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ABSTRACT

Human team members often develop shared expectations to
predict each other’s needs and coordinate their behaviors.
In this paper the concept “Shared Belief Map” is proposed
as a basis for developing realistic shared expectations among
a team of Human-Agent-Pairs (HAPs). The establishment
of shared belief maps relies on inter-agent information shar-
ing, the effectiveness of which highly depends on agents’ pro-
cessing loads and the instantaneous cognitive loads of their
human partners. We investigate HMM-based cognitive load
models to facilitate team members to “share the right infor-
mation with the right party at the right time”. The shared
belief map concept and the cognitive/processing load models
have been implemented in a cognitive agent architecture—
SMMall. A series of experiments were conducted to evaluate
the concept, the models, and their impacts on the evolving
of shared mental models of HAP teams.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms

Design, Experimentation, Human Factors

Keywords

Cognitive modeling, Human-centered teamwork, Shared be-
lief maps, Multi-party communication

1. INTRODUCTION

The entire movement of “agent paradigm” was spawned,
at least in part, by the perceived importance of fostering
human-like adjustable autonomy. Human-centered multi-
agent teamwork has thus attracted increasing attentions in
multi-agent systems field [2, 10, 4]. Humans and autonomous
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systems (agents) are generally thought to be complemen-
tary: while humans are limited by their cognitive capacity in
information processing, they are superior in spatial, heuris-
tic, and analogical reasoning; autonomous systems can con-
tinuously learn expertise and tacit problem-solving knowl-
edge from humans to improve system performance. In short,
humans and agents can team together to achieve better per-
formance, given that they could establish certain mutual
awareness to coordinate their mixed-initiative activities.

However, the foundation of human-agent collaboration
keeps being challenged because of nonrealistic modeling of
mutual awareness of the state of affairs. In particular, few
researchers look beyond to assess the principles of modeling
shared mental constructs between a human and his/her as-
sisting agent. Moreover, human-agent relationships can go
beyond partners to teams. Many informational processing
limitations of individuals can be alleviated by having a group
perform tasks. Although groups also can create additional
costs centered on communication, resolution of conflict, and
social acceptance, it is suggested that such limitations can
be overcome if people have shared cognitive structures for in-
terpreting task and social requirements [8]. Therefore, there
is a clear demand for investigations to broaden and deepen
our understanding on the principles of shared mental mod-
eling among members of a mixed human-agent team.

There are lines of research on multi-agent teamwork, both
theoretically and empirically. For instance, Joint Intention
[3] and SharedPlans [5] are two theoretical frameworks for
specifying agent collaborations. One of the drawbacks is
that, although both have a deep philosophical and cogni-
tive root, they do not accommodate the modeling of hu-
man team members. Cognitive studies suggested that teams
which have shared mental models are expected to have com-
mon expectations of the task and team, which allow them
to predict the behavior and resource needs of team mem-
bers more accurately [14, 6]. Cannon-Bowers et al. [14]
explicitly argue that team members should hold compatible
models that lead to common “expectations”. We agree on
this and believe that the establishment of shared erpecta-
tions among human and agent team members is a critical
step to advance human-centered teamwork research.

It has to be noted that the concept of shared expectation
can broadly include role assignment and its dynamics, team-
work schemas and progresses, communication patterns and
intentions, etc. While the long-term goal of our research is
to understand how shared cognitive structures can enhance
human-agent team performance, the specific objective of the
work reported here is to develop a computational cognitive



capacity model to facilitate the establishment of shared ex-
pectations. In particular, we argue that to favor human-
agent collaboration, an agent system should be designed to
allow the estimation and prediction of human teammates’
(relative) cognitive loads, and use that to offer improvised,
unintrusive help. Ideally, being able to predict the cogni-
tive/processing capacity curves of teammates could allow
a team member to help the right party at the right time,
avoiding unbalanced work/cognitive loads among the team.

