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Abstract 
Although several researchers have integrated methods for re-
inforcement learning (RL) with case-based reasoning (CBR) 
to model continuous action spaces, existing integrations 
typically employ discrete approximations of these models. 
This limits the set of actions that can be modeled, and may 
lead to non-optimal solutions. We introduce the Continuous 
Action and State Space Learner (CASSL), an integrated 
RL/CBR algorithm that uses continuous models directly. 
Our empirical study shows that CASSL significantly outper-
forms two baseline approaches for selecting actions on a 
task from a real-time strategy gaming environment.  

1. Introduction   
Real-time strategy (RTS) games are a popular recent focus 
of attention for AI research (Buro 2003), and competitions 
now exist for testing intelligent agents in these environ-
ments (e.g., AIIDE 2007; NIPS 2008). RTS environments 
are usually partially observable, sequential, dynamic, con-
tinuous, and involve multiple agents (Russell and Norvig 
2003). Typically, each player controls a team of units that 
can gather resources, build structures, learn technologies, 
and conduct simulated warfare, where the usual goal is to 
destroy opponent units. Popular RTS environments for 
intelligent agent research include Wargus (Ponsen et al. 
2005), ORTS (Buro 2002), and MadRTS, a game devel-
oped by Mad Doc Software, LLC. 

A main attraction of RTS environments is that they can 
be used to define and provide feedback for challenging 
real-time control tasks (e.g., controlling single units, win-
ning an entire game) characterized by large, continuous 
action and state spaces. However, the vast majority of in-
telligent agent research with RTS environments relies on 
discretizing these spaces (see §2.2). This process biases the 
learner, and may render optimal actions inaccessible. 

In this paper, we describe CASSL (Continuous Action 
and State Space Learner), an algorithm that integrates 
case-based reasoning (CBR) and reinforcement learning 
(RL) methods that do not discretize these spaces. We dem-
onstrate and analyze CASSL’s utility in the context of a 
task defined in MadRTS. Although previous research ex-
ists on continuous action and state spaces, as well as on 
CBR/RL integrations, we believe ours is unique in how it 
generates actions from stored experience. 
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Section 2 includes a brief introduction to the real-time 
strategy environment we use along with a summary of re-
lated research. In Section 3, we introduce CASSL and ex-
plain how it extends our previous research. Section 4 de-
scribes an evaluation of its utility in comparison with sim-
pler approaches. Finally, in Section 5 we provide greater 
context for interpreting these results.  

2. Background: Domain and Related Work 
2.1 Real-Time Strategy Domain 
In this paper, we focus on performance tasks whose space 
of possible actions A and state space S are multi-
dimensional and continuous. We use MadRTS, whose en-
gine is also used in the Empire Earth II™ game, for our 
evaluation. We also considered using Wargus, but chose to 
use MadRTS because it is more reliable and supports sce-
narios with higher military relevance. 

We created MadRTS scenarios to test the capabilities of 
intelligent agents for controlling a set of units using a fea-
ture-vector representation. Figure 1 shows a snapshot of 
one of these scenarios, in which the units to be controlled 
are the soldier units in the lower left corner. Their task is to 
eliminate the opposing units in the scenario, which are 
located in the top left and lower right corners. An action in 
this space corresponds to an order given by the agent to a 
group of units. Each order directs the soldiers to travel 
along a vector starting at their current position, attacking 
any opponent units they encounter after completing this 
movement. The lengths of these movements are variable, 
so some actions have longer durations than others. We 
evaluate an agent based on how many orders it gives, not 
how much time it requires to complete a task. 

