success-
ful because it aligned individual finan-
cial incentives to find balloons with that 
of recruiting members from their social 
network and beyond.28 In contrast, es-
sentially the same scheme attracted 
very few volunteers on the MyHeartMap 
Challenge (http://www.med.upenn.edu/
myheartmap/), which appealed mostly 
to altruistic motivations to save heart 
attack patients. Recently, Scekic et al.33 
have surveyed and categorized such ear-
ly examples of incentive mechanisms 
for social computing platforms. They 
note the vast majority of current systems 
employ a simple contest between work-
ers, from which a subjective assessment 
of the “winner” is made. This winner 
is then typically rewarded financially 
for the work they have done. Far fewer 
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human participants to spend hours do-
ing what would typically be viewed as 
boring tasks.41 Nevertheless, more work 
is needed to generalize these approach-
es and prove their efficacy in different 
application areas.

While these challenges relate to how 
incentives are chosen and presented, 
the computation of these incentives 
in the context of HACs is also a major 
challenge. Indeed, the fact that HACs 
involve large numbers of actors means 
computationally efficient algorithms 
need to be designed to enumerate and 
optimize the, possibly combinatorial, 
incentives to be given to a crowd, coali-
tion, or individual within a HAC. When 
the operation of such HACs unfolds 
over a long period of time, possibly in-
volving many repeated interactions and 
negotiations, the schedule of incentives 
to be offered is an even greater com-
putational challenge. In most cases, 
optimality will not be achievable and, 
hence, the goal should be to seek ap-
proximate solutions. Some relevant 
examples include algorithms to incen-
tivize large numbers of electric vehicle 
owners to schedule charging their cars 
at different times to avoid overloading 
a local transformer31 and algorithms to 
approximate fair rewards for the partici-
pants of large teams.19

Accountable information infrastruc‑
ture. HACs will have a significant impact 
on the ways in which we think about 
the digital infrastructure that supports 
them. Specifically, we need to consid-
er how the data underpinning can be 
shared. The provenance of this informa-
tion is particularly critical. Here, prove-
nance describes which information data 
is derived from (what), the humans or 
agents responsible for it (who), and the 
methods involved in deriving it (how). In 
turn, the infrastructure processes prov-
enance to assess information quality, to 
allow users to understand and audit the 
past behavior of HACs, and to help hu-
mans decide whether a HAC’s decisions 
can be trusted.

The ways in which HACs operate 
requires us to reconsider some of the 
prevailing assumptions of provenance 
work. Provenance is generally thought 
of as being fine-grained, deterministic, 
and accurately and completely describ-
ing executions.21 This assumption is not 
valid in HACs, since human activities 
are both difficult to capture and unre-

liable. Moreover, asynchronous com-
munications may make provenance 
incomplete. Finally, the fine-grained 
nature of provenance makes it difficult 
for humans to understand. Addressing 
these challenges is crucial, and a variety 
of techniques are needed. For instance, 
probabilistic models built on prove-
nance may help capture the uncertainty 
associated with what happened and 
abstraction techniques may allow com-
mon patterns to be collapsed, and thus, 
large graphs to be more manageable. 
These promising directions require the 
meaning of such provenance descrip-
tions, and the kind of reasoning they 
enable, to be investigated. Given the po-
tential size of HACs in terms of agents 
and humans, and also in terms of dura-
tion of execution, the scalability of rea-
soning algorithms is also an important 
issue that requires further work.

The vision for an accountable infor-
mation infrastructure is to help both 
humans and agents understand the de-
cisions made and determine whether 
they can be trusted. Indeed, it is folklore 
that provenance can help derive trust 
and assess quality, but no principled 
approach, readily applicable to HACs, is 
currently available. In this context, the 
ability to learn from provenance is im-
portant as it has the potential to make 
provenance a rich source of informa-
tion to establish trust, and also guide 
decision-making in HACs. In particular, 
given that provenance information typi-
cally takes the form of a graph, some of 
the methods developed for graphs in 
general may be customizable, and po-
tentially be executable efficiently. An 
example of such a solution is network 
metrics that summarize complex situa-
tions and behaviors in a convenient and 
compact way. Specifically, network met-
rics can be specialized to provenance 
graphs, helping characterize HACs’ past 
behavior, in an application-agnostic 
manner.5 Then, by applying machine 
learning techniques to provenance-
oriented network metrics, we can label 
graphs and nodes to derive trust about 
agents or quality of data.

To date, existing infrastructure 
mechanisms tend to embody a “mid-
dleware” perspective, formalizing data 
models, developing algorithms, and 
engineering the integration of facilities 
such as provenance with applications. 
However, HACs need to understand and 

A key challenge 
is how to ensure a 
positive sense of 
control within HACs. 
Core to this issue is 
the sense of social 
accountability 
and responsibility 
inherent in our 
everyday activities. 
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respond to the behavior of people and 
how this human activity is captured, 
processed, and managed raises signifi-
cant ethical and privacy concerns. Often 
at the core of these concerns is the man-
ner in which people are separated from 
data collected about them. Specifically, 
in current infrastructures people are of-
ten unaware of the digital information 
they bleed, how this information is pro-
cessed, and the consequential effects 
of the analytical inferences drawn from 
this data. Consequently, people are at an 
ethical disadvantage in managing their 
relationship with the infrastructure as 
they are largely unaware of the digital 
consequences of their actions and have 
no effective means of control or with-
drawal. A HAC infrastructure will need 
to be accountable to people, allowing 
them to develop a richer and more bidi-
rectional relationship with their data.

Developing an accountable infra-
structure also responds to the call from 
privacy researchers such as Nissen-
baum24 to understand and support the 
relationship between users and their 
data. Indeed, her Contextual Integrity 
theory frames privacy as a dialectic pro-
cess between different social agents. 
Others have built upon this point, sug-
gesting a bidirectional relationship 
needs to be embedded into the design 
of services so they are recognized as 
inherently social.35 This suggests users 
should have a significant element of 
awareness and control in the disclosure 
of their data to others25 and the use of 
this data by software agents. Establish-
ing such bi-directional relationships 
also requires us to reframe our existing 
approaches to the governance and man-
agement of human data. 

Perhaps the most critical issues in 
this regard relate to seeking permission 
for the use of personal data within in-
formation systems. Current approach-
es adopt a transactional model where 
users are asked at a single moment to 
agree to an often quite complex set of 
terms of conditions. This transactional 
model is already being questioned in 
the world of bio-ethics, with Manson 
and O’Neill18 arguing for the need to 
consider consent as much broader than 
its current contractual conception. We 
suggest that HACs will similarly need to 
revisit the design principles of consent 
and redress the balance of agency to-
ward the users.16 
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