The last point is on the modeling itself. Although an
agent’s cognitive model of its human peer is not necessarily
to be descriptively accurate, having at least a realistic model
can be beneficial in offering unintrusive help, bias reduc-
tion, as well as trustable and self-adjustable autonomy. For
example, although humans’ use of cognitive simplification
mechanisms (e.g., heuristics) does not always lead to errors
in judgment, it can lead to predictable biases in responses
[8]. It is feasible to develop agents as cognitive aids to al-
leviate humans’ biases, as long as an agent can be trained
to obtain a model of a human’s cognitive inclination. With
a realistic human cognitive model, an agent can also better
adjust its automation level. When its human peer is becom-
ing overloaded, an agent can take over resource-consuming
tasks, shifting the human’s limited cognitive resources to
tasks where a human’s role is indispensable. When its hu-
man peer is underloaded, an agent can take the chance to
observe the human’s operations to refine its cognitive model
of the human. Many studies have documented that human
choices and behaviors do not agree with predictions from
rational models. If agents could make recommendations in
ways that humans appreciate, it would be easier to establish
trust relationships between agents and humans; this in turn,
will encourage humans’ automation uses.

The rest of the paper is organized as follows. In Section
2 we review cognitive load theories and measurements. A
HMM-based cognitive load model is given in Section 3 to
support resource-bounded teamwork among human-agent-
pairs. Section 4 describes the key concept “shared belief
map” as implemented in SMMall, and Section 5 reports the
experiments for evaluating the cognitive models and their
impacts on the evolving of shared mental models.

2. COGNITIVE CAPACITY-OVERVIEW

People are information processors. Most cognitive scien-
tists [8] believe that human information-processing system
consists of an executive component and three main infor-
mation stores: (a) sensory store, which receives and retains
information for one second or so; (b) working (or short-
term) memory, which refers to the limited capacity to hold
(approximately seven elements at any one time [9]), retain
(for several seconds), and manipulate (two or three infor-
mation elements simultaneously) information; and (c) long-
term memory, which has virtually unlimited capacity [1] and
contains a huge amount of accumulated knowledge organized
as schemata. Cognitive load studies are, by and large, con-
cerned about working memory capacity and how to circum-
vent its limitations in human problem-solving activities such
as learning and decision making.

According to the cognitive load theory [11], cognitive load
is defined as a multidimensional construct representing the
load that a particular task imposes on the performer. It
has a causal dimension including causal factors that can be
characteristics of the subject (e.g. expertise level), the task

(e.g. task complexity, time pressure), the environment (e.g.
noise), and their mutual relations. It also has an assess-
ment dimension reflecting the measurable concepts of men-
tal load (imposed exclusively by the task and environmental
demands), mental effort (the cognitive capacity actually al-
located to the task), and performance.

Lang’s information-processing model [7] consists of three
major processes: encoding, storage, and retrieval. The en-
coding process selectively maps messages in sensory stores
that are relevant to a person’s goals into working memorys;
the storage process consolidates the newly encoded informa-
tion into chunks, and form associations and schema to fa-
cilitate subsequent recalls; the retrieval process searches the
associated memory network for a specific element/schema
and reactivates it into working memory. The model sug-
gests that processing resources (cognitive capacity) are in-
dependently allocated to the three processes. In addition,
working memory is used both for holding and for process-
ing information [1]. Due to limited capacity, when greater
effort is required to process information, less capacity re-
mains for the storage of information. Hence, the allocation
of the limited cognitive resources has to be balanced in or-
der to enhance human performance. This comes to the issue
of measuring cognitive load, which has proven difficult for
cognitive scientists.

Cognitive load can be assessed by measuring mental load,
mental effort, and performance using rating scales, psycho-
physiological (e.g. measures of heart activity, brain activ-
ity, eye activity), and secondary task techniques [12]. Self-
ratings may appear questionable and restricted, especially
when instantaneous load needs to be measured over time.
Although physiological measures are sometimes highly sen-
sitive for tracking fluctuating levels of cognitive load, costs
and work place conditions often favor task- and performance-
based techniques, which involve the measure of a secondary
task as well as the primary task under consideration. Sec-
ondary task techniques are based on the assumption that
performance on a secondary task reflects the level of cogni-
tive load imposed by a primary task [15]. From the resource
allocation perspective, assuming a fixed cognitive capacity,
any increase in cognitive resources required by the primary
task must inevitably decrease resources available for the sec-
ondary task [7]. Consequently, performance in a secondary
task deteriorates as the difficulty or priority of the primary
task increases. The level of cognitive load can thus be man-
ifested by the secondary task performance: the subject is
getting overloaded if the secondary task performance drops.