The four dimensions of the continuous action space are: 
– Heading ∈ [0°,360°], where 0º is the heading from the 

original midpoints of player and opponent soldiers 
– Distance ∈ [0,d], where d is the longest traversable dis-

tance in the scenario 
– Group size ∈ [0,g], where g is the number of controlla-

ble units in the scenario 
– Group selection ∈ {all, strongest, leastRecent}, where 

the values indicate the method used to select a group 
The state space consists of eight features, which are de-
fined relative to the midpoint of the player’s units: 
– Percentage of player’s initial soldiers still alive     
– Percentage of opponent’s initial soldiers still alive    
– Percentage of territories owned by the player      
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– Heading to nearest opponent soldier ∈ [0°,360°] 
– Heading to midpoint of opponent soldiers ∈ [0°,360°] 
– Distance to midpoint of enemy soldiers ∈ [0,d] 
– Dispersal of opponent soldiers ∈ [0,d], defined as the 

median of distances from each opponent soldier to the 
midpoint of all opponent soldiers 

– Dispersal of player soldiers ∈ [0,d] 
At each time point, the agent receives a state vector with 

the values of these features and selects an action to exe-
cute. For example, in Figure 1, the player units are at their 
initial location in the lower left corner, and the opponents 
are in the upper left and lower right corners.  For both 
sides, the percentage of original soldiers remaining is 
100% and the percentage of territories (borders shown by 
dotted lines) owned is 25%. The heading to the nearest 
opponent soldier is shown by Θoppnear. The heading to the 
midpoint of opponent soldiers is Θmidopp and the distance 
to their midpoint is shown as a line from midplayer to midopp. 
The dispersal of opponent soldiers is labeled dispopp, while 
the (small) dispersal of player soldiers is not shown. 

2.2 Related Work 
Several techniques for decision making have been tested in 
RTS environments, including relational Markov decision 
processes (Guestrin et al. 2003), integrated scheduling and 
means-ends analysis planning (Chan et al. 2007), and 
simulation combined with Nash equilibrium approximation 
(Sailer, Buro, and Lanctot 2007).  

CBR and RL approaches have also been investigated 
separately for RTS planning tasks. For example, CBR 
techniques have been designed to select action sequences 
(Aha, Molineaux, and Ponsen 2005) and to construct plans 
from behavioral cases extracted from and annotated by 
human players (Otañón et al. 2007). RL techniques have 
been used to select: action sequences (Ponsen et al. 2006), 
choices defined in partial programs (Marthi et al. 2005), 
and challenge-sensitive actions (Andrade et al. 2005). Un-
like these previous methods, CASSL does not discretize 
the action space, and uses an integrated CBR/RL approach 
to select primitive actions in an RTS task. 

Previous approaches for learning in the context of con-
tinuous action spaces have been investigated separately for 
CBR and RL methods. Among example CBR approaches, 
Aha and Salzberg (1994) examined a set of supervised 
learning approaches for a ball-catching task. Their algo-
rithms restricted action selection to among those that had 
been previously recorded, which limits the set of actions 
that can be selected for a new state. Sheppard and Salzberg 
(1997) describe a lazy Q-learning approach for action se-
lection for a missile avoidance task in which the set of 
states whose distance is within a threshold are located, and 
among those the action is selected that has the highest Q 
value. CASSL instead applies a quadratic model to the 
nearest neighbors and selects an action corresponding to its 
maximum. This differs from locally weighted regression 
(Atkeson, Moore, and Schaal 1997), which computes a 
local linear model from a query’s neighboring cases.  

Traditionally, RL methods have used eager learning me-
thods to help select actions from continuous action spaces 
(Kaelbling, Littman, and Moore 1996, §6.2). For example, 
these include training a neural network with state-action 
input pairs and Q value outputs, and then applying gradient 
descent to locate actions with high Q values. Alternatively, 
this network could be used with an active learning process 
to test actions generated according to a distribution whose 
mean and variance were varied so as to find a local maxi-
mum. Gaskett et al. (1999) describe an eager approach that 
performs interpolation with a neural network’s outputs. 
They also survey continuous action Q-learning systems 
and note that most are eager and yield piecewise-constant 
functions. In contrast, our approach uses a lazy method for 
action selection and is not restricted to piecewise-constant 
action-selection functions.  

