
Efficient Model Learning for Dialog Management

Finale Doshi
CSAIL MIT

32 Vassar Street
Cambridge, MA 02139

finale@mit.edu

Nicholas Roy
CSAIL MIT

32 Vassar Street
Cambridge, MA 02139

nickroy@mit.edu

ABSTRACT
Intelligent planning algorithms such as the Partially Observable
Markov Decision Process (POMDP) have succeeded in dialog man-
agement applications [10, 11, 12] because of their robustness to the
inherent uncertainty of human interaction. Like all dialog plan-
ning systems, however, POMDPs require an accurate model of the
user (the different states of the user, what the user might say, etc.).
POMDPs are generally specified using a large probabilistic model
with many parameters; these parameters are difficult to specify
from domain knowledge, and gathering enough data to estimate
the parameters accurately a priori is expensive.

In this paper, we take a Bayesian approach to learning the user
model simultaneously the dialog management problem. At the
heart of our approach is an efficient incremental update algorithm
that allows the dialog manager to replan just long enough to im-
prove the current dialog policy given data from recent interactions.
The update process has a relatively small computational cost, pre-
venting long delays in the interaction. We are able to demon-
strate a robust dialog manager that learns from interaction data,
out-performing a hand-coded model in simulation and in a robotic
wheelchair application.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning

General Terms
dialog management, learning, uncertainty

Keywords
Human-robot interaction, decision-making under uncertainty,
model learning

1. INTRODUCTION
Spoken dialog managers allow for natural human-robot interac-

tion, especially for public use in everyday environments. How-
ever, several issues make it difficult to decipher the user’s intent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HRI ’07 Washington, DC, USA
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: Our dialog manager allows more natural human
communication with a robotic wheelchair.
First, voice recognition technology produces noisy outputs, a prob-
lem exacerbated by ambient noise. Voice recognition also varies
widely in quality among different users. Finally, even with perfect
voice recognition, we still must determine the user’s intent in the
face of linguistic ambiguity. Partially Observable Markov Decision
Processes (POMDPs) are a particular planning technique that have
been shown to lead to more robust dialog management because they
can effectively handle uncertainty and ambiguity in the dialog ([10,
11, 12]). The typical POMDP model operates by assuming that
the user intent, or “state” is hidden from the robot. Instead, the
user intent is inferred from a stream of noisy or ambiguous obser-
vations, such as the utterances from a speech recognition system,
visual gestures, etc..

The POMDP dialog manager not only compensates for state un-
certainty with explicit information gathering actions but also bal-
ances the costs of taking an incorrect action against the cost of
asking further clarification questions. The ability to manage the in-
formation gathering trade-off has made POMDP dialog managers
particularly effective in health care domains [10]. The cost of di-
alog errors on health-care robots is relatively high, because the di-
alog often involves large motions of assistive devices. For exam-
ple, with the robotic wheelchair (shown in Figure 1), the cost of
misunderstanding a desired destination is much more than the mild
annoyance of the user needing to repeat themselves; the wheelchair
may already be taking the user to the wrong location.

Much POMDP dialog-management research has focused on de-
veloping factored models and other specialized structures to im-
prove performance and algorithmic complexity ([12], [7], [11]).
These approaches typically assume a reasonably accurate user mod-
el. In domains where large amounts of data are available—for ex-
ample, automated telephone operators—the user model may be rel-
atively easy to obtain. For human-robot interaction, however, col-
lecting sufficient user data to learn a statistically accurate model is
usually expensive: trials take a lot of time from human volunteers.

Specifying the model from expert knowledge is also difficult.
For example, how does one specify the probability that the user ap-
peared to ask for the time when they actually wanted the weather?
Even linking the occurrences of keywords to states poses a tricky
problem: likely speech recognition errors are difficult to predict
(see Section 4 for examples), and modeling mistakes can severely
impact the quality of the dialog.

Some learning algorithms have designed systems to train param-
eters from scratch while maintaining reasonable dialogs ([4]), but
we would also like to take advantage of any domain knowledge
we may have in creating initial parameter estimates. In this paper,
we take a Bayesian approach to parameter uncertainty: we specify
distributions—not point estimates—of the model parameters. Un-
like [4], we also want the system to learn online (instead of from a
training set) and use a POMDP approach that truly handles uncer-
tainty both in the dialog and in the model. We incorporate model
uncertainty into the POMDP framework to create a learning dialog
manager that is aware both of the uncertainty inherent in the dia-
log and also in the specification of the user model. What we will
show is a POMDP-based dialog manager that initially performs
with some basic competence, but steadily improves over time with-
out paying a large computational penalty in recreating a new dialog
plan at every time step. The planner smoothly converges to the
best plan given the data while preserving good responsiveness in
the overall system.

