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Abstract
As robotic technology improves, we charge robots with increasingly varied and

difficult tasks. Many of these tasks can potentially be completed better by a team of
robots working together than by individual robots working alone. Coordination can
lead to faster task completion, increased robustness, higher-quality solutions, and the
completion of tasks impossible for single robots. Nevertheless, effective coordination
can be difficult to achieve because of a range of adverse real-world conditions including
dynamic events, changing task demands, resource failures, and limited deliberation
time. The desire to overcome these challenges and harness the benefits of robot teams
has made multirobot coordination a vital field in robotics research.

Of the resulting wealth of research, market-based multirobot coordination approaches
in particular have received significant attention and are growing in popularity within
the community. These approaches harness the principles of market economies—which
have successfully governed human coordination for thousands of years—and use them
to enable robot coordination. In market-based approaches, robots on the team act as
self-interested agents operating in a virtual economy in which tasks and team resources
are exchanged over the market in pursuit of individual profit. The essence of market-
based approaches is that the process of robots trading tasks and resources with one
another to maximize their wealth simultaneously improves the efficiency of the team.

Market-based approaches to multirobot coordination inherit many of the benefits
associated with market economies, including flexibility, efficiency, responsiveness, ro-
bustness, scalability, and generality. In practice, they have been successfully imple-
mented in a variety of domains ranging from mapping and exploration to robot soccer.
The research literature on market-based approaches to coordination has now reached a
critical mass that warrants a survey and analysis. This paper meets this need in three
ways. First, it provides a tutorial on market-based approaches by discussing the moti-
vating philosophy, defining the requirements and tradeoffs inherent in such approaches,
analyzing their strengths and weaknesses, and placing them appropriately in the context
of the larger set of approaches to multirobot coordination. Second, this paper surveys
and analyzes the relevant literature. Third, it inspires and directs future research on this
topic through a discussion of remaining challenges.
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1 Introduction
As robots become an integral part of human life, we charge them with increasingly var-
ied and difficult tasks including planetary exploration, manufacturing and construction,
medical assistance, search and rescue, and port and warehouse automation. Like hu-
mans, robots working in challenging domains can potentially perform better by work-
ing together in teams than by working alone. Ideally, robots will coordinate to redis-
tribute resources amongst themselves in a way that enables them to accomplish their
mission efficiently and reliably. Coordination can lead to faster task completion, in-
creased robustness, higher-quality solutions, and the completion of tasks impossible for
single robots. However, these domains simultaneously present many obstacles to effec-
tive coordination, such as dynamic events, changing task demands, resource failures,
the presence of adversaries, and limited time, energy, computation, communication,
sensing, and mobility. Therefore, coordinating a multirobot team requires overcoming
many formidable research challenges.

Humans have met these coordination challenges for thousands of years with in-
creasingly sophisticated market economies. In these economies, self-interested indi-
viduals and groups trade goods and services to maximize their own profit; simulta-
neously, this redistribution results in an efficient production of output for the system
as a whole. Researchers have recently applied the principles of market economies to
multirobot coordination. In market-based multirobot systems, robots are designed as
self-interested agents that operate in a virtual economy. Both the tasks that must be
completed and the available resources are commodities of measurable worth that can
be traded. For example, tasks can be assigned to robots via market mechanisms such
as auctions. When a robot completes a task, it receives some payment in the form
of virtual money for providing a service to the team. However, the robot must also
pay for the resources it consumed to complete the task. The essence of market-based
approaches is that, in a well-designed system, the process of robots trading tasks and
resources with one another to maximize individual profit simultaneously improves the
efficiency of the team.

To illustrate this more concretely, consider a team of robots performing a distributed
sensing mission on Mars. As illustrated in Figure 1, the robots must gather data from
specific sites of interest to scientists while consuming the least amount of energy. One
important aspect of completing the mission is to determine which robot should visit
each site. We can solve this problem using a market-based approach in which robots
compete in auctions for each task of visiting a site. After estimating their resource
usage for an offered task and submitting bids based on those expected costs, the robot
with the best bid is awarded a contract for that site.

Specifically, suppose that we offer a maximum reward of $50 for each task and
that robots incur a cost of $2 for each meter of travel (since the resource of concern is
energy consumed). This $50 is a reserve price that essentially says that the task should
only be attempted if the site can be reached by increasing one’s path length by less
than 25 meters. Further suppose that a robot A is only 5 meters from a site S. Since A
would have to spend $10 to complete the task, it bids $10. Meanwhile, a robot B that
is 10 meters from the site bids $20. A is awarded the contract because it can perform
the task more efficiently and for less than the reserve price.

1



Figure 1: An illustration of three robots exploring Mars. The robots’ task is to gather
data around the four craters, which can be achieved by visiting the highlighted target
sites.

This simple example illustrates the basic mechanism of a market-based approach
to coordination. As the problem increases in complexity with the addition of more
robots, more resources (e.g. time, network bandwidth, computing power, sensors, etc.),
added constraints between the tasks, dynamically changing tasks, and so forth, the
coordination approach requires added functionality to produce efficient solutions. We
use this distributed sensing scenario throughout the remainder of this paper to illustrate
the complexities of coordination and the diversity of market-based approaches.

The earliest examples of market-based multiagent coordination appeared in the lit-
erature over thirty years ago [20, 62] and have been modified and adopted for multi-
robot coordination in more recent years. This work is motivated by the growing pop-
ularity of market-based approaches and the lack of a comprehensive review of these
approaches. This paper makes three contributions to the robotics literature. First, it
provides a tutorial on market-based approaches by discussing the motivating philos-
ophy, defining the requirements and tradeoffs inherent in such approaches, analyzing
their strengths and weaknesses, and placing them appropriately in the context of the
larger set of approaches to multirobot coordination. Second, this paper surveys and
analyzes the relevant literature. Third, it inspires and directs future research on this
topic through a discussion of remaining challenges. This paper in particular extends
our shorter technical report [19]: it presents more concrete results, more thoroughly
explores the topics, and includes new topics of discussion. Additionally, the appendix
includes detailed example problems that demonstrate the step-by-step application of
market-based approaches and a case-study of market-based multirobot exploration that
highlights the variety of ways markets can be applied to one domain.

The scope of this paper is limited to market-based approaches for coordinating
teams that include robots. Moreover, this review principally considers approaches that
actively reason about the existence of other agents when coordinating the team, in con-
trast to approaches in which agents coexist. Nevertheless, related publications outside
the stated scope of this paper are included as necessary to augment the discussion.

The following section provides an introduction to market-based mechanisms for
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readers less familiar with the field. This overview is followed by an extensive review
of market-based multirobot coordination approaches to date, categorized and analyzed
across several relevant dimensions: planning, solution quality, scalability, dynamic
events and environments, and heterogeneity. The paper concludes with a summary
of the survey and future challenges in this research area. Further material on example
problems and case studies is included in Appendix A.

2 Overview
In this section, we discuss key concepts that will provide a foundation for the remainder
of the article, including a definition of market-based approaches and an introduction to
auctions. We then place market-based approaches in the larger spectrum of coordina-
tion approaches.

2.1 Definition of a Market-based Approach
Most market-based multirobot and multiagent coordination approaches share a set of
underlying elements. Market theory provides precise definitions for several of these el-
ements. Borrowing from both bodies of literature, we define a market-based multirobot
coordination approach based on the following requirements:

• The team is given an objective that can be decomposed into subcomponents
achievable by individuals or subteams. The team has access to a limited set
of resources with which to meet this objective.

• A global objective function quantifies the system designer’s preferences over all
possible solutions.

• An individual utility function (or cost function) specified for each robot quanti-
fies that robot’s preferences for its individual resource usage and contributions
towards the team objective given its current state. Evaluating this function can-
not require global or perfect information about the state of the team or team
objective. Subteam preferences can also be quantified through a combination of
individual utilities (or costs).

• A mapping is defined between the team objective function and individual and
subteam utilities (or costs). This mapping addresses how the individual produc-
tion and consumption of resources and individuals’ advancement of the team
objective affect the overall solution.

• Resources and individual or subteam objectives can be redistributed using a
mechanism such as an auction. This mechanism accepts as input teammates’
bids, which are computed as a function of their utilities (or costs), and deter-
mines an outcome that maximizes the mechanism-controlling agent’s utility (or
minimizes the cost). In a well-designed mechanism, maximizing the mechanism-
controlling agent’s utility (or minimizing cost) results in improving the team ob-
jective function value.
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2.2 Auctions
Auctions are the most common mechanisms used in market-based approaches. In an
auction, a set of items is put on the market by an auctioneer in an announcement phase,
and the participants can make an offer for these items by submitting bids to the auc-
tioneer. Once all bids are received or a pre-specified deadline has passed, the auction is
then cleared in the winner determination phase by the auctioneer who decides which
items to award and to whom. In robotic applications, the items for sale are typically
tasks, roles, or resources. The bid prices reflect the robots’ costs or utilities associated
with completing a task, satisfying a role, or utilizing a resource.

The simplest kind of auction is a single-item auction in which only one item is
offered. In such auctions, each participant submits a bid, and the auctioneer awards the
item to the highest bidder1. Alternatively, the auctioneer retains the item if no bid beats
the auctioneer’s price (called a reserve price). Bids are usually submitted only to the
auctioneer; such sealed-bid auctions are in contrast to open-cry auctions where bidders
have the benefit of overhearing the other bids as they are made. There are two common
approaches to determining the sale price of the auctioned item. In a first-price auction,
the sale price is the same as the winning bid. In a Vickrey auction, the sale price is
the value of the second-highest bid and is intended to motivate truthful bids from the
participants. Some multirobot systems have used Vickrey auctions (e.g. [49]), though
the resulting allocations are equivalent to first-price auctions if the robots are designed
to behave truthfully. Wolfstetter provides an excellent introductory survey into single-
item auction theory [71].

Combinatorial auctions are more complex: multiple items are offered and each par-
ticipant can bid on any combination of bundles (i.e. subsets) of these items. This allows
the bidder to explicitly express the synergies between items. In the context of the Mars
distributed sensing scenario, a bidder can express the positive synergy between two
sites that are close together by bidding only slightly higher for the bundle containing
these tasks than for either task individually. To express the negative synergy between
two tasks located far from one another, the bid for the bundle would be much higher
than the sum of the individual costs of the tasks. In general, there are an exponential
number of bundles to consider in a combinatorial auction, which makes bid valuation,
communication, and auction clearing intractable if all bundles are considered [55].

In between these two extremes are multi-item auctions in which multiple items are
offered but the participants can win at most one item apiece. The maximum number
of awards per auction may also be limited. Multi-item auctions can be thought of as a
special case of combinatorial auctions where only bundles of cardinality one are con-
sidered; bidding and clearing become tractable, but the resulting solutions are generally
much less efficient.

2.3 Costs, Utilities, and Valuation
The example scenario in Section 1 compares robots’ suitability for tasks in terms of
cost. That is, the auction allocates tasks to the robots with the lowest costs for perform-

1We will assume utility maximization here; the case of cost minimization is analogous, with awards going
to the lowest-cost bidders.
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ing them and the overall goal is to minimize some global cost function. As suggested
in Section 2.2, in some systems bids are compared based on utilities, in which case
the highest bids win auctions and the system attempts to maximize the global utility
function. Utilities often encapsulate multiple factors, some representing the benefit or
expected quality of task execution and others representing cost estimates. Cost esti-
mates can also include diverse factors such as the time taken to compute solutions and
the loss of efficiency caused by transitioning between tasks. As an example of a utility
calculation, Gerkey and Matarić [25] propose subtracting a robot’s cost of performing
a task from its expected quality of completing the task, assuming the units of cost and
quality are directly comparable. Thus, utility and cost functions that combine multiple
factors often require finding a reasonable set of weights between the different compo-
nents considered. In general, utility and cost factors might be combined through any
arbitrary, possibly nonlinear function.