Takahashi et al. (1999) instead tessellate a continuous 
action space in their Q-learning extension. CASSL does 
not rely on decomposing the action space. Millán et al. 
(2002) investigate a Q-learner that explores a continuous 
action space by leveraging the Q-values of neighboring, 
previously-explored actions. However, this limits action 
selection to the set of previously explored actions. Buck et 
al. (2002) heuristically select a set of actions that are dis-
tributed across the action space and select the one corre-
sponding to the maximum-valued successor state. CASSL 
instead selects actions used in neighbor states, dynamically 
forms a quadratic model from them, and selects the action 
that yields a maximum value according to this model. 

Sharma et al. (2007) integrated CBR and RL techniques 
in CARL, a hierarchical architecture that uses an instance-
based state function approximator for its reinforcement 
learner and RL to revise case utilities. They also investi-
gated its application to scenarios defined using MadRTS. 
However, CARL’s action space is discrete, whereas our 
contribution is an integrated method for reasoning with 
continuous action spaces. Santamaria et al. (1997) also 
examined integrated CBR/RL approaches that operate on 
continuous action spaces and applied them to non-
adversarial numeric control tasks. For example, this in-
cluded a CMAC (Albus 1975) approach for Q-learning 
that discretizes the set of possible actions and selects the 

Figure 1: The MadRTS State Space 



action with the highest Q-value. In contrast, CASSL dy-
namically optimizes a continuous local model of the ac-
tion-value space, which allows access to all potential ac-
tions without requiring a search over all of them. 

Finally, unlike other Q-learning extensions that select 
from among the actions in the (state) neighbors to a query, 
Hedger (Smart & Kaelbling 2000) fits a quadratic surface 
and selects an action that maximizes it. While CASSL also 
calculates a regression surface, it is based on the value of 
states that would occur if the state changed according to 
trajectories observed in the past. Although these past tra-
jectories may be inaccurate for the current state, the values 
predicted are influenced less by nearby cases, and provide 
a more diverse basis for the regression surface. 

3. Continuous Action and Space Learning 
We now describe CASSL (Continuous Action and Space 
Learner), which integrates case-based and reinforcement 
learning methods to act in an environment with continuous 
states and actions. CASSL leverages our experiences with 
CaT (Aha et al. 2005), which uses CBR techniques (but 
not RL) to control groups in Wargus (Ponsen et al. 2005), 
a dynamic, non-episodic, and nearly deterministic RTS 
environment. CaT’s control decisions focus on tactic selec-
tion, where tactics are comparatively long sequences of 
primitive actions lasting a significant fraction of a trial. 

3.1 Motivation for this Integrated Approach 
CaT has two limitations that CASSL addresses. First, CaT 
was designed for an abstract action space (i.e., it selects 
from among a small set of pre-defined tactics) and required 
a large state-space taxonomy; it was not designed for a 
knowledge-poor continuous action domain or, more gener-
ally, domains that have a large number of primitive ac-
tions. Techniques that make decisions of smaller granular-
ity may permit greater control, and eliminate the need for 
creating tactics in advance. Greater control may also in-
crease task performance and reduce dependence on an ex-
ternal source of tactics. For example, suppose CaT’s oppo-
nent tries to gain an advantage via early use of air units. If 
none of CaT’s tactics can create air units early on, it will 
probably lose often. With direct access to primitive actions 
that create new units, CASSL is not prone to this problem. 

Second, CaT cannot reason about causal relations 
among states, which can be used to improve credit assign-
ment. Standard RL techniques for representing value func-
tions and action-value functions can represent these rela-
tions (Sutton and Barto 1998), which motivates our inves-
tigation of an integrated CBR/RL approach in this paper. 
For example, if CaT tends to pick a poor-performing tactic 
subsequent to a good tactic, then it would average the per-
formance across all successor tactics. In contrast, CASSL 
instead uses a sample backup procedure that can more 
quickly improve the accuracy of performance approxima-
tions. 

3.2 CASSL Algorithm 
CASSL is a case-based reasoner that responds to each time 
step of a game trial by executing a function LearnAct, 
which updates CASSL’s case bases and returns a new ac-
tion to be performed. LearnAct inputs a prior state si-1∈S, 
an action ai-1∈A which was taken in state si-1, the state si∈S 
which resulted from applying ai-1 in si-1, and a reward r∈ℜ. 
It outputs a recommended action ai∈A. States in S and ac-
tions in A are represented as real-valued feature vectors. 