2. PROBLEM FORMULATION

2.1 POMDP overview
A POMDP consists of the n-tuple {S,A,O,T ,Ω,R,γ}. S, A,

and O are sets of states, actions, and observations. For our dia-
log manager, the states represent the user’s intent, in this case the
places where the user would like a robotic wheelchair to go. Ac-
tions include queries to the user and physical movement. Unlike
many conventional dialog managers, however, the POMDP model
assumes that the current state (the user’s intent) is hidden, and must
be inferred from a set of observations that are emitted probabilis-
tically, where the likelihood of any observation is conditioned on
the current (hidden) state. In the dialog management setting, the
observations correspond to the utterances that the dialog manager
hears (more details in Section 4.2), and the observation is emitted
stochastically according to word error probabilities, likelihoods of
user error, etc.. We will assume that the state, action and observa-
tion sets are all discrete, finite, and relatively small; thus, learning
the parameters and updating the POMDP is tractable for real-time
dialogs (although work has extended dialog managers to large state
spaces [11] and continuous observation spaces [12]).

The remaining components of the POMDP tuple describe how
the world behaves. The transition function T (s′|s, a) gives the
probability P (s′|s, a) of transitioning from state s to s′ if taking
action a — what the user is likely to want next, given the state they
were just in and the action the system just took. The observation
function Ω(o|s, a) gives the probability P (o|s, a) of seeing obser-
vation o from state s after taking action a. The reward R(s, a)

start

Go to
Kitchen

Go to
Bathroom

Go to
Bedroom

...

done

reset

Figure 2: A toy example of a dialog POMDP. Solid lines rep-
resent more likely transitions; we assume that user is unlikely
to change their intent before their original request is fulfilled
(dashed lines). The system automatically resets once we enter
the ‘done’ state.

specifies the immediate reward for taking action a in state s and
gives us a way to specify what the “right” actions are in different
states, and how much the user is willing to tolerate clarification
questions, information gathering, etc. before becoming frustrated.
The discount factor γ ∈ [0, 1] allows us to bias the dialog manager
towards satisfying user intents more quickly; γ weighs how much
we value future rewards to current rewards: a discount factor of 0
means that we only value current rewards, while γ =1 implies that
future rewards are just as valuable as current rewards.

Recall again that the POMDP’s state is hidden; after taking an
action, we receive an observation to use when choosing our next ac-
tion. In general, our estimate of the user’s current state, and there-
fore the best next action to take, will depend on the entire history of
actions and observations that the dialog manager has experienced.
Since defining a policy in terms of the history can get quite cumber-
some, we typically keep a probability distribution over the states,
known as the belief. The belief is a sufficient statistic for the pre-
vious history of actions and observations. Given a new action and
observation, we can update the belief b using Bayes rule:

bn(s) = ηΩ(o|s′, a)
X

s∈S

T (s′|s, a)bn−1(s) (1)

where η is a normalizing constant. Thus, the goal of the POMDP
dialog manager is to find a policy mapping the set of beliefs B to
actions A to maximize the expected reward E[

P

n γnR(sn, an)].
In order to find a good dialog manager, that is, to find a policy

that maximizes our reward for each belief, we use the concept of a
value function to represent our policy. Let the value function V (b)
represent the expected reward if we start with belief b. The optimal
value function is piecewise-linear and convex, so we represent V

with the vectors Vi; V (b) = maxiVi·b. The optimal value function
is also unique and satisfies the Bellman equation:

V (b) = max
a∈A

Q(b, a),

Q(b, a) = R(b, a) + γ
X

b′∈B

T (b′|b, a)V (b′),

Q(b, a) = R(b, a) + γ
X

o∈O

Ω(o|b, a)V (bo
a), (2)

where Q(b, a) represents the expected reward for starting in belief
b, performing action a, and then acting optimally. The last equa-
tion follows if we note that there are only |O| beliefs that we can
transition to after taking action a in belief b (one corresponding to
each observation). The belief bo

a is b after a Bayesian update af-
ter experiencing (a,o). Ω(o|b, a), the probability of seeing o after

performing a in belief b, is
P

s∈S Ω(o|s, a)b(s).
This equation may be solved iteratively:

Vn(b) = max
a∈A

Qn(b, a), (3)

Qn(b, a) = R(b, a) + γ
X

o∈O

Ω(o|b, a)Vn−1(b
o
a). (4)

Each iteration, or backup, brings the value function closer to its
optimal value[2]. Once the value function has been computed,
it is used to choose actions. After each observation, we update
the belief using equation 1 and then choose the next action using
arg maxa∈A Q(b, a) with Q(b, a) given in equation 2.

Note that the exact solution to equation 3 using an iterative back-
up approach is exponentially expensive, so we approximate the true
backup operation by backing up at only a small set of beliefs[6].
The choice of beliefs determines the quality of the approximation
and thus the performance of the dialog manager. One approach
is the “Point-Based Value Iteration” algorithm[6], which involves
starting with some belief b0 (such as being in a ‘pre-dialog’ state).
Then for each action a, we sample a user response o from the ob-
servation distribution and compute the updated belief state ba

o (sim-
ulating the effect of one exchange between the user and the dialog
manager). We add the farthest new beliefs to our set and repeat the
process until we accumulate the desired number of beliefs. Since
the beliefs represent confusions over the user’s intent, picking be-
liefs reachable from the starting belief focuses our computation in
situations the dialog manager is likely to experience.