The process of estimating costs for bid valuation can also be difficult. Though par-
ticipants in the market may have well-defined cost or utility functions, these functions
still rely on having accurate models of the world state and may require computationally
expensive operations. For example, the cost to complete the task of driving to a goal
site depends on having an accurate map of the environment; however, the robots may
be working in an unknown, partially known, or changing environment. When there are
multiple goal locations, determining the cost to perform even one task can require solv-
ing multiple path planning problems and an instance of the traveling salesman problem
(TSP), the latter being NP-hard. Thus heuristics and approximation algorithms are
commonly used, implying that bid prices may not always be entirely accurate. Inaccu-
rate bids can result in tasks not being awarded to the robots best able to complete them.
In this case re-auctioning tasks can often improve solution quality.

2.4 The Range of Coordination Approaches
The goal in most robotic application domains is to generate optimal solutions in a
timely manner. Unfortunately, many multirobot coordination problems areNP-hard. The
challenges are compounded by team considerations that include operation in dynamic
and uncertain environments, inconsistent information, unreliable and limited commu-
nication, interaction with humans, and various system and component failures. A spec-
trum of coordination approaches has emerged to negotiate these demands.

At one end of the spectrum, fully centralized approaches employ a single agent to
coordinate the entire team. In theory, this agent can produce optimal solutions by gath-
ering all relevant information and planning for the entire team. In reality, fully central-
ized approaches are rarely tractable for large teams (the associated planning problems
typically grow exponentially with team size and mission complexity), can suffer from a
single point of failure, have high communication demands, and are usually sluggish to
respond to local changes. Thus, centralized approaches are most suited for applications
involving small teams and static environments or easily available global information.

At the other end of the spectrum, in fully distributed systems, robots rely solely on
local knowledge. Such approaches are typically very fast, flexible to change, and ro-
bust to failures but can produce highly suboptimal solutions since good local solutions
may not necessarily aggregate to a good global solution. Applications where large
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teams carry out relatively simple tasks with no strict requirements for efficiency are
best served by fully distributed coordination schemes.

A vast majority of coordination approaches have elements that are centralized and
distributed and thus reside in the middle of the spectrum. Market-based approaches
fall into this hybrid category, and, in some instances, they can opportunistically adapt
to dynamic conditions to produce more centralized or more distributed solutions. Mar-
ket mechanisms can distribute much of the planning and execution over the team and
thereby retain the benefits of distributed approaches, including robustness, flexibility,
and speed [24, 17]. Auctions quickly and concisely assemble team information in
a single location to make decisions about distributing resources; in some cases they
provide guarantees of solution quality [55, 40]. Market-based approaches may also
incorporate methods of opportunistically coordinating subteams in a centralized man-
ner [18, 34]. Nevertheless, market-based approaches are not without their weaknesses.
In domains where fully centralized approaches are feasible, market-based approaches
can be more complex to implement and produce poorer solutions. In domains where
fully distributed approaches suffice, market-approaches can be unnecessarily compli-
cated in design and have greater communication and computation requirements.

The sections that follow discuss market-based multirobot coordination in greater
detail along the dimensions mentioned in the introduction. Each section introduces the
topic and its challenges, defines the goals and appropriate evaluation metrics, reviews
the relevant literature, and identifies remaining research challenges.

3 Planning
In multirobot teams, planning can be required to coordinate robots to accomplish the
team mission. Unfortunately, optimal planning problems for multirobot systems are
typically NP-hard [1]. The challenge then is to have tractable planning that produces
efficient solutions. Market-based approaches manage this by distributing planning over
the entire team to produce solutions quickly. When required or when resources permit,
markets can behave in a more centralized fashion and plan over larger portions of the
team to improve solution quality. Here, we consider different layers at which planning
arises in a multirobot system and how these planning problems are handled by various
market-based approaches.

3.1 Related Work
3.1.1 Planning and Task Allocation

Task allocation is the problem of feasibly assigning a set of tasks to a team in a way
that optimizes a global objective function. Many special cases of task allocation appear
frequently in the literature; here, we offer a general and formal definition that allows
us to discuss and compare them.

Definition 1 Given a set of robots R, let R := 2R be the set of all possible robot
subteams. An allocation of a set T of tasks to R is a function, A : T → R, mapping
each task to a subset of robots responsible for completing it. Equivalently, RT is the
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set of all possible allocations of the tasks T to the team of robots R. Let Tr(A) be the
set of tasks allocated to subteam r in allocation A.

Definition 2 The Multirobot Task Allocation Problem: Given a set of tasks T a set
of robots R and a cost function for each subset of robots r ∈ R specifying the cost of
completing each subset of tasks, cr : 2T → R+ ∪ {∞}, find the allocation A∗ ∈ RT

that minimizes a global objective function C : RT → R+ ∪ {∞}.

Gerkey and Matarić [25] provide a taxonomy for some variants of the task allo-
cation problem, distinguishing between: single-task (ST) and multi-task (MT) robots;
single-robot (SR) and multiple-robot (MR) tasks; and instantaneous (IA) and time-
extended (TA) assignment. In instantaneous assignment robots do not plan for future
allocations and are only concerned with the one task they are carrying out at the mo-
ment or for which they are bidding. In time-extended assignment robots have more
information and can come up with longer-term plans involving task sequences or sched-
ules. Definition 2 encompasses each of the types of task allocation in the taxonomy, but
in general describes TA task allocation. IA allocation can be represented as a special
case where all cost functions map to infinity for any subsets of tasks with cardinality
greater than one. Further, if we allow the sets of tasks T and robots R to be time depen-
dent (i.e. T (t), R(t)) and require the objective function be minimized at every instant
of time or over the entire history, then the definition also covers online and dynamic do-
mains where tasks and robots may be added or removed over time (see Section 6). This
definition also implies that task allocation is NP-hard in general, as the multi-depot
traveling salesman problem is a special case [1].

Market-based approaches distribute the planning required for task allocation through
the auction process: each robot or group of robots locally plans the achievement of the
offered tasks, computes its costs, and encapsulates the costs in its bids. This process
is illustrated in the introduction of this paper for a distributed sensing task on Mars:
each robot determined its own cost of visiting different sites. Most existing market-
based approaches fall into the SR-ST category in the task allocation taxonomy. Several
assume instantaneous assignment (IA) [24, 39, 60, 65, 68], while others allow for time-
extended assignment (TA), introducing an additional layer of planning whereby robots
sequence [40, 4, 11, 28, 50, 51, 75] or schedule [26, 43, 58] a list of tasks and can
therefore explicitly reason about the dependencies between multiple tasks and upcom-
ing commitments. More recently, market-based systems have addressed the allocation
of multiple-robot tasks (MR-ST) [29, 45], including human-robot tasks [33]. Defini-
tion 2 does not cover all cases of MR tasks: the cost functions for subteams in the
definition are assumed to be independent and do not account for the cost dependencies
associated with any subteam members participating in another subteam or performing
a task on their own. This can be resolved by conditioning the local cost functions on
the other allocations of the teammates. Market-based mechanisms for task allocation
can also be differentiated as centralized or distributed. Centralized mechanisms have
the ability to find optimal solutions (e.g. through combinatorial auctions [55, 4]) or
provide bounds on solution quality [40], but sometimes require an exponential amount
of computation and communication [55]. Distributed mechanisms [11, 28] can act as
anytime algorithms and require less computation and communication resources, but
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are not guaranteed to find optimal solutions and have no known approximation bounds.
TraderBots [11] attempts to find a balance between these two approaches by oppor-
tunistically allowing “pockets” of centralized optimization to emerge within subgroups
of the team when resources permit. In our distributed sensing example, for instance,
the team might begin with a suboptimal allocation of sites, perhaps caused by an in-
accurate map of the environment resulting in inaccurate bids. At some point during
execution (perhaps when map information is more accurate), a robot might find a bet-
ter distribution of sites for some subset of its teammates. The robot’s motivation for
group optimization is that it can pocket the cost difference as profit by winning the tasks
from the original holders and subcontracting them to the new holders. Simultaneously,
this results in a better team solution. Solution quality and scalability aspects of these
different approaches are discussed in more detail in Sections 4 and 5 respectively.

Related problems of allocating constrained subtasks, roles, and multiple-robot tasks
can have additional planning requirements:

Allocating Constrained Subtasks In many domains, tasks are temporally constrained
with respect to one another. They may be partially ordered or may need to start or fin-
ish within a common time frame. For instance, consistency may be important in our
Mars distributed sensing task, so we might require that samples from particular sites be
collected at the same time. In the case of partially ordered tasks, one can use a central
allocator to auction only those tasks whose predecessors have been completed [5, 65].
Alternatively, during assignment, robots can incorporate the cost of meeting constraints
into their bids [46]. In terms of Definition 2, a violation of constraints can be modeled
as infinite values for local cost functions or the global objective function. Constraints
can add another dimension to the bid valuation and auction clearing processes and may
thus increase computation requirements. Often, robots must also coordinate during
execution to reschedule and accommodate team and task changes that have occurred
since the initial allocation [26, 43]. In these cases, robots must be able to determine
when and how the rescheduling should occur.

Allocating Roles and Instantaneous Assignment In team games such as robotic
soccer one usually assigns positions such as “primary offense” or “supporting defense”
instead of tasks such as “shoot the ball” or “capture a rebound.” These positions can
be classified as roles. More generally a role defines a collection of related actions or
behaviors. Indeed, in many domains it is more natural to think of teammates playing
roles than completing distinct tasks. In market-based approaches, role allocation can
use the same auction-bid-award protocol as task allocation. However, robots can usu-
ally take on only one role at any given time (SR-ST-IA or MR-ST-IA) and generate
bids by evaluating a fitness function that reflects how well its current state matches the
requirements of the role. Once allocated, a robot locally plans the execution of actions
and behaviors specified by its role. Market-based role allocation has been demonstrated
in robot soccer [39, 68] and treasure hunt [12] domains.

Instantaneous assignment (IA) also arises in cases where the tasks being allocated
are short-term partial actions that bring the team goal closer to being realized. Ex-
amples of instantaneous assignment include allocating push actions in a box-pushing
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application [24] and assigning waypoint locations (that do not necessarily have to be
reached) in an exploration scenario [60].

Allocating Multiple-Robot Tasks Assigning multiple-robot (MR) tasks is another
challenging variant of the task allocation problem. In SR task allocation, a robot’s bid
for a task generally depends only on its own state (including its existing task commit-
ments), and the auctioneer can consider bids individually when making an allocation.
In contrast, multiple-robot tasks depend on more than one robot’s state and require
some amount of subteam planning unless the tasks can be easily decomposed. MR
tasks may require robots to tightly coordinate during execution, an issue we consider
separately in Section 3.1.3.