A secondary task can be as simple as detecting a visual or
auditory signal but requires sustained attention. Its perfor-
mance can be measured in terms of reaction time, accuracy,
and error rate. However, one important drawback of sec-
ondary task performance, as noted by Paas [12], is that it
can interfere considerably with the primary task (compet-
ing for limited capacity), especially when the primary task is
complex. To better understand and measure cognitive load,
Xie and Salvendy [16] introduced a conceptual framework,
which distinguishes instantaneous load, peak load, accumu-
lated load, average load, and overall load. It seems that
the notation of instantaneous load, which represents the dy-
namics of cognitive load over time, is especially useful for
monitoring the fluctuation trend so that free capacity can
be exploited at the most appropriate time to enhance the
overall performance in human-agent collaborations.
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Figure 1: Human-centered teamwork model.

3. HUMAN-CENTERED TEAMWORK MODEL

People are limited information processors, and so are in-
telligent agent systems; this is especially true when they act
under hard or soft timing constraints imposed by the domain
problems. In respect to our goal to build realistic expecta-
tions among teammates, we take two important steps.

First, agents are resource-bounded; their processing ca-
pacity is limited by computing resources, inference knowl-
edge, concurrent tasking capability, etc. We withdraw the

assumption that an agent knows all the information/intentions

communicated from other teammates. Instead, we contend
that due to limited processing capacity, an agent may only
have opportunities to process (make sense of) a portion of
the incoming information, with the rest ignored. Taking
this approach will largely change the way in which an agent
views (models) the involvement and cooperativeness of its
teammates in a team activity. In other words, the estab-
lishment of shared mental models regarding team members’
beliefs, intentions, and responsibilities can no longer rely on
inter-agent communication only. This being said, we are not
dropping the assumption that “teammates are trustable”.
We still stick to this, only that team members cannot over-
trust each other; an agent has to consider the possibility that
its information being shared with others might not be as
effective as expected due to the recipients’ limited process-
ing capacities. Second, human teammates are bounded by
their cognitive capacities. As far as we know, the research
reported here is the first attempt in the area of human-
centered multi-agent teamwork that really considers build-
ing and using human’s cognitive load model to facilitate
teamwork involving both humans and agents.
We use (H;, A;) to denote Human-Agent-Pair (HAP) 4.

3.1 Computational Cognitive Capacity Model

An intelligent agent being a cognitive aid, it is desirable
that the model of its human partner implemented within
the agent is cognitively-acceptable, if not descriptively ac-
curate. Of course, building a cognitive load model that is
cognitively-acceptable is not trivial; there exist a variety of
cognitive load theories and different measuring techniques.
We here choose to focus on the performance variables of
secondary tasks, given the ample evidence supporting sec-
ondary task performance as a highly sensitive and reliable
technique for measuring human’s cognitive load [12]. It’s
worth noting that just for the purpose of estimating a hu-
man subject’s cognitive load, any artificial task (e.g, pressing
a button in response to unpredictable stimuli) can be used
as a secondary task to force the subject to go through. How-
ever, in a realistic application, we have to make sure that the
selected secondary task interacts with the primary task in
meaningful ways, which is not easy and often depends on the
domain problem at hand. For example, in the experiment
below, we used the number of newly available information
correctly recalled as the secondary task, and the effective-

Figure 2: A HMM Cognitive Load Model.

ness of information sharing as the primary task. This is
realistic to intelligence workers because in time stress situa-
tions they have to know what information to share in order
to effectively establish an awareness of the global picture.

In the following, we adopt the Hidden Markov Model
(HMM) approach [13] to model human’s cognitive capac-
ity. It is thus assumed that at each time step the secondary
task performance of a human subject in a team composed
of human-agent-pairs (HAP) is observable to all the team
members. Human team members’ secondary task perfor-
mance is used for estimating their hidden cognitive loads.

A HMM is denoted by A = (N, V, A, B, 7), where N is a
set of hidden states, V' is a set of observation symbols, A
is a set of state transition probability distributions, B is a
set of observation symbol probability distributions (one for
each hidden state), and 7 is the initial state distribution.

We consider a 5-state HMM model of human cognitive
load as follows (Figure 2). The hidden states are 0 (negligibly-
loaded), 1 (slightly-loaded), 2 (fairly-loaded), 3 (heavily-
loaded), and 4 (overly loaded). The observable states are
tied with secondary task performance, which, in this study,
is measured in terms of the number of items correctly re-
called. According to Miller’s 742 rule, the observable states
take integer values from 0 to 9 ( the state is 9 when the
number of items correctly recalled is no less than 9). For
the example B Matrix given in Fig. 2, it is very likely that
the cognitive load of the subject is “negligibly” when the
number of items correctly recalled is larger than 9.