2.2 Uncertainty in Parameters
The policy that results from solving equations 3 and 4 depends

critically on accurate choices of the transition probabilities, obser-
vation probabilities and the reward – these parameters will strongly
effect how the system associates different utterances with different
dialog states, how aggressive the system will be about assuming a
correct interpretation of the users’ desires, etc. Capturing the un-
derlying space of possible user states and system actions is usually
not difficult, but specifying the probabilistic dynamics and percep-
tion models is difficult to do with certainty. We can often write
down reasonable models, but rarely the best model. As a result,
the dialog manager may seem “fussy,” conservative, or badly be-
haved, depending on how accurately the model captures our own
internal expectation of behavior.

What we would ideally like to do is to actually learn and im-
prove the model as the dialog progresses with each user, assuming
our reasonable parametric model as a starting point. The approach
we will use is to assume that our model parameters are initially
uncertain, and we will find a POMDP dialog management policy
that models this uncertainty. We will then improve the model from
experience, reducing the uncertainty of the parameters and recom-
puting the dialog manager policy over time.

The specific model of uncertainty we use is to represent T , Ω,
and R by probability distributions with a collective set of hyper-
parameters Θ (for simplicity, we assume that the discount γ is
known). The rewards are modeled as Gaussians; the model de-
signer initializes a mean, variance, and a pre-observation count.
The pre-observation count, a measure of the expert’s confidence,
corresponds the size of an imaginary sample-set from which the
expert based his conclusions.

The uncertainty in the transition and observation distributions is
captured with Dirichlet distributions. Recall from Section 2.1 that
T and Ω are given by multinomial distributions; as a result the
Dirichlet distribution is a natural choice because it places a prob-
ability measure over the simplex of valid multinomials. Figure 3

a

b

c

.5

.2
.3

P(a) = .2
P(b) = .3
P(c) = .5

Figure 3: An example simplex for a multinomial that can take
three different values (a,b,c). Each point on the simplex corre-
sponds to a valid multinomial distribution; the Dirichlet distri-
bution places a probability measure over this simplex.

shows an example of a simplex for a discrete random variable that
can take three different values; each transition probability distribu-
tion p(·|s, a) is some point on this simplex, and the Dirichlet gives
a measure of the likelihood of each such distribution.

Given a set of parameters α1...αm, the likelihood of the discrete
probability distribution p1...pm is given by

P (p; α) = η(α)
m

Y

i

p
αi−1

i δ(1 −
m

X

i

pi),

where η, the normalizing constant, is the multinomial beta function.
The expected values of the Dirichlet distribution are given by

E[pi|α] =
αi

Pm

j αj

, (5)

and the mode is

E[pi|α] =
αi − 1

Pm

j
αj − m

. (6)

Note that Dirichlet distributions have an additional, desirable
property in that they are easy to update. For example, suppose we
are given a set of observation parameters α1...α|O| corresponding
to a particular s,a. If we observe observation oi, then a Bayesian
update produces new parameters (α1, . . . , αi+1, . . . , α|O|). Thus,
we can think of quantity αi − 1 as a count of how many times ob-
servation oi has been seen for the (s,a) pair. Initially, the expert
can specify an educated guess of the distribution—which we take
to be the mode of the distribution—and a pre-observation total that
represents the expert’s confidence in his guess.

Knowing what α parameters to increment after a dialog sequence
requires knowing what states occurred during the dialog. After
each interaction, we know what observations were received and
what actions were taken but not the actual states encountered. We
do, however, have the estimate of the state sequence provided by
the beliefs during the dialog execution, calculated by equation 1.
At the end of the dialog, we can improve this estimate of the state
sequence by constructing a Hidden Markov Model (HMM) from
our expected-value POMDP and applying the Viterbi algorithm to
determine the most likely complete state sequence for that interac-
tion1. In general, the estimate of the state sequence will have many
errors if the model parameters are not well known. However, the
structure of the dialog POMDP (Figure 2) alleviates many of the
HMM issues: since the most likely trajectory for a single interac-
tion is through a single ‘desire’-state until the user intent is satisfied
1HMMs and the Viterbi algorithm are well-developed approaches
to statistical inference, especially in the speech-recognition com-
munity. A description of an HMM and Viterbi is beyond the scope
of this paper; the reader is referred to [8] for more details.

by the dialog manager, there are fewer places for the HMM to err.
To increase accuracy, we only update parameters after a successful
interaction and pad the end of the interaction history with ‘done’
observations. Our simulation results compare the performance of
the HMM estimator with an oracle that gives us the true state his-
tory.

3. LEARNING NEW DIALOG POLICIES
We propose first solving for a dialog policy for the uncertain

model using the expected values of the model parameters. After
each dialog, we update our user model and apply additional replan-
ning, or backups, to Q(b, a) to refine the current dialog policy.