Approaches for MR task allocation generally require joint planning for each task
followed by an assignment of robots to the subcomponents of this plan. Ideally, in a
market-based approach, the agent doing the joint planning can do both the planning
and assignment based on minimal information encapsulated in teammates’ bids. This
ensures that the robots only communicate simple bid prices in order to parallelize local
planning and individual cost calculations, as well as to reduce communication band-
width. For instance, one way to handle MR tasks is to assign each task to a single
robot that must recruit other teammates to assist it. Chaimowicz et al. [9] and Guerrero
and Oliver [29] describe two similar approaches using instantaneous assignment in a
foraging and object transportation task. In both, robots explore the environment look-
ing for objects. Upon finding one, a robot uses an auction to recruit help in moving
the object to a goal location. These helpers are then committed to assist the leader,
but can be preempted for another task if the utility is higher. One disadvantage to this
type of approach is that upon discovery of a task, it is automatically assigned to a robot
that may not be able to find enough assistance. That robot is then committed to the
task rather than being able to perform other useful work. Additionally, while this ap-
proach can be applied to most situations where robots are discovering or generating the
tasks during execution, it is not clear how it would apply to tasks being introduced by
external sources (e.g. a human operator). Jones et al. [33] introduce an auction mech-
anism that allows robots to solicit cooperation without committing to the tasks. This
mechanism is capable of allocating tasks originating from both online robot discovery
and external input. In order to avoid premature commitment, each auction round in-
corporates a second nested round in order to garner information to compute subteam
costs. After the initial auction call, each bidder selects one among several alternatives
from a list of “plays” that solve the task. Each play consists of several roles and the
bidder chooses the lowest cost role for itself. The rest of the roles are then proposed
to the other teammates in a non-binding role auction, allowing the initial bidder to
subsequently estimate the full cost of the play and submit a bid price to the original
auctioneer. Upon being awarded a task, the winner requests commitments from the
role-bidders who accept the award unless they have agreed to perform some other task
in the time since they submitted their bids. If any role-bidders reject the award, the task
winner rejects the award from the initial auctioneer and the task gets re-auctioned. This
ensures that no robot accepts an awarded task without a committment for all relevant
roles being filled as estimated during bid valuation. Vig and Adams [70] use a different

9



mechanism where a task is broken down into a list of required resources or services,
then agents representing each kind of resource determine the minimum costs from the
robots able to provide some amount of that resource. The resource agents then report
these costs to the auctioneer, who then decides if the price is low enough to make the
task profitable.

An approach by Lin et al. [45] requires that robots submit more complete state
information to the auctioneer who then arrives at a plan. Here, the robots send in
“capability vectors” describing their current resources and abilities. The auctioneer
then offers a “pre-award” to the subgroup that can compete the task for the least cost.
The members of the subgroup then communicate amongst themselves and can agree to
form a subteam for that task given the auctioneer’s price. After notifying the auction-
eer, the actual award is finally sent out. Because the approach involves communicating
detailed state information rather than bid prices, this approach loses some of the ad-
vantages of market-based coordination, such as distributing planning activities and low
communication requirements. Nonetheless, centralized planning may be able to better
deal with problems containing complex inter-robot constraints. A different approach
by MacKenzie [46] does most planning locally, but requires more information to be
communicated in order to solve temporal inter-robot constraints centrally. This is done
by supplementing each bid price with information on projected task start times, and in-
cluding multiple such bids for each task. From the submitted bids, the auctioneer then
determines which subset of teammates can coordinate in time and space to collectively
complete the task most efficiently. The most notable algorithmic difference between
this work and that of Lin et al. [45] is that although in both some joint planning is
done centrally, most of the planning in Mackenzie’s approach is still done locally when
robots compute their set of bids: the auctioneer is merely finding a feasible plan based
on a limited set of options provided by the bidders.

3.1.2 Planning and Task Decomposition

Although many approaches to task allocation assume that a list of primitive or simple
tasks is input to the system, a complex mission is often more naturally described at
a higher level of abstraction. For example, scientists desiring data about Mars may
only be concerned with the general regions from which data is collected and not the
precise sites. As illustrated in Figure 1, a mission might be phrased as “capture images
that collectively show 50% of crater regions A, B, C, and D.” In these cases, multirobot
systems must also decompose a mission into subtasks, often making use of well-known
planners [5, 7] or domain-specific decomposition algorithms [74].

There are two common approaches to this planning problem. In the decompose-
then-allocate method, a single agent recursively decomposes the task into simple sub-
tasks which are allocated to the team [7, 65]. In the distributed sensing scenario, this
amounts to finding a fixed set of observation sites for all crater regions and then allocat-
ing these sites to the team. In the allocate-then-decompose method, complex tasks are
first allocated to robots then each robot locally decomposes its awarded tasks [5]. This
corresponds to assigning entire crater regions to robots and letting each robot choose
the sites. It is also possible to include instances of both techniques [26, 5].

By decoupling the decomposition and allocation problems, these approaches do
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not consider the complete solution space and may find highly inefficient solutions. In
general, one cannot decompose a task optimally without knowing which robots will
execute the subtasks, nor can one allocate tasks efficiently without knowing how they
will be decomposed. One solution is to simultaneously work on both problems by
generalizing tasks to task trees and trading these explicitly on the market [74]. In this
setting, bidding occurs in two stages. In the first pass, bidders simply valuate nodes in
the offered task tree according to the auctioneer’s plan. Second, the bidders may come
up with new decompositions for any abstract nodes in the tree, and use the price of this
new plan within their bid if the cost is lower. By using this bidding procedure together
with a specialized task tree auction clearing algorithm, both the costs of allocations and
plans can be compared in a single auction mechanism. Experiments in complex task
domains demonstrate that using task tree auctions can improve solution quality over
the aforementioned two-stage approaches [74].

3.1.3 Planning and Task Execution

Many missions including our example distributed-sensing mission on Mars consist of
tasks that can be completed independently by individual robots. Such missions often
consist of SR tasks and can usually be achieved by a loosely-coordinated team in which
robots coordinate during task decomposition and allocation but not during execution.
Thus, in these domains, planning how tasks should be executed can be done at an
individual level without consideration of teammates’ actions and is outside the scope
of market-based coordination. (An exception is when robots unexpectedly interfere
with each other during execution. Azarm and Schmidt [2] address collision avoidance
of independent robots during execution using market-based techniques.)

Another class of problems, however, require tightly-coordinated teams in which
members continuously coordinate throughout execution. This includes tasks such as
the collective manipulation of objects (e.g. beams to construct a scaffold) and mov-
ing in formation (e.g. to safely travel between sites of interest). Tasks requiring tight
coordination pose a number of significant challenges. Firstly, these tasks tend not to
be easily decomposable (e.g. the object the team is transporting cannot be split into
pieces and carried independently). Secondly, teammates heavily constrain each other’s
choice of actions (e.g. they must all move in concert together to avoid dropping the
object). Thirdly, systems including these types of tasks are rarely fault-tolerant since
task success depends on the simultaneous success of multiple teammates. In total,
teams must essentially solve a tightly-coupled multirobot planning problem, but can-
not easily take advantage of the distributed planning and execution that make loose
coordination tractable and robust.

In many cases, the role of market-based approaches in these missions is limited
to allocating the MR tasks to a subset of the team [61]. Market-based approaches are
rarely used to actually coordinate the activities of the subset of robots tightly coordi-
nating to achieve each MR task because, in practice, this coordination can be achieved
with reactive or behavior-based approaches that forgo planning and are less expensive
in terms of design, computation, and communication.

Nevertheless, some domains greatly benefit from and even require advanced plan-
ning of the coordination between robots and cannot be solved with simpler emergent
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approaches. For example, we may want our Mars rovers to always stay in communi-
cation contact with a base station; doing so requires that they tightly coordinate over
large distances and plan paths to sites with each others’ actions in mind. Reactive
and behavior-based approaches cannot achieve the required planning; instead, market-
based approaches have recently been developed to address these domains. The idea is
to exploit small pockets of centralized planning by having robots buy and sell tightly-
coupled joint execution plans over the market (as opposed to buying and selling indi-
vidual tasks) [34]. This technique is related to the idea of opportunistic centralization
discussed earlier. Although such approaches have higher communication and compu-
tational demands than the market-based approaches designed for loosely-coordinated
teams, they have been shown to outperform competing approaches to the same prob-
lems.

3.2 Future Challenges
Multirobot systems typically must incorporate multiple types of planning for different
aspects of the problems they address. Market-based approaches are currently capable
of many types of planning, but several challenges remain. First, there has been limited
work in domains with many complex constraints between tasks and domains requiring
tight coordination. Second, efficient replanning is crucial to working in uncertain envi-
ronments and relates closely to issues to be raised in Section 6. Task reallocation can be
achieved by peer-to-peer trading and some progress has been made in redecomposing
complex tasks in market-based systems [74], but significant work remains in replan-
ning for tightly-coordinated teams. A third important and relevant area of research
(for which some initial work has been done [12]) is understanding the formation of
subteams and enabling their positive interaction using market-based methods. Finally,
market-based approaches need better strategies for making use of multirobot planners
and providing alternatives to combinatorial auctions for vetting complex plans in the
market.

4 Quality of Solution
In this section, we look at the solution quality of existing market-based allocation algo-
rithms. Essentially, all auction-based solutions aim to optimize some global cost or util-
ity. Here we focus on theoretical and experimental results that demonstrate how well
some of these algorithms achieve that goal. As discussed in Section 3, a fundamental
optimization problem encountered in market-based multirobot systems is the task allo-
cation problem. Since task allocation is NP-hard, system designers face the challenge
of choosing market mechanisms that result in the most efficient solutions within a rea-
sonable amount of time. Various global cost objectives (C in Definition 2) appear in
market-based systems depending on the application. Most common are minimizing the
sum of individual robots’ costs (C(A) =

∑
r∈R

cr(Tr(A))) [4, 11, 28, 47, 53] or min-

imizing the maximum individual cost (makespan, C(A) = max
r∈R

cr(Tr(A))) [50, 43];

although others are possible (e.g. minimizing the average overall time to complete each
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task [67]). In the Mars distributed sensing example, these global objectives correspond
to finding the allocation of sites to robots that results in the least amount of fuel ex-
pended (sum of costs) or the task being done in the least amount of time (makespan).
While it has been demonstrated that inaccuracies in cost models can affect the quality
of solutions obtained [13], the results presented in this section are all developed under
the assumption that the robots’ cost or utility estimates are accurate.

In this section, we make use of the terms approximation and competitive ratios. Ap-
proximation algorithms find suboptimal solutions to (usually NP-hard) offline prob-
lems where the factor relating the two solutions can be bounded by a known factor.

Definition 3 An algorithm A is a ρ-approximation for a minimization problem iff for
all instances of the problem, the cost of the solution, C(A), is guaranteed to be at most
ρ times the cost of the optimal solution, C(OPT), i.e. C(A) ≤ ρ ∗ C(OPT). Similarly,
for a maximization problem, an algorithm A is a ρ-approximation iff the cost of the
solution is guaranteed to be at least 1

ρ times the cost of the optimal solution.

Online problems are those in which the input is not fully specified ahead of time; for
example, the Mars scenario becomes an online problem if the site tasks are being in-
troduced when a partial allocation has already been made or even while the robots are
executing the task. For online algorithms, a common measure of the solution quality is
the competitive ratio.

Definition 4 An algorithm A is ρ-competitive for an online minimization problem iff
for all inputs of the problem, the cost of the online solution, C(A) is guaranteed to be at
most ρ times the cost of the offline optimal solution, C(OPT), i.e. C(A) ≤ ρ ∗C(OPT).
Similarly, for an online maximization problem, an algorithm A is ρ-competitive iff the
cost of the solution is guaranteed to be at least 1

ρ times the cost of the offline optimal
solution.