However, to determine the current hidden load status of
a human partner is not trivial. The model might be over-
sensitive if we only consider the last-step secondary task
performance to locate the most likely hidden state. There
is ample evidence suggesting that human cognitive load is
a continuous function over time and does not manifest sud-
den shifts unless there is a fundamental changes in tasking
demands. To address this issue, we place a constraint on
the state transition coefficients: no jumps of more than 2
states are allowed. In addition, we take the position that,
a human subject is very likely overloaded if his secondary
task performance is mostly low in recent time steps, while
he is very likely not overloaded if his secondary task perfor-
mance is mostly high recently. This leads to the following
Windowed-HMM approach.

Given a pre-trained HMM X of human cognitive load and
the recent observation sequence O; of length w, let param-
eter w be the effective window size, e} be the estimated
hidden state at time step t. First apply the HMM to the
observation sequence to find the optimal sequence of hidden
states SP = s182 - Suw (Viterbi algorithm). Then, compute
the estimated hidden state 7 for the current time step, view-
ing it as a function of S7*. We consider all the hidden states
in S, weighted by their respective distance to e7_; (the es-
timated state of the last step): the closer of a state in S}



to €1, the higher probability of the state being 7. e} is
set to be the state with the highest probability (note that a
state may have multiple appearances in S?) More formally,
the probability of state s§<S being &} is given by:

pa(s1) = n(s;)e” 7, (1)

SZSJGS?
where n(s;) = €/ }_, € is the weight of s; € S} (the
most recent hidden state has the most significant influence
in predicting the next state). The estimated state for the

current step is the state with maximum likelihood:

g7 = argmax p (s, t) (2)
SES?

3.2 Agent Processing Load Model

According to schema theory [11], multiple elements of in-
formation can be chunked as single elements in cognitive
schemas. A schema can hold a huge amount of information,
yet is processed as a single unit. We adapt this idea and as-
sume that agent i’s estimation of agent j’s processing load
at time step t is a function of two factors: the number of
chunks ¢;(t) and the total number s;(¢) of information be-
ing considered by agent j. If ¢;(t) and s;(¢) are observable
to agent ¢, agent ¢ can employ a Windowed-HMM approach
as described in Section 3.1 to model and estimate agent j’s
instantaneous processing load.

In the study reported below, we also used 5-state HMM
models for agent processing load. With the 5 hidden states
similar to the HMM models adopted for human cognitive
load, we employed multivariate Gaussian observation prob-
ability distributions for the hidden states.

3.3 HAP’s Processing Load Model

As discussed above, a Human-Agent-Pair (HAP) is viewed
as a unit when teaming up with other HAPs. The processing
load of a HAP can thus be modeled as the co-effect of the
processing load of the agent and the cognitive load of the
human partner as captured by the agent.

Suppose agent A; has models for its processing load and
its human partner H;’s cognitive load. Denote the agent
processing load and human cognitive load of HAP (H;, A;)
at time step ¢ by pi and v}, respectively. Agent A; can use p!
and v} to estimate the load of (H;, A;) as a whole. Similarly,
if 4 and v} are observable to agent A;, it can estimate the
load of (Hj, A;). For model simplicity, we still used 5-state
HMM models for HAP processing load, with the estimated
hidden states of the corresponding agent processing load and
human cognitive load as the input observation vectors.

Building a load estimation model is the means. The goal
is to use the model to enhance information sharing perfor-
mance so that a team can form better shared mental models
(e.g., to develop inter-agent role expectations in their collab-
oration), which is the key to high team performance.

3.4 Load-Sensitive Information Processing

Each agent has to adopt a certain strategy to process the
incoming information. As far as resource-bounded agents
are concerned, it is of no use for an agent to share infor-
mation with teammates who are already overloaded; they
simply do not have the capacity to process the information.