3.1 Solving the POMDP
We first consider the problem of finding an optimal dialog pol-

icy when the user model is uncertain and the dialog manager does
not expect to learn from interactions. A standard POMDP solution
maximizes expected reward given the uncertainty over the user’s
intent (the state); we now desire a solution that maximizes the ex-
pected reward given uncertainty in both the user’s intent and the
user model. We begin by rewriting equation 4, which describes the
value of performing action a given a belief b over the user’s intent:

Q(b, a) = max
i

~qa · b,

qa(s) = R(s, a) + γ
X

o∈O

X

s′∈S

T (s′|s, a)Ω(o|s′, a)Vn−1,i(s)

The first equation is an expectation over our uncertainty in the
user’s intent. The second equation averages over the stochastic-
ity in the user model using our knowledge of how likely the user is
to have changed their mind and imperfections in the voice recog-
nition system. Since we are trying to compute the Q-value for a
particular belief b, the value of b is unaffected by our uncertainty
in the model. However, computing the vector ~qa—which is an av-
erage over the stochasticity in the user model—now requires an
additional expectation over our uncertainty in the user model:

qa(s) = EΘ[R(s, a) +

γ
X

o∈O

X

s′∈S

T (s′|s, a)Ω(o|s′, a)Vn−1,i(s)] (7)

= EΘ[R(s, a)] +

γ
X

o∈O

X

s′∈S

EΘ[T (s′|s, a)Ω(o|s′, a)Vn−1,i(s)]

= EΘ[R(s, a)] +

γ
X

o∈O

X

s′∈S

EΘ[T (s′|s, a)]EΘ[Ω(o|s′, a)]Vn−1,i(s),

where EΘ[R(s, a)], EΘ[T (s′|s, a]) and EΘ[Ω(o|s′, a)] are the me-
ans of the Dirichlet distributions as given by equation 5. The second
line follows from the linearity of expectations, while the third line
follows because the transitions (T), essentially the likelihood that
the users will change their mind, are independent of the noisy dia-
log observations (Ω). The Vn−1,i is a fixed value from the previous
iteration and does not require averaging. Thus, to find the optimal
dialog policy given an uncertain user model, it is sufficient to solve
the POMDP with the expected values of the model parameters.

Recall that the solution to equation 4 is exponentially expensive,
and so we approximate the solution polynomially with a fixed set
of sample belief points using the PBVI algorithm [6]. This same
approach holds for approximating the solution to equation 7. How-
ever, when the user model is uncertain, sampling beliefs using the
expected value of model the may leave gaps in the belief space that

are critical to the quality of approximation. We found these gaps
were not an issue for our initial simulations, which used a sim-
pler user model, but for our user tests we seeded the initial belief
set with common dialog scenarios—pairwise and three-way con-
fusions between user intents—in addition to the ‘pre-dialog’ belief
b0. These beliefs helped ground the dialog policy solution. Next
we sampled single dialog interactions as before and added a ran-
dom new belief to the set until we had sampled 500 total beliefs.
This approach significantly improved our results in practice.

3.2 Updating the POMDP Solution
Updating the user model on R, T , and Ω gives us new expected

values EΘ[R(s, a)], EΘ[T (s′|s, a]) and EΘ[Ω(o|s′, a)] that we
can use for solving a dialog policy. Instead of solving a new PO-
MDP from scratch, however, we apply the intuition that the infor-
mation from a single conversation likely causes only small changes
to the dialog policy. We perform additional backups on our current
value function with the updated user model. Since the backup op-
eration of equation 4 is a contraction ([2]), the additional backups
will always bring the original dialog policy closer to the solution
with the new user model. Thus, the dialog policy will converge to
the optimal policy if our distribution over user models converges
to the true user model. Unfortunately, we cannot guarantee con-
vergence: because new data depends on the last action taken, the
current policy causes us to miss certain areas of the model space.
Even with an infinite number of trials, if the dialog manager always
takes what it currently thinks is the best action—instead of risking
an exploratory action—it may miss opportunities to improve. Al-
though we saw significant dialog improvements in practice, we are
currently building explicitly exploratory dialog into our approach.

3.3 Update Heuristics
A key question is how much replanning is required—that is, how

many backup operations should be performed—after updating the
user model. Iterating on a value function to convergence is ex-
pensive, and especially near the beginning of the learning process,
iterating to convergence after each dialog likely has limited bene-
fits: we simply have not learned enough about the user to justify
a large amount of computation. This case is especially true if we
initially had low confidence in our user model estimate as the pa-
rameter distributions will take some time to start peaking near the
true values. Solving for the intermediate dialog policy completely
could be a waste of effort. We compare three approaches for the
number of backups to complete after each update:

1. Replan to completion. After each completed dialog, we per-
form enough backups for the new value function to con-
verge.2 This should lead to the best expected performance
given the uncertainty in the user model. However, the cur-
rent model statistics may come from a few unrepresentative
dialogs so that the computed policy is wrong. Here, more
learning must be done before performance can improve and
careful planning may be wasted effort. Computing a POMDP
policy to convergence is also a slow process, leading to long
latencies in dialog manager responses.

2. Replan k times. Perform k backups, regardless of how the
parameters change. This approach may prevent latencies in
the dialog manager performance, but does not give the dialog
manager time to compute better plans once we have confi-
dence in the model.

2In practice, we found that convergence sometimes required many
hundreds of backups even after only small changes in the parame-
ters. To complete our simulations, we capped the number of back-
ups per update step to 50.