4.1 Related Work
As described in Section 3, we distinguish between instantaneous (IA) and time-extended
(TA) task allocation. The IA model often arises in cases where tasks require time-
indefinite exclusive commitments by robots. Positional roles in robot soccer [39, 68]
fall into this category as do “persistent” tasks (e.g. in a target tracking scenario, robots
must follow a target for as long as possible and therefore do not need to consider tak-
ing on future tasks). In both cases, robots will carry out a task or role indefinitely
unless it gets reassigned to another robot. At the other extreme are instances where
the tasks being assigned are short-lived partial actions that bring the team goal closer
to being realized. After some of these actions are carried out, new ones are generated
by planning from the observed resulting state. For example, Gerkey and Matarić [24]
use an IA approach in a box-pushing domain where with high frequency an auction-
eer assigns incremental push actions given the box orientation and the goal location.
Similarly, in one approach for an exploration scenario, auctions are used to assign a
goal point to each robot on a team, then determine a new set of target points once the
first robot reaches its goal (the remaining robots are not obligated to reach their initial
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goals) [60]. However, sometimes IA approaches are used for simplicity in lieu of a
TA approach; they are easier to implement and do not need computationally expensive
task sequencing or scheduling algorithms [25, 29, 7, 10, 36, 59, 44]. In these systems,
if there are more tasks than robots, the remaining tasks can be allocated once robots
complete their previous assignments. Ignoring dependencies between tasks by using
an IA approach should theoretically result in inferior solution quality, but we are not
aware of any explicit comparative study.

When IA allocation is appropriate, it has been demonstrated that optimal allocation
is possible when there are at least as many robots as tasks, although several existing
systems use a 2-approximate greedy solution [25]. Additionally, performance guaran-
tees are not always equivalent for cost- and utility-based systems: the greedy algorithm
for the metric online variant of the IA task allocation problem is 3-competitive for util-
ity maximization [25, 37] but scales exponentially with the number of robots for cost
minimization [37].

TA sequencing approaches have additional planning and scheduling requirements,
but, when appropriate, model the problem more accurately and should produce better
results. For example, a combinatorial auction can theoretically result in an optimal
allocation if the robots compute and submit bids on all possible combinations of tasks
(of which there are an exponential number) [55]. In practice, performance guarantees
are sacrificed in order to reduce the computation and communication requirements by
considering only a relatively small number of task bundles [4, 47, 31, 16] (details in
Section 5).

A simpler centralized mechanism is one in which single tasks are iteratively allo-
cated in multiple auctions until all tasks are assigned [28, 50, 75, 5, 7, 53]. In general,
these types of auctions are not guaranteed to find the optimal solution; however, be-
cause they require less computation and communication than combinatorial auctions
and are easier to implement, they are more prevalent in the literature. Additionally, if
costs are considerably uncertain investing the time to produce an optimal solution may
not be worthwhile since future assessments are likely to invalidate the optimality of the
initial solution.

Tovey et al. [67] suggest a hill-climbing heuristic for generating bidding rules for
single-task auctions with various global objective functions: essentially each robot bids
the difference in team cost between the existing allocation and the allocation that would
result if the robot wins the offered task. It turns out that for common objective func-
tions robots can calculate these bids using only local information—without requiring
knowledge of the states or current assignments of its teammates. This method gives
some justification for the typically utilized strategies, as one can derive the commonly
used bidding rules encountered in market-based systems: for minimizing total cost
(called MINISUM by the authors), this rule advises that bidders should base their bids
on the marginal costs of the offered tasks [4, 11, 28, 47, 53]; for makespan mini-
mization (MINIMAX), load balancing can be better achieved if participants instead bid
based on their total costs [50]. A third objective function, minimum average latency
(MINIAVE) is also suggested, and the generation heuristic suggests that robots should
bid the difference between the minimum sum of per target costs with and without the
task under consideration. Experimentally, Tovey et al. found that the bidding rule de-
rived for each of the three objective functions results in better solutions than the rules
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derived for the other objectives. By modeling multirobot problems as vehicle routing
problems [8, 27, 42], Lagoudakis et al. [40] provide a set of approximation bounds for
the same rules and objective functions. They present six results for the three objective
functions with two bidding rules derived for each for a total of eighteen approximation
bounds. The results prove that bids based on individual marginal costs when applied
to a sum-of-costs objective results in a 2-approximation, while bids based on individ-
ual total costs applied to a makespan objective yields an approximation algorithm that
scales linearly with the number of robots (which is a worst-case result for any makespan
algorithm). Examples are also given to show lower bounds for each algorithm, which
in some cases show that the approximation bounds are tight.

Task reallocation is also possible by introducing peer-to-peer auctions [11, 28, 43,
53, 14]. In this case, there is some initial allocation, and any robot on the team is
capable of holding auctions in order to reallocate tasks to robots that are better suited to
perform them. In static environments, distributed trading can improve inefficient initial
allocations resulting from the use of faster but suboptimal mechanisms. In unknown
or partially known environments where costs constantly change as new observations
are made, initial solutions may no longer maintain optimality guarantees or even be
reasonably efficient; in such a case the use of peer-to-peer auctions can be used to repair
undesirable allocations. Peer-to-peer trading can be viewed as a local search and thus
is subject to local optima. Sandholm proves that by using a sufficiently expressive set
of contract types (single-task, multi-task, swap, and multi-party), the global minimum
can be reached in a finite (but possibly large) number of steps [54], while experiments
by Andersson and Sandholm demonstrate that more practical systems that include just
single- and multi-task contracts (e.g. [16]) find the most efficient solutions given a
limited number of rounds [1]. Another interesting result by Vidal [69] shows that by
not requiring agents to be purely selfish (i.e. some agents may be worse off after some
trades) the local search algorithm can circumvent some local optima and in the long run
find better solutions. Dias et al. [14] look at initializing the team allocation by holding
central greedy multi-task auctions (multiple tasks can be awarded in each but at most
one task is awarded per robot per auction) before distributed trading begins. They find
that increasing the number of tasks awarded per auction can have a negative effect on
the resulting solution quality but requires less time (fewer auctions are held) to find a
solution. Table 1 gives a summary of the results presented in this section.

4.1.1 Relationship to Operations Research

As has been noted in many publications (e.g. [4, 15, 25, 40, 50, 74]), multirobot task
allocation problems can be modeled as well-studied problems from the field of opera-
tions research (OR), and therefore many of the existing techniques and solutions can be
applied to multirobot domains. A simple example is the use of the Optimal Assignment
Problem (OAP), which looks at assigning a set of jobs to a set of workers, to model
SR-ST-IA task allocation [25].

As mentioned previously, another common manifestation of OR-type problems in
multirobot domains is in treating multirobot routing problems as Vehicle Routing Prob-
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Table 1: Summary of solution quality results.

Approach Theoretical guarantees Experimental results
Combinatorial auc-
tions [4, 47]

Optimal (if all bundles are
considered) [55]

Good solutions with lim-
ited number of task bun-
dles [4, 47, 31, 16]

Central single
task iterated auc-
tions [40, 67]

Approximation bounds for
18 cases (3 objective func-
tions, 6 bidding rules) [40]

Close to optimal results
when using the appropriate
bidding rules [67]

Central instanta-
neous assignment
(IA) [24, 39]

Optimal possible; com-
monly used greedy algo-
rithm is a 2-approximation;
greedy algorithm for
online version is 3-
competitive [25]

Peer-to-peer trad-
ing [11, 28, 50, 75,
53]

Optimal solution possible
in a finite number of
trades with a sufficiently
expressive set of contract
types [54]

In a limited number of
rounds, a combination
of single- and multi-task
trades outperforms all
other combinations of
single-task, multi-task,
swap, and multi-party
contracts [1]; allowing
non-individual rational
trades can lead to better
solutions [69]

Central multi-task
auctions followed
by peer-to-peer
trading [14]

Increasing the maximum
number of tasks awarded
per multi-task auction re-
sults in poorer solution
quality [14]

lems (VRP)2 [27]. Variants of the Traveling Salesman Problem (TSP), a type of VRP,
have been mentioned as problem domains in several market-based coordination publi-
cations [4, 15, 40, 50, 74]. The multirobot variants of the TSP require a team of robots
to visit a set of target points (each point must be visited by at least one robot) while
incurring a minimum team travel cost. In the simplest case the relevant combinatorial
optimization problems are the k-TSP [21, 52] and the multi-depot TSP [8, 42]. The
distinction between the two problems is that in the k-TSP the robots must all start at
the same point, whereas in the multi-depot version the robots can start at different lo-
cations. Another consideration is whether the robots are required to return to their start

2The problem does not have to literally be a transportation-type problem. For example, any problem in
which the cost to perform a task depends only on the state of the robot upon completing the previous task is
analogous to a Traveling Salesman Problem.
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points upon completion of their tasks or not. In the latter case, the problem is called
the Traveling Salesman Path Problem (TSPP) [30]. Other variants of the VRP such as
consideration of finite vehicle capacities, global vehicle fuel constraints, or precedence
constraints between tasks (as in the existence of pickup and delivery points) may well
be useful in future multirobot research.

In some cases, existing algorithms from the OR literature may give us insight on
auction-based algorithms used in the multirobot community. For example, Gerkey and
Matarić [25] demonstrated that a 2-approximate greedy assignment algorithm is be-
ing used in several existing multirobot systems (e.g. [18, 68]) despite the fact that a
polynomial-time optimal algorithm already exists. In other instances, one may find
an existing algorithm with desirable theoretical properties that can be readily con-
verted to a distributed auction algorithm. For example, Cerdeira’s multi-depot TSP
2-approximation [8] can be easily converted to an auction-based algorithm [41].

4.2 Future Challenges
While some theoretical guarantees for simple auctions are known, future work should
address the more complex mechanisms that are present in implemented systems which
can include online, multi-task, peer-to-peer, simultaneous, and overlapping auctions
as well as task and scheduling constraints. Additionally, solution quality depends on
accurate cost and utility measures which may be very challenging to aquire. Although
some progress has been made in methods for learning [58] and improving [13] these
estimates, further work is required.

5 Scalability
Scalability is an important consideration for any multirobot coordination approach. In
general, a system is scalable if it can operate effectively even as the number of inputs
or the size of inputs increases arbitrarily. The scalability of a multirobot coordination
approach is typically evaluated by its ability to produce efficient solutions as the team
size or the task complexity increase. For example, in the Mars distributed sensing
scenario, a scalable coordination approach will continue to produce efficient task allo-
cations as the number of robots in the team and the number of sensing tasks assigned to
the team increase. Scalability in some market-based approaches may be limited by the
computation and communication needs that arise from increasing auction frequency,
bid complexity, and planning demands. However, market-based approaches can scale
well in applications where the team mission can be decomposed into tasks that can be
independently carried out by small subteams.

5.1 Related Work
In Section 4 we highlighted the tradeoffs between scalability and solution quality in
market-based systems. In this section, we first elaborate these tradeoffs with an analy-
sis of the computation and communication requirements of the different types of auc-
tions we initially introduced in Section 2. We then describe how market-based ap-
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proaches can more effectively negotiate this tradeoff by dynamically responding to the
changing demands of the task and adaptively utilizing communication and computation
resources.