Consider the incoming information processing strategy as
shown in Table 1. Agent A; (of HAP;) ignores all the incom-
ing information when it is overloaded, and processes all the
incoming information when it is negligibly loaded. When it

Table 1: Incoming information processing strategy

HAP; Load | Strategy
Overly Ignore all shared info
Heavily Consider every teammate A € [1, |%|Q|] 1,
randomly process half amount of info from A;
Ignore info from any teammate B € (é\QL Q]
Fairly Process half of shared info from any teammate
Slightly Process all info from any A € [1, ]—é\QH I
For any teammate B € (%|Q\, Q]
randomly process half amount of info from B
Negligibly Process all shared info
# HAP; Process all info from HAP; if it is overloaded

*Q is a FIFO queue of agents from whom this HAP has received
information at the current step; g is a constant known to all.

is heavily loaded, A; randomly processes half of the messages
from those agents which are the first 1/q teammates ap-
peared in its communication queue; when it is fairly loaded,
A; randomly processes half of the messages from any team-
mates; when it is slightly loaded, A; processes all the mes-
sages from those agents which are the first 1/¢g teammates
appeared in its communication queue, and randomly pro-
cesses half of the messages from other teammates.

To further encourage sharing information at the right time,
the last row of Table 1 says that HAP;, if having not sent
information to HAP; who is currently overloaded, will pro-
cess all the information from HAP;. This can be justified
from resource allocation perspective: an agent can reallocate
its computing resource reserved for communication to en-
hance its capacity of processing information. This strategy
favors “never sending information to an overloaded team-
mate”, and it suggests that estimating and exploiting oth-
ers’ loads can be critical to enable an agent to share the
right information with the right party at the right time.

4. SYSTEM IMPLEMENTATION

SMMall (Shared Mental Models for all) is a cognitive
agent architecture developed for supporting human-centric
collaborative computing. It stresses human’s role in team
activities by means of novel collaborative concepts and mul-
tiple representations of context woven through all aspects of
team work. Here we describe two components pertinent to
the experiment reported in Section 5: multi-party commu-
nication and shared mental maps (a complete description of
the SMMall system is beyond the scope of this paper).

4.1 Multi-Party Communication

Multi-party communication refers to conversations involv-
ing more than two parties. Aside from the speaker, the lis-
teners involved in a conversation can be classified into var-
ious roles such as addressees (the direct listeners), auditors
(the intended listeners), overhearers (the unintended but an-
ticipated listeners), and eavesdroppers (the unanticipated
listeners). Multi-party communication is one of the charac-
teristics of human teams. SMMall agents, which can form
Human-Agent-Pairs with human partners, support multi-
party communication with the following features.

1. SMMall supports a collection of multi-party perfor-
matives such as MInform (multi-party inform), MAnnounce
(multi-party announce), and MAsk (multi-party ask). The
listeners of a multi-party performative can be addressees, au-
ditors, and overhearers, which correspond to ‘to’, ‘cc’, and
‘bee’ in e-mail terms, respectively.

2. SMMall supports channelled-communication. There



are three built-in channels: agentTalk channel (inter-agent
activity-specific communication), control channel (meta com-
munication for team coordination), and world channel (com-
munication with the external world). An agent can fully
“tune” to a channel to collect messages sent (or cc, bcc)
to it. An agent can also partially tune to a channel to get
statistic information about the messages communicated over
the channel. This is particularly useful if an agent wants to
know the communication load imposed on a teammate.

4.2 Shared Belief Map & Load Display

A concept “shared belief map” has been proposed and im-
plemented into SMMall; this responds to the need to seek
innovative perspectives or concepts that allow group mem-
bers to effectively represent and reason about shared mental
models at different levels of abstraction. As described in Sec-
tion 5, humans and agents interacted through shared belief
maps in the evaluation of HMM-based load models.

A shared belief map is a table with color-coded info-cells—
cells associated with information. Each row captures the
belief model of one team member, and each column corre-
sponds to a specific information type (all columns together
define the boundary of the information space being consid-
ered). Thus, info-cell Cj; of a map encodes all the beliefs
(instances) of information type j held by agent i. Color
coding applies to each info-cell to indicate the number of
information instances held by the corresponding agent.

The concept of shared belief map helps maintain and
present a human partner with a synergy view of the shared
mental models evolving within a team. Briefly, SMMall has
implemented the concept with the following features:

1. A context menu can be popped up for each info-cell
to view and share the associated information instances. It
allows selective (selected subset) or holistic info-sharing.

2. Mixed-initiative info-sharing: both agents and human
partners can initiate a multi-party conversation. It also al-
lows third-party info-sharing, say, A shares the information
held by B with C.

3. Information types that are semantically related (e.g.,
by inference rules) can be closely organized. Hence, nearby
info-cells can form meaningful plateaus (or contour lines) of
similar colors. Colored plateaus indicate those sections of a
shared mental model that bear high overlapping degrees.

4. The perceptible color (hue) difference manifested from

a shared belief map indicates the information difference among

team members, and hence visually represents the potential
information needs of each team member (See Figure 3).