3. Replan proportionally to model confidence. The sum of the
variances on each parameter is a rough measure of the overall
uncertainty in our user model. If an update reduces the over-
all variance, we backup bk ∗ dvarc times (proportional to
variance reduction). The intuition is that we wish to expend
the most computational effort when the user model becomes
more certain. For simulation purposes, we also capped the
number of backups per update at 50.

4. RESULTS
We tested our approach in an artificial simulation and with a

robotic wheelchair (see Table 1 for a summary of the key param-
eters). In both cases, the user could choose to go to one of five
locations. Thus the seven states were a start state, a done state, and
a state for each of the five locations. The twelve actions included
four types of proto-actions: asking the user where they wished to
go, confirming a location, going to a location, or doing nothing.
In the simulations, observations corresponded to states, confirma-
tion, task completion, and junk; the user tests included additional
observations of keywords not associated with any particular state.

Table 1: Model Parameters for Simulation and User Tests.
Parameter Simulation User Test
States 7 7
Actions 12 12
Observations 11 19

4.1 Simulation
In the simulation scenario, the dialog manager initially believed

that its observations were more accurate than they actually were,
and the consequences of going to the wrong place were not par-
ticularly severe (see Table 2 for initial parameter guesses and true
values). We specified self-transition and correct observation proba-
bilities, and the probabilities of all the other options were uniform-
ly distributed. Finally, we attributed our guesses to two pseudo-
observations per event per state-action pair to indicate relatively
low confidence in the initial parameter estimates.

As a measure of correctness of our approach, the first set of tests
included an “oracle” that revealed the true user state history after
each interaction. This assumption is clearly only tenable in sim-
ulated dialogs, but it allowed us to guarantee that additional data
about observation and transition probabilities would be applied to
the correct Dirichlet parameter, rather than estimating the state se-
quence as described at the end of Section 2.2. As seen in Figure
4, all of the approaches achieved similar performance results, but

Table 2: Initial and True Parameter Values for Simulation
Tests. The initial model parameters assume a higher speech
recognition higher accuracy and a user unforgiving of confir-
mation actions. This is an example of a very demanding user
relative to the initial model specification.

Initial True
P(self-transition) .95 .95
P(correct obs if ask-which) 0.7 0.5
P(correct obs if confirm) 0.9 0.7
R(complete task) 100 100
R(ask-which) -1 -10
R(correct confirm) -1 -1
R(incorrect confirm) -10 -2
R(incorrect destination) -50 -500

0 10 20 30 40 50 60
40

60

80

100

Iteration

M
ed

ia
n

To
ta

l R
ew

ar
d

Median Reward per Iteration for Learner vs. Non−Learner

No Learning
Optimal
Learner (Convergence)

0 10 20 30 40 50 60
20

40

60

80

100

Iteration

M
ed

ia
n

To
ta

l R
ew

ar
d

Median Reward per Iteration for Various Learning Strategies

No Learning
Optimal
1−backup
dVar 0.10
dvar 0.01
Convergence

0 10 20 30 40 50 60
0

5

10

15

20

Iteration

M
ea

n
To

ta
l B

ac
ku

ps

Mean Backups per Iteration for Various Learning Strategies

Figure 4: Performance and computation graphs. The learner
outperforms the non-learner (top graph), and all of the re-
planning approaches have roughly the same increase in per-
formance (middle graph), but replanning proportionally to the
confidence of the model achieves that performance much less
computation (and therefore faster response) than replanning to
convergence (bottom graph).

Table 3: Mean update times for each of the four approaches.
Note that updates take place only after a dialog has been com-
pleted; when the dialog policy does not require any updates the
dialog manager’s average response time is 0.019 seconds.

Approach Time (sec)
Convergence 135.80
1-backup 13.91
0.10-var 42.55
0.01-var 18.99

1
0

20

40

60

80

100

120

IQ
R

 v
al

ue
s

ov
er

 a
ll

ite
ra

tio
ns

Convergence
1

0

20

40

60

80

100

120

dvar 0.01

Ranges of Interquartile Reward for Various Learning Strategies

1
0

20

40

60

80

100

120

1−backup

Figure 5: Interquartile Ranges (IQR) of the rewards. All of
the replanning approaches have roughly the same median per-
formance, but additional planning results in a more stable so-
lution. Note that an IQR of 0 corresponds to zero variation
around the median solution.

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration

Fr
ac

tio
n

of
 M

is
id

en
tif

ie
d

S
ta

te
s

Fraction of Errors in HMM State Estimation

Figure 6: Fraction of states misidentified in a particular in-
teraction. Most errors arose when the simulated user changed
his mind part way through the sequence; in these situations
the first part of the sequence was usually classified incorrectly
(lumped with the second part of the sequence).

replanning proportionally to the variance reduction achieved that
result with almost as little computation (see Table 3) as replan-
ning once per update. The variance reduction approach focuses
replanning near the beginning of the trial when parameters first be-
come certain. Each point represents the mean of 100 trials (except
‘convergence’—we were able to complete only 37 trials).