5.1.1 Computation and Communication Considerations

Single-item auctions are usually computationally feasible and light on communication,
but they produce suboptimal solutions. Only one task, resource, or role description
is required to be included in the auction call, to be planned for and bid on, and to be
considered during auction clearing and awarding. Combinatorial auctions can produce
optimal solutions, but can require an exponential amount of computation and commu-
nication. This is due to the fact that there are an exponential number of bundles for
the bidders to consider making bid valuation, bid submission, and winner determina-
tion potentially intractable. Multi-item auctions are also computationally manageable,
but produce inferior solutions as compared to single-item and combinatorial auctions.
Although there are multiple items included in an auction in this case, bids are only
considered for each item independently. Therefore, there is only a linear increase in
communications and bid valuation. One advantage of multi-item auctions is that more
items are awarded per auction so items can be allocated quickly since less auctions are
required. When considering these tradeoffs it is also important to consider the problem
domain: for highly uncertain or dynamic environments, it may not be worth spending
the time to compute an optimal solution if that solution will constantly be changing as
more information is gathered; or, if there are hard real-time constraints, there may not
be enough time to compute an exact solution.

Table 2 summarizes the time complexities of the important phases of several auc-
tion types. For each protocol, the table lists the maximum number of bid valuations,
the computation times of the best-known auction clearing algorithms, and the number
of auctions required to allocate all items to the team (if the objective is to offload all
items from the initial auctioneer—this may not be the aim in peer-to-peer auctions as
the auctioneer may retain some items or some reserve prices may not be met). Ta-
ble 3 similarly gives a summary of communication costs. Of particular interest in these
tables are the exponential expressions for combinatorial auctions in the areas of bid val-
uation, winner determination, and bid submission. As discussed previously, in order to
make combinatorial auctions scalable, the common approach is to limit the number of
bundles that are considered during bid valuation. This in turn reduces the number of
bids that need to be communicated and also allows the auction to be cleared quickly
in practice. Indeed, Sandholm’s optimal clearing algorithm, CABOB [55], relies on
a sparse bid set in order to find solutions quickly (although the resulting allocation is
still likely to be suboptimal given that not all item bundles are considered). The num-
ber of bundles can be reduced by the auctioneer, the bidders, or both. The auctioneer
may offer only a limited set of bundles, for example, by grouping items that may re-
quire similar resources [31], or by exploiting hierarchical problem structure to form the
bundles [74]. On the bidders’ side heuristic clustering algorithms (e.g. nearest neigh-
bor) are often used [4, 16]. Another strategy is to consider only those bundles that
are smaller than a given size [4, 47]. Berhault et al. [4] compare four clustering algo-
rithms for goal point tasks and find that one based on repeated graph cuts outperforms
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a nearest-neighbor algorithm and two algorithms based on limiting cluster size.

Table 2: Comparison of time complexities of various auction types. n is the number of
items, r is the number of bidders, b is the number of bids, and m ≤ r is the maximum
number of awards per auction (for multi-item auctions). v and V represent the (domain-
dependent) amount of time required to perform a valuation for a single item (v) or set
of items (V ).

Auction type Bid Winner Number of
valuation determination auctions

Single-item v O(r) n
Multi-item O(n · v) O(n · r ·m) dn/me
(greedy)

Multi-item O(n · v) O(r · n2) [25] dn/me
(optimal)

Combinatorial O(2n · V ) O((b + n)n) [55] 1

Table 3: Comparison of communication complexities of various auction types. No-
tation is the same as in Table 2. This assumes constant message space for each task
description.

Auction type Auction Bid Award Award
call submission (+ losers)

Single-item O(r) O(r) O(1) O(r)
Multi-item O(r · n) O(r · n) O(m) O(r)

Combinatorial O(r · n) O(r · 2n) O(n) O(r + n)

Bid valuation itself may be computationally expensive as the process usually in-
volves some amount of local planning. That is, the expressions v and V in Table 2
may in reality represent the running time of algorithms that must solve a difficult or
even NP-hard problem in order to estimate costs [4, 11, 28, 50, 53]. Additionally,
expensive task decompositions may be required at the bidding stage [74]. In the Mars
exploration scenario, bid valuation can be expensive since evaluating the cost of a set
of target points may require solving two traveling salesman problems (TSP): one to de-
termine the cost of the rover’s path after including the offered tasks, and one to find the
cost without the new tasks. Heuristics and approximation algorithms can help deal with
the NP-hard problems (e.g. TSP approximation algorithms for task sequencing [18]),
although when there are many items to consider simultaneously—either from auctions
offering many items [4, 11, 28, 43, 74, 47] or from multiple robots holding auctions si-
multaneously [11, 74]—bidders can still be overburdened with valuation problems. As
a result, system designers must ensure that bidders are able to meet auction deadlines
and do not tax their processors to the point of compromising real-time requirements.
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As mentioned in Section 4, bid valuation computation can be less costly for instanta-
neous allocation problems (IA) as there is no need for an explicit task sequencing or
scheduling algorithm. However, if the problem is inherently a time-extended one (TA),
ignoring scheduling in general results in poorer quality solutions.

Busquets and Simmons [6] offer an offline learning approach to improve the scal-
ability of multi-item auctions: by keeping track of histories, the auctioneer can reduce
the number of tasks offered if it believes it is unlikely to get any bids for some of them,
while a bidder can reduce the number of bids submitted by removing those for tasks
it believes it is unlikely to win. Reducing the number of offered tasks in a multi-item
auction decreases the amount of communication in the auction call and bid submission,
plus the amount of computation in bid valuation and winner determination. Reducing
the number of bids decreases bid submission communications and winner determina-
tion computation. In this approach, each bidder computes its bid price on a task and
then stochastically decides whether to submit its bid to the auctioneer. The probability
of submission is equal to the proportion of previous bids at or below the current bid
value that successfully won their auctions. Similarly, an auctioneer stochastically de-
cides to offer a task based on the proportion of past bids that have exceeded the reserve
price. In a variation of the Mars distributed sensing scenario, this learning algorithm
results in significant scalability improvements by reducing the number of messages
communicated and the number of task valuations performed.

A scalability comparison of market-based, behavior-based and centralized approaches
is presented by Dias and Stentz [11] on a distributed sensing task in which the goal
is to visit the last observation site in as little time as possible (i.e. a makespan ob-
jective). Simulation experiments demonstrate that the market approach can provide
significantly higher-quality solutions than behavior-based approaches while using sig-
nificantly less computation time than centralized approaches. Xu et al. [72] compare
market- and token-based coordination approaches, and further introduce a hybrid ap-
proach in which auction calls (tokens) are sent only to the agents most likely to submit
the best bids. This requires agents to maintain a model of the team state in order to
make intelligent token-routing decisions. Their experiments show that the hybrid ap-
proach offers an interesting tradeoff, producing slightly less efficient solutions than the
full auction approach, but with much reduced communications (slightly worse than the
token approach).

Tilley and Williams [66] study several scalability effects in a simple parts manufac-
turing system. In this application, agents bid for machining tasks for which execution
times do not depend on task order and a simple scheduling heuristic is used: each part
is processed in the order it is allocated. One method they employ to reduce task evalua-
tion time is to limit the number of tasks considered at any time by each machine; that is,
if the number of current tasks plus outstanding bids exceeds some small constant that
machine ignores all incoming auctions. Decreasing this limit decreases the average
number of auction participants and increases the number of auctions that go unbid for
(thus decreasing the solution quality), but also lowers the required auction deadlines
(time required for all bids to be submitted). They also conclude that the time required
to valuate a task has a greater effect on required auction deadlines than does system
task load, and that task valuation times should be much smaller than task inter-arrival
time for efficient system performance.
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5.1.2 Selective or Opportunistic Centralization

Centralized planning has the potential to produce optimal team solutions, but most cen-
tralized algorithms have complexity exponential in the number of robots and quickly
become intractable for more than a few team members. Nevertheless, market-based
approaches can selectively use centralized planning to scalably improve solutions over
subparts of the team. For example, in the TraderBots architecture, a leader robot may
replan the allocation of a subset of tasks contracted to some subset of the team when
time and computation resources permit. If this leader discovers a reallocation that is
better than the current allocation, it can purchase the tasks from their current hold-
ers and subcontract them according to its new allocation. The difference in value be-
tween the two allocations minus the required payoffs can be pocketed by the leader as
profit. This is similar to the coalition formation problem addressed by Sandholm and
Lesser [56] in which agents representing trucking depots could form coalitions to pool
their delivery tasks together in order to find more efficient solutions for both parties.

The Hoplites framework uses a similar approach to solve tightly-coupled problems
in which robots continuously constrain each other’s actions (e.g. to remain in line-
of-sight contact). Robots begin with a simple coordination strategy which is light on
communication and computation and allows teammates to iteratively respond to each
other’s actions without directly influencing them. When this traps robots in local min-
ima, a more powerful coordination mechanism improves solutions by enabling robots
to influence each other directly by purchasing each other’s participation in complex
plans over the market. This consumes more resources but is also capable of produc-
ing much better solutions. Hoplites selectively injects pockets of complex centralized
coordination into the system only when necessary; as a result, it provides improve-
ments in solution quality while remaining computationally competitive with much less
sophisticated approaches.

5.2 Future Challenges

While much is known theoretically about the scalability of various auction mecha-
nisms, market-based approaches have yet to be implemented on teams of more than
a few robots. Larger teams have been used in simulation however; for example, Xu
et al. [72] consider teams of 100 agents. Further challenges exist in improving oppor-
tunistically centralized approaches’ means of selecting task clusters and team members
to reduce unnecessary computation. The challenge of dealing with limited computation
when faced with an excess of solicited bid valuations is also largely unaddressed. The
recent work of Busquets and Simmons [6] has made some progress in this area.

6 Dynamic Events and Environments
Operations in dynamic and uncertain environments pose a variety of challenges to team
coordination such as ensuring graceful degradation of solution quality with failures,
enabling team functionality despite imperfect and uncertain information, maintaining
effective response speed to dynamic events, and accommodating evolving conditions
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and constraints. Successful team operations in dynamic and uncertain environments
is therefore highly dependent on achieving robustness. Benchmarks for the robustness
of a coordination approach must take into account the diversity of failures the team
can accommodate, the requirements for quantity, quality, and certainty in information,
the team’s response speed to dynamic events, the fluidity of the team (that is, the abil-
ity of the team to accommodate the addition of new members and the loss of current
members), and the overall solution quality produced by the team in the face of dynamic
events. In this section we examine the different ways in which market-based multirobot
coordination approaches to date deal with these conditions.

6.1 Related Work
The application of market-based coordination to dynamic domains is in its early stages.
However, several research groups have already made early contributions in this area.
We discuss related work here in three categories. The first section on robustness and
fluidity deals with a team’s ability to handle agents dynamically joining the team. We
then discuss online tasks which require a team to adapt to tasks being added and re-
moved from the mission during task execution. Finally, we explore related work that
deals with a team’s ability to operate with limited information.

6.1.1 Robustness and Fluidity

Robotic systems are often complex and their physical interactions with the environ-
ment make them highly prone to failures. Thus, a successful coordination approach
must gracefully degrade solution quality when failures occur. For example, in the Mars
distributed sensing scenario, it is likely that one or more of the rovers will suffer some
form of hardware or software failure. A rover can wander outside the range of commu-
nication from other rovers, damage a scientific instrument when performing a sensing
task, or become completely disabled due to a rockslide. A successful coordination
approach will allow the team to accomplish the mission despite these failures if the
remaining resources of the team allows for mission completion. Three principal cat-
egories of faults that coordination approaches must consider are communication fail-
ures, partial malfunctions, and robot death [17]. A variety of strategies are employed
by market-based approaches to handle these failures. These strategies are explored in
the following sections.