SMMall has also implemented the HMM-based models
(Section 3) to allow an agent to estimate its human part-
ner’s and other team members’ cognitive/processing loads.

As shown in Fig. 3, below the shared belief map there is
a load display for each team member. There are 2 curves in
a display: the blue (dark) one plots human’s instantaneous
cognitive loads and the red one plots the processing loads of
a HAP as a whole. If there are n team members, each agent
needs to maintain 2n HMM-based models to support the
load displays. The human partner of a HAP can adjust her
cognitive load at runtime, as well as monitor another HAP’s
agent processing load and its probability of processing the
information she sends at the current time step. Thus, the
more closely a HAP can estimate the actual processing loads
of other HAPs, the better information sharing performance
the HAP can achieve.

sttt Hap2 [E5]=1E]

Cognitive Load Prediction: HAP:

L

o w0 50

1w 30
time step

Figure 3: Shared Mental Map Display

In sum, shared belief maps allow the inference of who
needs what, and load displays allow the judgment of when
to share information. Together they allow us to investigate
the impact of sharing the right info. with the right party at
the right time on the evolving of shared mental models.

4.3 Maetrics for Shared Mental Models

We here describe how we measure team performance in
our experiment. We use “mental model overlapping per-
centage (MMOP)” as the base to measure shared mental
models. MMOP of a group is defined as the intersection of
all the individual mental states relative to the union of indi-
vidual mental states of the group. Formally, given a group
of k agents G = {A4;]1 < i <k}, let B; = {Iim]|1 <m < n}
be the beliefs (information) held by agent A;, where each
I, is a set of information of the same type, and n (the size
of information space) is fixed for the agents in G, then

100 <
MMOP(G) = —
1<m<n

First, a shared mental model can be measured in terms of
the “distance” of averaged subgroup MMOPs to the MMOP
of the whole group. Without losing generality, we define
paired SMM di)st(ance (subgroups of size 2) Dj as:

D (G) = (MMOP({A;, A;}) = MMOP(G))*.  (4)

1<i<j<k

The MMOP of a subgroup is always larger than the MMOP
of the whole group. Intuitively, the larger distance from the
MMOP of a subgroup to that of the whole group, the more
overlapping mental models the subgroup shares. This no-
tion can be used to measure the tightness of an emerging
subgroup or guide the process of team coalition.

Second, due to communication or information processing
limits, each individual’s subjective measure of the group’s
MMOP can be very different from the group’s MMOP mea-
sured objectively from external. A shared mental model can
thus be measured in terms of the “closeness” of individuals’
measure of the group’s MMOP to the objective measure. Let
MMOP(G) and MMOP;(G) be the objective measure and
agent A;’s subjective measure of the group’s shared mental
models, respectivel;.(We define SMM deviation D, as:

D, (G) = (MMOP;(G) — MMOP(G))2. (5)
1<i<k

| Ni<i<k Lim| 3)
| Ut<i<k Lim|”

Obviously, D measures the coherency of the whole group:
the smaller the better.

Third, shared mental models evolve over time. A shared
mental model can be measured in terms of the “stable-
ness” of the instantaneous measures of MMOP, DT, or D



over time. High performing teams can often maintain their
shared mental models such that the MMOP is stable at an
acceptable level as activities proceed, while the MMOP mea-
sure of the shared mental models of a low-performing teams
can fluctuate or decrease notably over time.

S. EXPERIMENT EVALUATION

In this section we describe the experiments conducted to
evaluate the load estimation models and the shared belief
map concept for developing team shared mental models.

5.1 Problem Description

The members of a HAP team (i.e., a team composed
of Human-Agent-Pairs) are situated in a dynamic environ-
ment. Due to their different (maybe overlapping) observ-
ability, at each time step they may get different situational
information. The goal of a HAP team is to selectively share
information in a timely manner to develop global situation
awareness (say, for making critical decisions).

Each run of the experiment has 45 time steps; each time
step lasts 15 seconds. A time step starts with certain info-
cells of the shared belief map being flashed quickly (for 2
s). The flashed cells are exactly those with newly available
information that should be shared at that time step. An
info-cell is frozen at the end of a time step: the associated
information is no longer sharable. This requires that the
newly available information be shared in time, not later.