Figure 2 details CASSL’s LearnAct function. It refer-
ences two case bases, which are updated and queried dur-
ing an episode. The first is the transition case base T: 
S×A×∆S, which models the effects of applying actions. T 
contains observed state transitions that CASSL uses to help 
predict future state transitions. These have the form: 

cT = <s, a, ∆s> 
The second case base is the value case base V: S×ℜ, 
which models the value of a state. It contains estimates of 
the sum of rewards that would be achieved by CASSL 
starting in a state s and continuing to the end of a trial us-
ing its current policy. Value cases have the form: 

cV = <s, v> 
Each of CASSL’s two case bases supports a case-based 

problem solving process consisting of a cycle of case re-
trieval, reuse, revision, and retention (Aamodt and Plaza 
1994). These cycles are closely integrated because a solu-
tion to a problem in T forms a problem in V; CASSL 
solves these problems in tandem to select an action. 

At the start of a trial each of CASSL’s case bases is ini-
tialized to the empty set. CASSL retains new cases and 
revises them through its application to a sequence of game-
playing episodes. For each new state si that arises during 
an episode, LearnAct is called with its four arguments.  

LearnAct begins with a case retention step in T; if an 
experience occurs that is not correctly predicted by T, a 
new case cT,i = <si-1, ai-1, ∆s> is added, where ∆s = si-si-1 (a 
vector from the prior to the current state). Retention is con-
trolled by two parameters τT , and σT (not shown in Figure 
2); cT,i is retained if either the distance dT(cT,i,1NN(V,cT,i)) 
between cT,i and its nearest neighbor in T is less than τT, or 
if the distance dT(cT,i.∆s, T(si-1, ai-1)) between the actual 
and the estimated transitions is greater than the maximum 

Figure 2: CASSL’s learning and action selection function

T: Transition case base <S × A × ∆S>
V: Value case base <S × ℜ >
----------------------------
LearnAct(si-1, ai-1, si, ri-1) =

T ← retainT(T, si-1 ,ai-1, si-si-1) ; Update transition case base
V ← 

retainReviseV(V, si-1,retrieve(V,si)) ; Update value case base
C ← retrieve(T, si) ; Retrieve similar transition cases
M ←  ∅ ; Initialize the map of actions to values
∀c∈C: M ← ; Populate it for retrieved cases’ actions

M  ∪ <c.a, retrieve(V,si + c.∆s)>
ai ← arg max a∈A reuse(M, a) ; Fetch action w/ max predicted reward
return ai using the Nelder-Mead simplex method



error permitted, σT. Transition cases are never revised, 
under the assumption of a deterministic environment. 

The second line in LearnAct performs conditional case 
retention and revision for V. A new case cV,i is added to V 
only if the state distance dV(cV,i,1NN(V,cV,i)) to its nearest 
neighbor in V is greater than τV (not shown in Figure 2). 
New cases are initialized using the discounted return (Sut-
ton and Barto 1998): 
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Otherwise, cV,i’s k-nearest neighbors are revised to better 
approximate the actual value of this region of the state 
space. The state value vk associated with each nearest 
neighbor cV,k∈kNN(V,cV) is revised according to its contri-
bution to the error in estimating the value of vi-1:  
where vk is the value associated with neighbor cV,k, α (0 ≤ α 

≤ 1) is the learning rate, γ (0 ≤ γ ≤ 1) is a geometric dis-
count factor, and the Gaussian kernel function K(d) = exp(-
d2) determines the relative contributions of the k-nearest 
neighbors. 