Teams can often perform more effectively if teammates can communicate [75].
However, communication failures occur in a variety of domains and range from oc-
casional loss of messages to loss of all communication. In the TraderBots approach,
if the team is informed of a common task, consequent disruptions in communication
are gracefully handled by using opportunistic auctioning solely for improving solution
quality [17, 75]. Sheng et al. [59] also consider disruptions due to limited-range com-
munication in the context of multirobot exploration. Here, utility functions incorporate
a term that depends on inter-robot distance in an attempt to actively keep the robots
closer together and limit the amount of resulting communication loss. As with commu-
nication disruptions, partial malfunctions limit a robot’s capability but retain the robot’s
planning ability. TraderBots employs active reasoning about failed resources to allow
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robots to reallocate tasks that they can no longer complete due to malfunctions [17].
Similarly, MURDOCH relies on monitoring progress in short-duration tasks to detect
and respond to faults [24]. In the case of robot death, the affected robot cannot aid in
the recovery process. However, robots can monitor progress or heartbeats of teammates
and re-auction tasks previously assigned to the dead robot [24, 17]. A further improve-
ment is to allow repair of malfunctioning robots and enable their return to the team. In
order to accomplish this, a coordination approach must accommodate both the exit of
malfunctioning robots and the entrance of the repaired robots. Bererton et al. demon-
strate reasoning about assisting malfunctioning robots and towing of disabled robots
to a base station for repair [3], while Dias et al. [17, 18] and Gerkey and Matarić [24]
demonstrate both the ability to accommodate the loss of a robot and the re-entry of a
repaired robot or the entry of a new robot to the team.

When introducing robustness under dynamic and uncertain conditions, coordina-
tion approaches must wrestle with several tradeoffs. For example, if detecting robot
death relies on monitoring a heartbeat, a robot is presumed dead if its heartbeat is not
received by its teammates within a pre-determined interval. However, if this interval
is too large, the time to detect and respond to a failure is increased and the solution
quality can degrade as a result. Instead, if the interval is too short solution quality can
still degrade due to false positives that can arise if the robot temporarily drops out of
communication range.

Another important design consideration when operating under dynamic conditions
is choosing auction deadlines. A common practice is to specify a deadline at which
time the auction is cleared regardless of whether or not all bids have been submitted.
This is required in realistic situations where communications are imperfect, or team
members may fail, enter, or leave the team. This may also be necessary in situations
where bidders do not bid on all offered tasks, which can be the case for a number
of reasons. First, a robot may not be able to perform an offered task due to limited
capabilities. Second, a robot may not be able to perform a task for less than a reserve
price or for less than a known competitor’s price; for example, another bidder’s bid in
an open-cry auction. Finally, bidders may choose not to bid on tasks they are unlikely
to win. The tradeoff to consider with respect to auction deadlines is that the deadline
must be long enough for all interested participants to submit their bids, while not being
overly long such that the slow turnaround time for an auction results in inefficiency due
to an insufficient amount of task reallocation.

Determining an appropriate frequency for running auctions is another design con-
sideration that involves a tradeoff. If auctioning happens too frequently, communica-
tion networks can get overloaded and robots may spend more time running their own
auctions than effectively participating in other on-going auctions. However, if auctions
are not held with sufficient frequency, the team may be slow to respond to dynamic
conditions. Effectively navigating these tradeoffs and their implications remains an
open research challenge.

6.1.2 Online Tasks

In many dynamic application domains, the demands on the robotic system can change
during operation. Operators of a multirobot system may submit new tasks or alter
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or cancel existing tasks during operation [18]. Alternatively, robots may generate new
tasks during execution as they observe new information about their surroundings. In the
Mars scenario, a scientist may choose to add new sites to explore or eliminate existing
sites while reviewing incoming data, or the robots themselves may have the capacity
to make such decisions. Market-based approaches can often seamlessly incorporate
online tasks by auctioning new tasks as they are introduced by an operator [11] or
as they become available due to the completion of preceding tasks [24, 60, 5, 7]. In
some cases new tasks can be generated by the robots themselves and inserted into their
plans to be executed or subsequently traded [18, 51, 75, 29]. The solution quality of
some simple online auction-based task allocation algorithms are given in Section 4. In
general, online versions of optimization problems are more difficult to solve than their
offline counterparts.

6.1.3 Uncertainty

Most real-world multirobot applications require operation with only partial or chang-
ing information about the environment, the team, and the task. For instance, in the
Mars example, it is likely that the rovers will not have access to a complete detailed
map of their environment before they begin their mission. Fortunately, market-based
approaches have few requirements for prior information and can accommodate new
information through frequent auctioning of tasks and resources. The TraderBots ap-
proach demonstrates that robots can execute tasks with no initial map information and
dynamically reallocate tasks when new map information is gathered [18, 75].

6.2 Future Challenges
While much can be done to improve the operation of market-based approaches in
dynamic environments, a few key challenges are paramount. Effective information
sharing among team members in market-based approaches is one necessary area of
research. If a robot discovers a task is expensive because of new environmental infor-
mation it has gathered, it can potentially allocate the task to another robot that does not
have that information. This robot will then try to execute the task until it, too, perceives
the new information; then it tries to allocate the task to another robot. This can continue
until all robots have attempted to perform the task, causing tremendous inefficiency.

Characterizing the ability of both the individual robots and the team to respond
quickly to dynamic conditions using market-based coordination approaches is another
important challenge. The authors are not aware of any study of individual or team
response speed for any market-based multirobot coordination approach. Other chal-
lenges for improving robustness are developing more sophisticated methods for cooper-
ative handling of partial malfunctions and repairs, evaluating robustness to a variety of
failures, incorporating contract breaches with appropriate penalties, and incorporating
sliding autonomy into market-based approaches to allow robots to request assistance
when appropriate.

Formalizing design principals to achieve guaranteed performance within specified
bounds despite dynamic conditions is also an important research challenge for market-
based team coordination. Specifically, we need more principled methods for navi-
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gating the various tradeoffs encountered when designing a market-based coordination
approach that must perform effectively under dynamic conditions.

7 Heterogeneous Teams
A team is heterogeneous if not all of its members are equally capable of performing
all the tasks (e.g. because of hardware or software differences) or if its members play
different roles (e.g. in team games where robots play different positions). In contrast,
the members of a homogeneous team have identical skills or are generalists that can
perform all necessary tasks. Heterogeneity is highly advantageous for several reasons.
First, complex missions often have many different functional requirements and can be
achieved more effectively by a team of specialists rather than by a team of general-
ists that perhaps cannot perform any single function very well. For example, in our
Mars scenario we may want high-resolution images taken, rock samples collected, and
core samples taken from the ground. A complex mission such as this is often better
achieved with robots that specialize in particular tasks: some robots can take samples
from both rocks and the ground while others only capture images. Second, it is often
more practical to design robots that specialize in only a small set of skills than to de-
sign robots that are capable of all skills. Indeed, in many domains, it may be infeasible
to construct robots that can do everything, for example because of limitations in bud-
get, form factor, or on-board power. Third, by being able to coordinate heterogeneous
teams, we can reuse robots across multiple applications. Ultimately, a truly heteroge-
nous team is not limited to robots in its membership. Human-robot-agent teams must
operate seemlessly and efficiently in several application domains. Although heteroge-
neous team coordination is challenging, a successful approach should accommodate
any team composition.

7.1 Related Work
In a heterogeneous team, robots have different abilities to perform different tasks. Task
and role allocation in heterogeneous teams becomes challenging because it requires
reasoning about and comparing different robots’ capabilities. Market-based approaches
are well suited to meet this challenge because auctions can simplify the problem of
reasoning about team skills. When a task or role is auctioned, each robot’s bid encap-
sulates its ability to complete the task in terms of resource usage, the estimated solu-
tion quality afforded by these resources, or even the opportunity cost of forgoing other
tasks [58]. Additionally, robots can abstain from bidding on tasks for which they do not
have sufficient resources, thereby reducing the computational burden for both bidder
and auctioneer [24, 31]. The bids can also encode the solution quality afforded by each
member’s resources, and even the opportunity cost of forgoing other tasks [58]. The
auctioneer can award roles or tasks to team members according to the best bid, without
requiring knowledge of individual capabilities. Thus, market-based approaches only
require each team member to recognize its own skills and resources but not necessarily
those of teammates. However, auctions introduce a new difficulty: it is not always clear
how to compute and compare the cost of performing a task between different types of
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robots who may perform the task in very different ways. One idea is to allow robots to
swap tasks directly whenever such a trade results in a mutually beneficial outcome [28].
This circumvents the pricing problem but also severely restricts the number of possible
solutions. Thus, the pricing problem remains an open research challenge.

Market-based coordination of heterogeneous teams has been demonstrated on phys-
ical robots in a few applications: in automated assembly using three robots with very
different physical configurations and capabilities [61]; in box-pushing, where a resource-
addressed messaging protocol allows robots to determine in which auctions they should
participate [24]; and in treasure hunt, where a human, two Pioneer IIDX robots with
laser scanners, and a Segway RMP robot with vision sensing cooperate to seek ob-
jects of interest in an unknown environment [33]. In simulation, market-coordinated
robots with different science instruments characterize multiple rock types in a space
application similar to our Mars scenario [11, 58], and market-based role allocation
mechanisms have appeared in heterogeneous robot soccer teams [39, 23]. In work by
Lin et al. [45] each robot submits a list of its capabilities to the auctioneer who then
comes up with a joint plan and sends an offer to the best subteam found who can then
accept or reject the task at that price.

7.2 Future Challenges

Ultimately, coordination approaches must accommodate three levels of heterogeneity:
heterogeneous robot teams, human-robot teams, and highly heterogeneous teams of
humans, robots, and other agents. Future research challenges include modeling human
preferences using appropriate reward functions, developing techniques for consistently
computing different robots’ costs for completing tasks, enabling pickup teams, i.e. dy-
namically formed heterogeneous teams where little may be known a priori about the
task, the robots, or the environments [12], and addressing the challenges of human-
robot teams where tasks are understandable to humans and robots and both participate
in task allocation and execution [12].

8 Learning and Adaptation

While a generalized system is useful, its application to specific domains usually re-
quires some adaptation. Online opportunistic adaptation is therefore a highly relevant
and useful feature. However, in dynamic environments where teams can fluidly change
in size, where interaction strategies can be continuously modified, and where external
conditions can be unexpectedly changed, a priori definitions of best trading and co-
ordination strategies can be very difficult, and sometimes impossible. Consequently,
the robots require not only the ability to quickly adapt their behaviour in response to
dynamic events and to changes in the other agents’ behaviour, but also the ability to
determine when and how this adaptation should take place. Hence, the integration of
learning techniques can be a very powerful feature.
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8.1 Related Work
The application of learning techniques in market-based coordination is currently at a
very early stage. One big debate is whether learning should be applied at the team level
or at the individual level or some combination of the two. Another important question
to be answered is how to deal with team interactions – should other agents be dealt
with as environmental factors or should they be dealt with in a special way? Oliveira
et al. [48] present a detailed dicussion of the issues relevant to the application of learn-
ing in dynamic markets. The role that learning can play in market-based multirobot
coordination is also discussed briefly by Stentz and Dias [64].

The authors are unaware of any learning techniques implemented on a team of
physical robots coordinated using a market-based approach. However, publications are
starting to emerge in the application of learning techniques for market-based coordina-
tion of simulated robot teams. Notably, learning techniques are applied to learn bidding
strategies in dynamic markets [48], opportunity costs in a simulated distributed sens-
ing task [58], and role assignment [39] and bidding strategies [22] in simulated robot
soccer.