Although the kdvar = 0.01 approach completed fewer total
backups than backing up once per iteration, the larger number of
backups near the beginning of the learning process helped stabilize
the solution. Figure 5 shows boxplots of the interquartile ranges
(IQRs) of the solutions. An IQR of 0 would mean that the policy
always resulted in the median value solution. As expected, iterating
to convergence improves the stability of the solution; of the learners
it has the smallest IQR range. What is most interesting, however,
is that the kdvar = 0.01 solution—which performs fewer back-
ups on average than the 1-backup approach—still achieves a lower
variation in the performance of the resulting policy.

Next we relaxed the “oracle” requirement and tested our ap-
proach with HMM-based history estimation. The HMM performed
slightly worse than the oracle due to estimation errors. The errors
usually occurred when users changed their intentions midway thr-
ough a dialog. Because our model stated that user intentions were
unlikely to change (with probability 5%), the Viterbi algorithm usu-
ally assigned a single to state to the sequence when the true se-
quence consisted of two states. Instead of attributing the first part
of the observation history to the original state and the second part
to the final state, all observations were attributed to the final state.
Thus, the dialog manager believed that the observation inputs were
more noisy than they actually were and therefore learned a slightly
more conservative policy. Although the HMM-based simulation
achieved almost the same performance as the oracle, we also note
(Figure 6) that the fraction of misidentified states grew with time.

4.2 Wheelchair Implementation
In addition to the simulation results of the previous section, we

demonstrated dialog management learning on prototype voice-con-
trolled wheelchair of figure 1. These anecdotal users tests used the
CMU Sphinx-3 voice recognition system [9] for our user tests. Due
to electrical noise in the system, the output of Sphinx was filtered
to eliminate interactions where Sphinx failed to produce any rec-
ognized utterances. To allow the system to run in real-time, only
one backup was performed after each parameter update — the goal

of these experiments was not to demonstrate the speed of different
planning techniques but to show the improvement in dialog man-
agement with model parameter learning. Although the wheelchair
was capable of driving to the various locations, no motion com-
mands were actually executed to expedite user tests.

The user input was analyzed as follows: first, the voice recogni-
tion software (or simulated textual input) produced a list of phrases
given an utterance. Next, the occurrences of (previously specified)
keywords were counted in the voice recognition output, without
regard to the ordering or grammar. Finally, the dialog manager re-
ceived a vector of normalized counts as the probability of having
seen each keyword.3

The keyword approach made the wheelchair dialog manager’s
observation management different than our simulations. The sim-
ulation contained only 8 observations: one corresponding to each
state, confirmations, and noise. The wheelchair received a vec-
tor of 19 total observations. When we specified the model, we
chose one observation as the most likely observation to appear in
each state: for example, we specified that the observation ‘park-
ing’ was highly likely in the state ‘I want to go to the parking lot.’
All other keywords—such as ‘elevator’ or ‘tower’—were left un-
mapped (equally likely in all states).

The dialogs contained three principal kinds of errors:
• Speech Recognition Errors. Sphinx often mistook similar

sounding words; for example, the software tended to mistake
the work ‘desk’ with ‘deck.’ In the absence of this knowl-
edge, however, we had assumed that the we would observe
the word ‘desk’ more often if the user was inquiring about
the information desk and ‘deck’ more often if the user was
inquiring about the parking deck. We also made difficult
to recognize words more likely to be dropped (for example,
‘parking’ and ‘information’ were harder words for our soft-
ware to recognize). Note that the speech recognition errors
the system encountered were filtered to eliminate interactions
where the recognition failed to produce any recognized utter-
ances, and so these results do not precisely capture all speech
recognition errors of our current system.

• Mapping New Keywords. General keywords, such as ‘tower,’
or ‘elevator,’ were not initially mapped to any particular state.
Some unmapped keywords were more likely in one particular
state (such as ‘parking deck’ or ‘the deck’ for ‘parking lot’;
‘the elevator’ for ‘the Gates elevator’), while others occurred
in several states (‘I’d like to go to the information desk a lot’
uses the word ‘lot’ outside the context of ‘parking lot’).

• Misuse of Keywords. Especially in a spatial context, users
could refer to other locations when describing the desired
state. For example, they might say ‘the elevator by the infor-
mation desk’ or ‘the Gates side booth.’ Our simple bag-of-
words approach to speech analysis precluded complex lan-
guage understanding; the dialog manager had to associate
higher noise with keywords that occurred in many states.

Our preliminary user tests suggest trends that show that our ap-
proach improved the quality of the dialog manager. We compared a
one-backup per iteration approach to a static dialog manager using
initial parameter estimates provided by a human modeler. In both
scenarios, the user rewarded the system after each interaction using
a graphical interface on the wheelchair. Table 4 shows the guessed
and actual rewards provided by the user. Pre-observation counts

3The standard approach to POMDPs assumes a single observation
instead of a distribution over observations. However, we can easily
incorporate an observation distribution by introducing an expecta-
tion over observations in the belief update (Equation 1).