Figure 3 summarizes the remaining (action-
recommendation) steps of LearnAct, which next retrieves 
C, the set of transition cases in T whose states are similar 
to si. This identifies states that are reachable from the cur-
rent state, and actions for transitioning to them (see step 1 
in Figure 3). CASSL uses a simple k-nearest neighbor al-
gorithm on states for case retrieval. However, we set k to 
be large so as to retrieve enough information for the later 
regression step to succeed. Specifically: 
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where |a| is the size of an action vector. 
Next, for each nearest neighbor cT,k = <sk,ak,∆sk>, 

CASSL computes the predicted next state that results from 
applying ak in state si, thus creating a mapping M from 
actions to the value of the expected resulting state. This 
value is calculated by performing the vector addition ∆sk + 
si, which yields the predicted state si+1. Then V is reused to 
calculate the expected value of state si+1 (step 3 in Figure 
3). Retrieval and reuse are performed in the same fashion 
as described for the step that updates V.  

CASSL then creates a multi-dimensional model of this 
action-value map using quadratic regression (step 4 in Fig-
ure 3), which is necessary due to the continuous nature of 
the state and action spaces. We chose quadratic regression 
because a quadratic function often produces a useful peak 
that is not at a point in the basis mapping, thereby encour-
aging exploration. Higher orders of regression may also 
produce such results, but are more computationally expen-
sive, and we would like to produce a result in real time. 
 The final step locates the action that maximizes this 
model, and adds it to M. To compute this, we use Flana-
gan’s (2007) implementation of the Nelder-Mead simplex 
method, a well-known method for finding a maximum 
value of a general n-dimensional function. 
 The quadratic estimate of the value of the discovered 
action is less accurate than a case-based prediction. Thus, 
we iteratively re-create the model, incorporating more ac-
curate predictions, by repeating Steps 4 and 5 (Figure 3) 
until a similar action is found on two successive iterations, 
or until 50 iterations have passed. Similarity between suc-
cessive actions is defined as a Euclidean distance less than 
a small threshold value; we use 0.0001 as the threshold. 

4. Evaluation  
Our empirical study focuses on analyzing whether 
CASSL’s continuous action model significantly outper-
forms a similar algorithm that instead employs a discrete 
action model on a task defined in MadRTS. As an experi-
mentation platform, we used TIELT (2007), the Testbed 
for Integrating and Evaluating Learning. TIELT is a free 
tool that can be used to evaluate the performance of an 
agent on tasks in an integrated simulation environment. 
TIELT managed communication between MadRTS and the 
agents we tested, ran the experiment protocol, and col-
lected results. 

  We assessed performance in terms of a variant of re-
gret (Kaelbling et al. 1996) that calculates the difference 
between the performances of two algorithms over time as a 
percentage of optimal performance. The domain metric 
measured is the number of steps required to complete the 
task. As described in Section 2.1, each step corresponds to 
an order given to a group of units. After 200 steps, a trial is 
cut off, so a value of 200 corresponds to failure. 

We compared the performance of CASSL versus two 
baseline algorithms. The first is random, which at each 
time step selects an action randomly from a uniform distri-
bution over the 4-dimensional action space.  
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Figure 3: CASSL’s algorithm for action recommendation, where Sx and SY are hypothetical state features
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Figure 4: Learning performance 

The second algorithm is a CMAC controller (Albus 
1975), a commonly used algorithm for performing RL 
tasks in continuous state spaces. It uses a set of overlap-
ping tilings of the state-action space to approximate the RL 
Q(s,a) function. It executes a query by averaging the value 
of the tile in each tiling that corresponds to the state-action 
input. For this experiment, we used five tilings, evenly 
offset from one another. There are 4 tiles per dimension 
and 12 dimensions in S×A, which yields a tiling size of 412 
and a total of 5∗412 = 83.9M tiles. The structure and basic 
operations of our CMAC are similar to those described in 
(Santamaria et al., 1998) with λ=0.9. 

For both RL algorithms (CASSL and CMAC), we set 
α=0.2, γ=1.0, and ε=0.5 (exploration parameter). Both α 
and ε were decreased asymptotically to 0 over time.  For 
CASSL, we also set λ=0, k=21, τT=0.8, τV=0.05, and 
σT=0.2. We briefly conducted a manual parameter tuning 
process to obtain reasonable performances from both algo-
rithms, but did not attempt to optimize their settings.  