The human and agent of a HAP assume different roles.
An agent governs group communication and processes mes-
sages to update the shared belief map on its display. An
agent, with a pre-trained HMM-based cognitive load model
for its human partner and a processing load model for each
of the other HAPs in the team, also estimates and displays
their instantaneous loads. Human subjects need to perform
a primary task and a secondary task. The secondary task of
a human subject is to remember and mark the cells being
flashed (not necessarily in the exact order) by left mouse
clicks. Secondary task performance at step t is thus mea-
sured as the number of cells marked (remembered) correctly
at t, which is taken as the observable state of the HMM-
based cognitive load model of that human subject. The
primary task of a human subject is to build a shared mental
model of the dynamic situation by sharing the right infor-
mation with the right party at the right time. To share the
information associated with an info-cell, a human subject
needs to click the right mouse button on the cell, and select
the receiving teammate(s) from the popup menu.

There are costs associated with information sharing. Com-
munications among HAPs is done by the corresponding SM-
Mall agents, which have both limited capacity n;, for pro-
cessing incoming information and limited outgoing commu-
nication capacity noy:. Thus, depending on the current HAP
load, an agent may randomly ignore part or all of the incom-
ing information (having no effect on the establishment of
shared mental models). On the other hand, each time step
at most n.y,: number of information-sharing commands can
be effective; more than that contribute nothing to the es-
tablishment of shared mental models. Sending information
to an overloaded teammate will waste the capacity that oth-
erwise can be used to share information with a less loaded
teammate. This means that at each time step a human sub-
ject has to carefully go through three cognitive decisions:
whether the information under consideration needs to be

shared (i.e., whether it is associated with an info-cell just
flashed), whether a team member is the right party to share
the information with (i.e., whether it really needs the infor-
mation), and whether this is the right time to share (i.e.,
whether the team member is currently overloaded).

The above description applies to HAP teams. For teams
composed of SMMall agents only, the agents will take all the
roles played by an agent or a human partner in HAP teams.

5.2 Experiment Design

To investigate the impacts of the HMM-based load models
on the evolution of shared mental models (SMM), we con-
ducted experiments for both Agent teams and HAP teams,
where agent teams involve agent processing load models
only, HAP teams involve models of HAP processing load
(i.e., the co-effect of agent processing load and human cog-
nitive load). To get insights on how load predictions and
multi-party communication may affect the performance of
forming SMM, we designed 3 Agent teams (TA1, TA2, TA3)
and 3 HAP teams (TH1, TH2, TH3), where all agents adopt
the strategy in Table 1 to send and process information.
When sharing information, teams of type 1 (TA1l, THI1)
ignore load predictions; teams of type 2 (TA2, TH2) con-
sider load predictions; teams of type 3 (TA3, TH3) follow
load predictions more strictly in the sense that the agents
will further group the receivers of a multi-party message
(MInform) by their loads and split the message into mul-
tiple messages with their receivers having the same load.
For example, given that agents A1, Az, Az have load 1, 2,
1, respectively. An agent Ag in a team of TA2 may send
one multi-party message, while an agent A{ in a team of
TA3 will send two messages (one to Az, one to A; and As).
In addition, we controlled agents’ outgoing communication
capacities by varying from 6, 8, to 10.

Due to constraints on communication capacity and pro-
cessing capacity, an agent can be inaccurate when tracking
other teammates’ mental models. In order to measure the
actual shared mental models, a special SMMall agent named
‘OmniAll’ was added to each team to monitor inter-agent
communications and record the actual effects of informa-
tion sharing on each agent’s mental model. This realizes a
way, as suggested by Klimoski [6], to measuring the degree of
overlap in immediate, intermediate, and long-term situation
awareness zones held by group members.

We also recorded instantaneous information sharing util-
ity, which is defined as follows. At each time step, let T' =
(To, T1, T2, T, T4) be a sequence of sets, where Ty, Th, 15, T3,
and T4 are sets of teammates whose current load states are
“negligibly”, “slightly”, "fairly”, “heavily”, and “overly” re-
spectively. Let S be the set of information-sharing com-
mands issued by a human partner at the current step. Let
M; = {Ti € T|k <gT) # 0}. Instantaneous info-sharing
utility is defined gs .. s_value(c)/|S|, where

=0 recetver(c) € Ty
s_value(c) = _0 ¢ is known to receiver(c) (6)
~1/|M;|  recetver(c) € Ty, i # 4

In sum, this study involved 18 types of teams, each team
had 4 members, and each team type was tested by 10 domain
scenarios. 30 human subjects were recruited for HAP teams.
The experiment results are plotted in Figures 4, 6, and 7.
We next present our findings in this study.