8.2 Future Challenges
The application of relevant learning techniques to market-based coordination of robot
teams is a wide open research area with tremendous potential for improving team per-
formance in dynamic environments, reducing the requirement for accuracy in cost esti-
mation and a priori knowledge, and enabling easy portability to different domains and
environments.

9 Practical Considerations
Many practical considerations affect the overall impact of coordination approaches.
Approaches that are general and applicable to a variety of domains are more useful
in the real world. A general approach will be flexible across application domains and
extensible to enable portability and easy enhancement of functionality. Other impor-
tant considerations include implementation guidelines for different domains and useful
comparisons of different approaches to guide the selection of the most effective coor-
dination scheme for a given application.

9.1 Related Work
Here, we discuss several groups of work that are related to the idea of generality and
practical impact.

9.1.1 Flexibility

Since different applications will have different requirements, a widely applicable co-
ordination approach will need to be easily configurable for the different problems it
proposes to solve. Instructions and advice on how to reconfigure the mechanism for
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different applications will also be useful. Identifying important parameters that need
to be changed based on the application requirements, instructions on how to change
them, identifying components of the mechanism that need to be added/changed based
on application requirements, and instructions on how to make these alterations are all
important elements of a successful coordination mechanism. A further bonus will be
well-designed user interfaces and tools that allow plug-and-play alterations to the co-
ordination mechanism and automated methods for parameter tuning. The authors are
aware of only three market-based approaches, MURDOCH [24], Hoplites [34, 35] and
TraderBots [11, 75, 73], that have been demonstrated in more than one application.
However, there is much that still needs to be done in terms of providing a flexible
market-based multirobot coordination approach.

9.1.2 Extensibility

The ability to easily add and remove functionality is a key characteristic to building
a generalized system that can evolve with the needs of the different applications. A
common approach to incorporating extensibility is to build the system in a modular
fashion so that different modules can be altered or replaced relatively easily according
to the requirements of the specific application. In market-based approaches, it is best
to modularize and isolate cost and reward functions as much as possible from task and
role specifications, communication protocols, and task executives.

9.1.3 Implementation

As with any claim, a proven implementation is most convincing. Moreover, successful
implementation of a coordination mechanism on a robotic system requires discover-
ing and solving many details that are not always apparent in theory, simulation and
software systems. Finally, implementation of an approach on many different platforms
in a variety of application domains provides valuable insights and guidelines on how
to design and implement different components of the approach in a extensible and
flexible manner. Although several have been implemented on physical robot teams
(e.g. [11, 24, 75, 73, 34, 61, 60]), market-based approaches have yet to be proven in a
wide variety of domains.

9.1.4 Comparisons

Comparisons are important to provide guidelines on how to evaluate different coordi-
nation approaches when deciding which approach is best for a given application. How-
ever, comparing different coordination approaches is a highly challenging endeavor
since many considerations need to be addressed.

Some of the challenges in providing a comparative framework for coordination ap-
proaches are explored by Gerkey and Matarić [25] who provide an initial framework
for evaluating task allocation schemes in terms of complexity and optimality, showing
that market-based methods perform favorably in terms of computation and communi-
cation requirements. Dias and Stentz [11] compare a centralized optimal approach,
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a distributed behavioral approach, and a market-based approach, evaluated in a dis-
tributed sensing scenario. Simulation results compare the three approaches in scalabil-
ity and heterogenity, and show that all three approaces perform well with heterogeneous
teams, and the market method performs best overall in scalability. Rabideau et al. [50]
also conduct a similar comparative study between a centralized planner that does not
guarantee optimality, a distributed planner, and a single-task auction approach. They
conclude that the auction approach performs best but takes up the most CPU cycles.

More recently, Xu et al. [72] compare a market-based, a token-based, and a market-
token-hybrid approach. They find that a market-based solution finds more efficient so-
lutions than a token-based one, but requires more communication. The hybrid approach
falls somewhere in between the pure market and token approaches in both areas. Kalra
and Martinoli [36] compare the performance of a market-based and a threshold-based
approach to IA task allocation along several dimensions. They find that the accuracy of
task and robot state information can play an important role in determining the relative
effectiveness of these approaches. In sum, market-based approaches have performed
well in comparative studies; nevertheless, these studies are fairly limited and broader
studies are in high demand.

9.2 Future Challenges
Market-based multirobot coordination approaches have only been implemented and
tested in a few application domains to date. Thus, understanding and implementing
generality in market-based approaches still requires significant work. However, the
growing popularity of market-based methods for coordinating robot teams will be a
large contributing factor to inspiring generality in this research area.

10 Conclusions and Future Directions
The vision that drives research in multirobot systems is that teams of robots will in-
evitably be an integral part of our future. To realize this vision, robots must be capable
of executing complex tasks as a team. While many multirobot coordination approaches
have been proposed by the research community, market-based approaches in particu-
lar have been proven effective; their resulting increase in popularity over the past few
years warrants a survey of the field. many multirobot coordination approaches have
been proposed by the research community, market-based approaches in particular have
been proven effective and as a result have grown in popularity over the past few years,
consequently warranting a survey of the field. We address this need by providing the
first survey of the state of the art in market-based multirobot coordination approaches
with three contributions to the multirobot literature: a tutorial on market-based multi-
robot coordination approaches, a review and analysis of the relevant literature, and a
discussion of remaining challenges in this research area.

The existing work in market-based multirobot coordination ranges from theoretical
formulations to conceptual design frameworks to implementations in simulation and on
physical robot teams. The chosen application domains span a wide range and include
distributed sensing, mapping, exploration, surveillance, perimeter sweeping, assembly,
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box-pushing, reconnaissance, soccer, and treasure hunt. However, this is still a rela-
tively new area of research, and hence many research challenges still remain. Here, we
discuss some of the overall challenges in the field.

A first important need is a principled formalization of market-based coordination
approaches. Much research is needed to further our understanding of how components
such as cost and reward functions, bidding strategies, and auction clearing mechanisms
can be designed, implemented, and used effectively in different multirobot application
domains. Understanding the tradeoff between solution quality and scalability when
designing and implementing coordination mechanisms is also important.

Additionally, much work still remains in rigorously comparing different coordina-
tion approaches to enable users to select an appropriate approach given a particular
multirobot scenario. First, a relevant set of benchmarks must be defined for effective
comparison of different coordination approaches. Second, comparisons must occur
between a wider range of approaches, with a greater variety of tasks and team com-
positions, and across a broader set of metrics. Third, approaches must be compared
on physical robot teams as well as in simulation to validate their performance under
real-world conditions.

A final challenge is to demonstrate long-term, reliable, and robust operation of
larger robot teams in the real world. This will require simultaneous use of many of the
techniques discussed in this paper, including learning and adaptation, scalability, fault
detection and tolerance, handling uncertainty, and enabling heterogeneity. While many
of these features have been demonstrated on a small scale, holistic implementations
covering the spectrum of these features are now required.

Despite the many challenges ahead, market-based techniques are proving to be ver-
satile and powerful coordination schemes for groups of robots executing complex tasks
as part of a team. Different application requirements and tradeoffs in implementation
make it difficult to construct a single market-based approach that can be successful
in all domains. Nevertheless, a well-designed market-based approach with sufficient
plug-and-play options for manually or automatically altering different tradeoffs can be
successful in a wide range of applications. And, with further research, market-based
approaches promise to significantly further our vision of robots playing an integral role
in human life.
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A Example Problems and Case Studies

In this section, we present a couple of real-world example scenarios and demonstrate
how they can be addressed using market-based techniques. First, in Section A.1, we
present an aggregation problem in which a team of robots must collect a set of spatially
distributed items and transport them to a common location. We concretely illustrate
how a market-based approach can be formulated for this domain, and we consider
problem variations that highlight alternatives and extensions to the basic solution. Sec-
ond, in Section A.2, we present a case study in market-based multirobot exploration, a
problem that has been addressed in a variety of ways in the literature. Thus it allows us
to highlight a range of approaches to a single problem, to analyze and compare some
of the popular existing methods, and to suggest areas for future work.

A.1 Basic Aggregation

Consider a scenario in which we have a team R of robotic forklifts that must move all
of the wooden pallets T scattered in a warehouse to a loading bay for transportation
to another site. Their goal is to bring all the pallets into the loading bay as quickly as
possible so that the shipment can be made on time. Assume that each forklift can carry
up to P pallets at a time; once a forklift has P pallets, it must go to the loading bay to
unload. Here, each pallet maps to a single task in the mission and the team’s objective
of collecting all the pallets as quickly as possible can be described by the global cost
function C:

C(A) = max
r∈R

cr(Tr(A)) (1)

where A is a particular allocation of tasks to robots, Tr(A) is the set of pallets allocated
to r for transport in allocation A, and cr(X) is the fastest time that r can transport all
pallets in X to the bay. Our goal is to find an allocation A∗ that minimizes this global
cost function.

One approach to task allocation is to hold sequential, single-task auctions (e.g. one
pallet is allocated in each auction and only one auction occurs at a time). We could use
the following bidding function B:

B(r, pj) = cr(Tr(Acurr) ∪ {pj}) (2)

where Acurr is the current allocation and pj is the pallet being auctioned. Essentially,
the robot bids its total time for moving its currently allocated set of pallets and the
pallet being auctioned. To find the optimal time, the robot would have to solve an
instance of a multi-depot capacitated vehicle routing problem (MD-CVRP). In reality,
this is intractable for more than a few tasks, so we might use some heuristics or limit our
search space to find a feasible or approximate solution. Naturally, this is not guaranteed
to result in the best possible solution. As we discussed in Section 4, Tovey et al. [67]
demonstrate for P = |T | that such a bidding rule results in better performance than
using other bidding rules such as bidding the marginal increase in time.
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A.1.1 Aggregation of Multiple-Robot Tasks

To extend example A.1, suppose that we have pallets of different sizes and that several
forklifts might have to work together to jointly carry a pallet depending on its size. For
example, small or S-type pallets might require only a single forklift, while medium-
sized or M -type pallets require the efforts of two forklifts, and that large or L type
pallets require the efforts of three forklifts. Then, the M and L type pallets are multiple-
robot tasks while the S type pallets are single-robot tasks. Further suppose that a
forklift can carry up to P of the S-type pallets at a time but only one M - or L- type
pallet. Now, our objective of collecting the pallets as quickly as possible remains the
same, so our global cost function C remains the same as in Equation 1. However, note
that now the function cr will often depend not just on the tasks allocated, but also on
the activities of other teammates. Several types of auctions and bidding approaches are
possible. We present three such approaches and hypothesize about the benefits and the
drawbacks of each.

Instantaneous allocation. A first approach might be to use an instantaneous alloca-
tion as we discussed in Section 3.1.1 to simplify the problem of MR task allocation.
That is, an auctioneer might hold sequential, single-task auctions and each unassigned
robot bids its cost to complete that task:

B(r, pj) = cr(pj)

where cr(pj) is simply the time it would take for robot r to move pallet pj . If the
pallet being auctioned is an S pallet, the auctioneer awards the task to the robot with
the smallest bid value. If the pallet being auctioned is an M or L pallet, then the
auctioneer would award the task to the set of robots with the smallest collective set of
bid values. The advantage to this approach is that it is very simple and will keep most
robots working most of the time, thereby reducing the total time taken to move the
pallets. However, without sequencing, each robot is limited to moving a single pallet at
a time even though it has the capability to move up to P pallets at a time, thus creating
potentially significant inefficiencies.