The MadRTS scenario used for this evaluation has a size 
of 100 x 100 tiles, each covered with flat terrain. In the 
starting position, 3 “U.S. Rifleman” (powerful) units con-
trolled by player 1 are clustered around tile <20,22>, 3 
“Insurgent5_AK47” (less powerful) units controlled by 
player 2 are clustered about <2,98>, and 1 “Insur-
gent1_AK47” (powerful) unit controlled by player 2 is at 
<98,2>. The victory condition is set to a value of “con-
quest”, and diplomacy between players 1 and 2 is set to 
“hostile”. At these settings, the opponent will attempt to 
hold his ground and destroy all hostile units that enter vis-
ual range. All other settings have their default values. 

We ran each agent for 10 replications, each on 1000 
training trials, and tested on 5 trials after every 25 training 
trials. We report the average testing results. Although each 
agent learned on-line within a testing trial, its memory was 
recorded beforehand and reset after each test. To ensure 
that trials ended in a reasonable amount of time, we cutoff 
any that did not complete after 200 time steps; no reward 
was assigned for the final action of a cutoff trial. A reward 
of −1 was given at each step unless the agent accomplished 
its goal (reward=1000) by eradicating the opponent’s units. 

Figure 4 displays the results. The curves shown here are 
monotonically non-increasing because we report the mini-

mum steps taken (per algorithm) on any trial so far in a 
replication and average over these curves. This measure-
ment is reasonable because prior testing performances can 
be repeated by restoring the state of the learner; it is more 
forgiving to algorithms that do not guarantee that learning 
will never decrease performance. 

The regret of CMAC compared to CASSL is 3.53, which 
is statistically significant (p=0.001). Thus, CASSL, using 
its best learned behavior so far, is 3.53% closer to optimal 
performance. Comparing CASSL to the random agent, the 
regret is 38.66, which is again significant (p < 0.001). 

Figure 5 compares the early learning performance of 
CMAC and CASSL up to 200 trials. This period is particu-
larly interesting because it shows that CASSL learns to do 
well earlier than CMAC. The regret during this period (0-
200 training trials) is 9.74 with p=0.017. 

5. Discussion 
Our goal was to demonstrate that selecting from among all 
possible continuous actions rather than a priori reducing 
their set (e.g., via discretization) can significantly improve 
performance. However, we assessed this on only a single 
scenario, and versus only two other algorithms. In future 
work, we will compare CASSL’s performance, empirically 
and via a computational complexity analysis, with other 
algorithms that can process continuous action spaces over 
a range of learning and performance tasks. This will in-
clude variants of CASSL that discretize the action space.  

Other models for regression of the local action-value 
function (e.g., some higher-order polynomial or other 
function entirely) might outperform the model we used. 
Also, a model-free variant of CASSL in which the action-
value function is represented directly should be studied. 
The two case bases should scale up to higher dimensions 
more easily, but we have not empirically verified this. 

We have not optimized CASSL’s performance (e.g., 
employing more selective methods for using neighbors to 
create action recommendations). This remains future work. 

RTS domains often involve a variety of similar tasks 
with different initial conditions and varied goals. For ex-
ample, a larger group of units might need to be destroyed 

Figure 5: Early learning performance



at a variety of locations both near and far from the agent’s 
home base. We plan to analyze the capability of CASSL 
and other RL agents to generalize over different goals and 
starting conditions in an RTS domain. 

6. Conclusions 
We introduced a methodology that, unlike our earlier ap-
proach (Aha et al. 2005), can learn and reason with con-
tinuous action spaces. To do this it integrates case-based 
reasoning and reinforcement learning methods, and its 
implementation in CASSL significantly outperformed two 
baseline approaches on a real-time strategy gaming task.  

The primary contribution of this paper was a lazy learn-
ing approach for action generation in a continuous space. 
In our future work, we will compare this approach with 
variants of CASSL that are eager, that adopt a Q-learning 
framework, and/or discretize the action space. 
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