Table 4: Initial and True Parameter Values for User Trial.
Initial Value True Value

P(correct obs if ask-which) 0.6 see graphs
P(correct obs if confirm) 0.8 1.0
R(complete task) 100 100
R(ask-which action) 1 -30
R(correct confirm) 10 -1
R(incorrect confirm) -10 -10
R(incorrect destination) -200 -500
R(incorrect no-action) -1000 -100

0 5 10 15 20 25 30 35 40
−500

−400

−300

−200

−100

0

100

Iteration

To
ta

l R
ew

ar
d

Total reward received over one user trial

Learning Dialog Manager
Non−learner

Figure 7: The learner (solid) generally outperforms the non-
learner (dashed), rarely making serious mistakes.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−600

−400

−200

0

200

To
ta

l R
ew

ar
d

Iteration: State 3 − Information Desk

Learning Dialog Manager
Non−Learner

Figure 8: This plot includes only Information Desk requests.
Observations in this state were 31% original keywords, 46%
new words, and 23% misused keywords. Unmapped words
more strongly associated with other states made it tough for
the learner to improve the dialog policy.

1 2 3 4 5 6 7 8 9
−400

−300

−200

−100

0

100

To
ta

l R
ew

ar
d

Iteration: State 5 − Parking Lot

Figure 9: This plot includes only Parking Lot requests (and
is representative of the other states). Observations in this state
were 9% original keywords, 73% new words, and 18% misused
keywords. The learner soon realizes that the user often refers to
the parking lot with the unmapped work ‘deck.’ Since the user
is forgiving to confirmation questions, the dialog policy applies
them aggressively to disambiguate misused keywords.

Table 5: Mean overall and per state results for the user test
consisting of 36 dialogs. The learning dialog manager improves
over the initial, hand-crafted policy in most states. The excep-
tion (State 3) is due to a single outlier.

Overall S1 S2 S3 S4 S5
Non-learner -16.9 4.6 10.7 39.0 49.2 -187.7
Learner 37.2 54.6 50.4 -35.8 67.3 49.1

were five pseudo-observations per event per state-action pair. The
dialog manager first believed that there was a 60% chance of hear-
ing the keyword for each state and the remaining probability was
spread uniformly among the remaining observations.

Each user requested locations in the same order for both tests.
Since users did not change their intention over the course of the
interaction, the HMM approach exactly determined the users’ state
history (no additional oracle was required). Figures 7, 8, and 9
show the results of a test interaction. The dip in reward near the
beginning of the test (Figure 7) indicates the first time that the di-
alog manager encountered misused keywords; misuse errors were
the hardest for the dialog manager to learn.

The learning dialog manager outperformed the non-learner for
most states (see Table 5). Much of the benefit derived from learn-
ing the mappings and distributions of new words. For example,
the building contained three elevator locations, but the user usu-
ally referred to only one elevator as simply ‘the elevator’ and to the
others by ‘location-elevator.’ Thus, the dialog manager could (and
did) shorten interactions (and thus increase reward) by asking con-
firmation questions immediately after hearing the word ‘elevator.’
The improvement in Figure 9 (corresponding to the parking lot) is
a dramatic example of how the dialog manager was able to learn
new words (see Table 6 for an example interactions).

The dialog manager had the most difficulty in states where many
of the keywords (mapped or originally unmapped) corresponded to
words more common in other states, shown in Figure 8 (We saw
similar behavior in a second user trial where the user did not mis-
use any of the originally mapped keywords: most states had better
performance, but the use of many vague keywords for the Infor-
mation Desk still stifled the performance for that state). Since the
dialog manager learned the observation distributions well in both
cases, we believe that additional backups may have improved per-
formance; one backup was simply not enough for the large policy
changes required for that state.

Finally, we tested the robotic wheelchair with actual data taken
from a voice recognition system. Our voice recognition system
was extremely noisy, so to expedite repeated tests we took user
samples and discarded those that were clearly junk (containing no
keywords). Table 7 summarizes results from a single user test. For
the most part, the user did not use vocabulary that taxed the orig-
inal dialog manager, but we saw a large improvement in the one
state where the user tended to use an alternate keyword to refer to
a location. The remaining states showed relatively small changes.

5. RELATED WORK
The Medusa algorithm [3] comes closest to solving our prob-

lem. Instead of performing backups on a single POMDP, Medusa
samples and solves many POMDPs from the initial distribution.
Each POMDP receives a weight proportional to the likelihood of
its model. Actions are chosen stochastically: each POMDP ap-
plies its weight toward the action that its policy recommends. As
the model parameters become more certain, low-weight POMDPs
are replaced with resampled POMDPs. The POMDP value func-
tions are solved once and never updated. Our implementation of
MEDUSA was too slow to make a fair comparison to our approach,
but we hope to do so in the future.

The POMDP sampling approach is based on the observations
of [1], who suggests keeping a sampling of MDPs and updating
their value functions as new data is received. Our approach may be
viewed as an extension to POMDPs that avoids solving and updat-
ing multiple POMDPs. We also begin to quantify the number of
backups that should be performed after a parameter update.