Mission decomposition. A second approach that would allow some sequencing might
be to treat the problem as three different missions: the first mission is to move all the
S-type tasks, the second is to move all the M -type tasks, and the third is to move all
the L-type tasks. Thus, the first portion of the mission would be identical to Example
A.1. In the second portion of the mission, the auctioneer could hold sequential single-
item auctions and collect bids for each robot that indicate the earliest each robot could
complete that item and the corresponding cost. It would award the item to the cheapest
pair of bids.

For example, suppose that for a robot r, Tr(Acurr) = (pM2, pM1, pM4), and this
is also the order in which it will complete those tasks. Now, r is obligated to work on
those tasks in that order because other robots have coordinated their schedule with r
through the bidding. So, when a task pM6 is auctioned, r can only consider working
on it after it completes pM4, say at time t, and so submits a bid for time t with the cost
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of that new schedule. The auctioneer awards pM6 to the pair of robots that have similar
times of completion and that collectively have the least-costly completion time. Once
the M -type tasks are all allocated and completed, an analogous approach is taken for
the L-type tasks.

The benefit here is that we have significantly simplified the problem into three shifts
and can easily harness the benefits of task sequencing. The obvious drawbacks are that
some robots may be idle when there are fewer tasks than robots even though there are
other types of tasks to be completed, and the solution space is still limited to scheduling
of tasks of the same type.

Full sequencing. A third, more complex approach is to have the auctioneer hold
sequential, single-item auctions for any type of task at any time. We might use two
types of bidding depending on the type of pallet being auctioned. If the item currently
up for auction is an S-type pallet, then all robots submit a single bid as in Equation
2. However, when the task is an M -type or a L-type pallet, robots would submit a set
of bids which indicate not just the cost, but also the time that a robot could help move
that pallet. The auctioneer would award the task to the strongest set of two or three
bids, respectively. This approach of submitting multiple bids is similar to that used by
MacKenzie [46] which we discussed in Section 3.1.1.

For example, suppose that for a robot r, Tr(Acurr) = (pS2, pS1, pS4, pS10) where
S, M , and L indicate the type of pallets. Further suppose that this is the order in
which r expects to complete the tasks. Then, when a pallet pL11 is auctioned, r can
consider completing it after any of the tasks in its current schedule. It bids a set of
pairs {tk, cr(Tr(Acurr) ∪ pj , tk)} where tk is some time that r could arrive at pL11

to complete it and cr(Tr(Acurr) ∪ pj , tk) would be the resulting cost of that schedule.
The auctioneer would receive many bids for completing this task at different times and
the corresponding costs. Its goal is to find the set of three bids that have the smallest
total cost and that have the same or very similar arrival times. If such a set exists, pL11

is awarded to those robots under the agreement that they will be ready to move PL11 at
that time. So, r’s schedule Tr(Acurr) might now be (pS2, pS1, pS4, pL11, pS10). The
next time a pallet is auctioned, r can only submit bids that will still enable it to be ready
to complete pL11 at the time agreed upon.

The benefit here is that we have greatly enlarged our solution space and will proba-
bly find a better solution, but the drawback is the increased complexity of the approach:
robots may have to perform complex operations to submit a set of bids, and the auction-
eer’s clearing algorithm may computationally intensive given the large number of bids
per auction. Note that there are other ways in which a market-based solution can be
constructed for this problem. For example, hierarchical auctions can be used to allocate
both abstract tasks and the decomposed primitive tasks. The detailed solutions explore
a few options for applying market-based techniques to the aggregation problem.

A.2 Market-based Exploration

Exploration is a fundamental multirobot problem, and makes for an interesting case
study since there are a few different existing market-based solutions [60, 59, 75]. Ex-
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ploration requires the team to acquire as much information about the environment as
possible (e.g. by building a map) within the shortest amount of time or distance trav-
eled3. Additionally, limiting repeated coverage demonstrates an efficient team solu-
tion. Typically, these requirements are manifested in the utility function, which tries to
balance information gain (revenue) versus travel distance, time, or other cost factors.
Here we describe three market-based approaches, specifically by looking at the auction
mechanism and utility functions in each.

One approach described by Simmons et al. [60] uses a central greedy instantaneous
assignment (IA) algorithm. The idea is that each robot bids on a list of goal point tasks,
and each is assigned exactly one task by the auctioneer. The map representation used is
an occupancy grid, in which each cell contains a probability of containing an obstacle
and can be classified as free, occupied, or unknown by a simple thresholding. The goal
points selected are frontier cells, which are known free cells adjacent to unknown cells.
Each bid contains an estimated cost and information gain associated with each frontier
point. (The reason for including both values separately will become apparent shortly.)
The costs are based on the distance of the optimal path from the current robot position
to the goal. The information gain is based on the number of unknown cells expected
to be visible from the goal location. The utility for each task t is calculated by the
auctioneer during auction clearing as: Ui(t) = Ii(t) − di(t), where Ii(t) is robot i’s
expected information gain from task t, and di(t) is the distance between the robot and
the task. (Although not used in this approach, a scaling factor may be required for this
type of utility function since the units of information gain and cost are different. Such
a weight would specify the point at which it is no longer profitable to incur cost to gain
more information.)

The auction clearing algorithm proceeds as follows. First, the goal with the max-
imum utility is allocated to the highest bidder. Then, the auctioneer discounts all
remaining information gains according to the expected overlap around the assigned
frontier region and the outstanding goals before making the next allocation. This is
continued until all robots are assigned a goal or no goals remain. During execution,
the robots are retasked whenever there is a map change; thus robots are not always
required to reach their goals. One drawback to this approach is that it requires com-
munication with a central agent, as well as considerable information sharing in order
to ensure all robots maintain the same map. Additionally, the use of an IA allocation
algorithm means that the robots behave myopically, although it is not clear if that is an
undesirable trait for multirobot exploration [38].

Sheng et al. [59] essentially suggest several modifications and enhancements to the
approach of Simmons et al. One difference is that they use a distributed auction pro-
tocol that does not require a central auctioneer or map. Robots in their system attempt
to reach their goals, and upon task completion a robot determines the highest-utility
goal from a list of frontier cells and broadcasts a single-task auction for that task. After
a predetermined amount of time, if no other robot has submitted a higher bid for the
task then it declares itself the winner and starts execution. Because each auction is
only for a single task, a robot may have to call multiple auctions if it is continuously

3“The multirobot exploration problem” has also been used to describe the multi-depot traveling salesman
problem in some publications [4, 41, 57], which is different from the problem we describe here.
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outbid. Using multi-task auction may be an effective way to speed up the allocation
process by reducing the number of auctions required in such cases. Utility functions are
also modified to include a “nearness factor”, describing how close the robot is to other
teammates: Ui(t) = ω1Ii(t) − ω2Di(t) + ω3λi. The intention is that this additional
cost factor will tend to keep robots further apart to emphasize exploration breadth over
depth. Based on simulation results, it appears that including the nearness factor may
improve exploration time slightly. Since there is no central auctioneer, the robots try
to maintain consistent map information in order to reduce repeated coverage. They do
this by broadcasting their map updates upon reaching target points and use an informa-
tion sharing protocol to reduce repeated data transmission during encounters between
previously communication-isolated subgroups. If a robot receives a map update while
its auction is still pending, it recalculates its utilities and starts a new auction.

Zlot et al. [75] introduce a distributed approach that uses peer-to-peer auctions,
time-extended allocation (TA), and require no central agent. In this approach, each
robot applies one or more of a set of goal point generation heuristics to produce a list
of target points to visit. Although frontier points are possible as a goal generation
heuristic, three simpler ones are used: choose a random point in an unknown region of
the map; choose the center of the nearest unexplored region; and one based on spatial
decomposition using quadtrees. At startup and subsequently upon completion of a task,
a robot generates new goal points using one of these three algorithms and inserts them
into its schedule until it reaches a predefined maximum length. For each heuristic, if
a resulting goal is within a minimum distance of an existing goal point in the robot’s
schedule or list of done tasks, it is thrown away. Robots periodically call single-award
multi-task auctions to rid themselves of any goals that they may have generated that can
be better-handled by another teammate. Bids are calculated as expected information
gain minus expected weighted cost (Bi(t) = Ii(t)−ωci(t), where ci(t) is the marginal
distance increase from inserting task t into robot i’s schedule and ω is a scaling factor).
In addition to submitting bids, participants can inform the auctioneer if they are already
in possession of a similar task, in which case the auctioneer can eliminate that goal
entirely. A limited amount of information sharing is also implemented in order to
further reduce repeated coverage. In contrast to the system of Simmons et al. and
Sheng et al. , this approach does not rely on maintaining consistent maps or having
a central agent for task allocation, and thus can run in more communication-limited
situations. In addition, the inclusion of task sequencing eliminates the myopic behavior
of the robots in the other approaches above, although no direct comparisons have been
made between the approaches to measure any impact this difference might have.

Unfortunately, since the above approaches have many differences, it is difficult to
say which one is the best for a given problem instance without implementing each
and running a thorough experiment. However, Table 4 summarizes several isolated
features, allowing us to compare some aspects of the algorithms. Listed are the type
of allocation agent, the category of task allocation, the auction type, and the utility
function. The type of allocator reflects on the robustness of the system: as discussed in
Sections 2 and 6 distributed allocation mechanisms can be more resilient to individual
robot or communication failures. The allocation type refers to the taxonomy of Gerkey
and Matarić [25] as discussed in Section 3. The fact that there are both instantaneous
and time-extended solutions for multirobot exploration systems simply tells us that the
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problem can be modeled in different ways—determining which choice is better would
require empirical or theoretical results that are not currently available. Sections 4 and 5
tell us about the tradeoffs in solution quality and scalability of the auction types used
in these approaches which are listed next in the table. As mentioned above, using a
multi-item auction instead of a single-item auction in the approach of Sheng et al. may
speed up the allocation stage with minimal added computational and communications
overhead. Finally, Table 4 lists the utility functions used by the three approaches. A
fieldable multirobot exploration system would likely require a carefully tuned (by hand
or by learning) combination of multiple factors.

Table 4: Summary of market-based exploration approaches. Notation used for utility
functions are described in the text of Appendix A.2.

Approach Allocator Allocation type Auction type
Simmons et al. [60] centralized ST-SR-IA multi-item

Sheng et al. [59] distributed ST-SR-IA single-item
Zlot et al. [75] distributed ST-SR-TA multi-item

Approach Utility Function
Simmons et al. [60] Ui(t) = Ii(t)− di(t)

Sheng et al. [59] Ui(t) = ω1Ii(t)− ω2Di(t) + ω3λi

Zlot et al. [75] Ui(t) = Ii(t)− ωci(t)

Other systems that are not explicitly market-based but use similar approaches are
also worth mentioning here as the utilized utility functions can be used in any of the
above solutions. Solanas et al. [63] try to explicitly decompose the environment among
the team using a k-means clustering algorithm periodically. Robots then add fixed
penalty terms to their cost functions if a target point is outside their assigned region, or
a smaller variable penalty term based on distance to the region centroid if the point is
within the region. This encourages the robots to explore their region and discourages
repeated coverage. Jia et al. [32] use a more complicated utility which is calculated as
the ratio between the information gain and the cost (travel time plus observation time)
multiplied by a term representative of local map topology.

The multirobot exploration problem demonstrates that there is not always one par-
ticular way to design a market-based approach to solve a problem: specific require-
ments of the domain and abilities of the robots may play a significant role in the de-
sign process. Learning the most effective utility function might provide a more solid
grounding over using one of the several existing heuristic utility functions.
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