Finally, [5] takes a non-Bayesian approach to solving MDPs with

Table 6: Parts of dialogs between the user and the wheelchair.
The dialog specification has failed to specify how to handle the
words ‘deck’ and ‘elevator.’ In the first dialog, the non-learner
is so confused when it first hears the word ‘parking’ that it
takes a second utterance for it to select an appropriate action.
In the second dialog, the learner realizes that while elevator
refers to multiple locations, the user most often uses in the con-
text of the Gates Tower.

Without learning
USER: Take me to the deck between the two towers.
The user says “deck” to refer to the parking lot. The system
does not know this yet.
ROBOT: Where did you want to go?
USER: Yes, I want to go to central elevator that goes to the deck
ROBOT: Where did you want to go?
USER: The middle deck, between Gates and Dreyfoos
ROBOT: Do you want to go to the Gates Tower?
USER: No.
ROBOT: Going to the Dreyfoos Tower.
USER: No! I want to go to the deck!
The system still cannot associate “deck” with any destination.
ROBOT: Doing nothing.
USER: Take me to the deck.
ROBOT: Where did you want to go?
USER: The parking lot.
ROBOT: Where did you want to go?
USER: I said the deck.
ROBOT: Where did you want to go?
USER: Yes, the parking deck.
ROBOT: Going to the parking lot.
After learning:
USER: Take me to the deck between the two towers.
ROBOT: Where did you want to go?
USER: Yes, I want to go to central elevator that goes to the deck
ROBOT: Do you want to go to parking lot?
USER: Yes.
ROBOT: Going to parking lot.
Without learning
USER: Take me to the elevator.
The system does not know what ‘elevator’ means.
ROBOT: Where did you want to go?
USER: The Gates elevator please.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.
After learning:
USER: Take me to the elevator.
ROBOT: Do you want to go to the Gates Tower?
USER: Yes.
ROBOT: Going to the Gates Tower.

Table 7: Mean overall and per state results for a single end-
to-end user test consisting of 36 dialogs. In general the learn-
ing dialog manager showed slight improvements, especially in
mapping unmapped keywords (in this case, State 3).

Overall S1 S2 S3 S4 S5
Non-learner 45.0 69.0 59.0 -11.0 59.0 49.0
Learner 55.9 72.4 66.3 32.5 52.6 55.9

uncertain transition matrices. Instead they apply a minimax ap-
proach to computing the policy (note that we only tried adding a
minimax step after the policy had been computed; our policy com-
putations do not consider the variance in the model parameters).
Learning is not incorporated into the approach, but extending their
algorithm to POMDPs and incorporating model learning may be
another alternative to planning with POMDP model uncertainty.

6. DISCUSSION AND CONCLUSION
The heuristics in this paper show that real-time POMDP learn-

ing is promising for dialog management, and in the future we hope
to place better bounds on the number of backups required. Re-
planning only corrects for loss in performance due to incomplete
convergence; by estimating the variance due to the uncertainty in
both the dialog and the user model we can judge the effectiveness
of additional planning.

Our dialog policy maximized the expected reward over the un-
certain user model, but the few outliers in our user tests suggest
that expected reward may not be the right criterion, especially in
the healthcare domain. However, if we apply a more conservative
dialog policy while learning, we must take special care to manage
the exploration-exploitation trade-off and ensure that the optimal
policy is eventually found. We plan to address this question in our
future work.

7. REFERENCES
[1] R. Dearden, N. Friedman, and D. Andre. Model based

bayesian exploration. pages 150–159, 1999.
[2] G. J. Gordon. Stable function approximation in dynamic

programming. In Proceedings of the Twelfth International
Conference on Machine Learning, San Francisco, CA, 1995.
Morgan Kaufmann.

[3] R. Jaulmes, J. Pineau, and D. Precup. Learning in
non-stationary partially observable markov decision
processes. Workshop on Non-Stationarity in Reinforcement
Learning at the ECML, 2005.

[4] D. Litman, S. Singh, M. Kearns, and M. Walker. NJFun: a
reinforcement learning spoken dialogue system. In
Proceedings of the ANLP/NAACL 2000 Workshop on
Conversational Systems, Seattle, 2000.

[5] A. Nilim and L. Ghaoui. Robustness in markov decision
problems with uncertain transition matrices, 2004.

[6] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for pomdps, 2003.

[7] J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to
pomdp planning and execution. In Workshop on Hierarchy
and Memory in Reinforcement Learning (ICML), June 2001.

[8] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of
the IEEE, 77(2):257–286, 1989.

[9] M. Ravishankar. Efficient Algorithms for Speech
Recognition. PhD thesis, Carnegie Mellon, 1996.

[10] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue
management using probabilistic reasoning. In Proceedings of
the 38th Annual Meeting of the ACL, Hong Kong, 2000.

[11] J. Williams and S. Young. Scaling up pomdps for dialogue
management: The ”summary pomdp” method. In
Proceedings of the IEEE ASRU Workshop, 2005.

[12] J. D. Williams, P. Poupart, and S. Young. Partially observable
markov decision processes with continuous observations for
dialogue management. In Proceedings of SIGdial Workshop
on Discourse and Dialogue 2005, 2005.