5.3 Load Estimation Betters Info-sharing
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Figure 4: Evolution of SMMs.

Consider teams of type 1 (TA1l, TH1) and teams of type
2 (TA2, TH2). First look at the performance of HAP teams
in Fig. 4, we have: (1) For each team type, the performance
(percentage of SMM overtime) averaged over 10 teams in-
creased as communication capacity increased (TH1-6<TH1-
8<TH1-10, TH2-6<TH2-8<TH2-10). (2) The averaged per-
formance of TH2 teams performed consistently better than
the TH1 teams for each capacity setting (TH2-6>TH1-6,
TH2-8>TH1-8, TH2-10>TH1-10), and the performance dif-
ference of TH1 and TH2 teams increased as communication
capacity increased. This indicates that, other things being
equal, the benefit of exploiting load estimation when sharing
information becomes more significant when communication
capacity is larger. From Fig. 4 the same findings can be
derived for the performance of agent teams.

In addition, the results also show that the SMMs of each
team type were maintained steadily at a certain level after
about 20 time steps. However, to maintain a SMM steadily
at a certain level is a non-trivial team task. The performance
of teams who did not share any information (the ‘NoSharing’
curve in Fig. 4) decreased constantly as time proceeded.

5.4 Multi-Party Communication for SMM

We now compare teams of type 2 and type 3 (which splits
multi-party messages by receivers’ loads). As plotted in Fig.
4, for HAP teams, the performance of team type 2 for each
fixed communication capacity was consistently better than
team type 3 (TH3-6<TH2-6, TH3-8<TH2-8, TH3-10<TH2-
10); the difference became more significant as communica-
tion capacity increased. These also hold for the Agent teams
(upper one in Fig. 4). Actually, the performance of type 3

Minform I (@ Inform | (b)
Inform | ‘A<Inform |

A B C A B C
Figure 5: Multi-party messages.

agent teams was even worse (for each fixed capacity) than
the performance of type 1 agent teams.

This can be explained by the difference of two-party and
multi-party communications. In SMMall, in order to enable
team-level inference, each agent maintains an internal model
of every team member’s mental model (beliefs). According
to the semantics of MInform (multi-party inform), when A
MInforms I to others, assuming all the receivers and over-
hearers will accept I, A will update its internal model of
their beliefs; each of the receivers (overhearers), upon get-
ting the message, will update its own beliefs as well as its
model of the sender’s and all the other receivers’ beliefs.

Compared to two-party performatives, multi-party per-
formatives are preferable for forming shared mental models.
As illustrated in Fig. 5(a), agent A only needs to perform
MInform once (with B and C being receivers) to achieve
the common knowledge of the shared belief about I (It con-
sumes 2 of A’s communication resources, one for each re-
ceiver). However, to achieve the same effects using Inform
(Fig. 5(b)), it is hard to form team-level SMM especially
when the team size is big (missing one Inform will nullify all
others’ efforts). Moreover, although agent A still consumes
2, the whole team needs more resources (3 in this case).

However, splitting multi-party messages by receivers’ loads
does enhance subgroup SMMs. In Fig. 6 we plotted the
other two measures of SMMs (distance and closeness as
defined in Sec. 4.3). For HAP teams, TH3>TH2>TH1
holds in Fig. 6(c) (larger distances indicate better sub-
group SMMs), and TH3<TH2<THI holds in Fig. 6(d)
(smaller deviations indicate higher coherency of the whole
team). Thus, HAP teams of type 3 achieved better subgroup
SMMs, and their team members had higher coherent view
of group SMMs than teams of other types. For agent teams,
TH3>TH1>TH?2 holds in Fig. 6(a), and TH2<TH3<TH1
holds in Fig. 6(b). Thus, agent teams of type 3 achieved
better subgroup SMMs, and their team members had much
higher coherent view of group SMMs than teams of type 1
(although slightly worse than team type 2).

Hence, generally, multi-party communication encourages
the forming/evolving of team SMMs. When a group of
agents can be partitioned into subteams, splitting messages
by their loads can be more effective for subteam SMMs.

5.5 The HMM-based Cognitive Model

To validate the HMM-based cognitive load model is ex-
tremely difficult because detecting the real, noise-resistant
cognitive load of human beings is far beyond the current
technology. As an indirect judgment, we plotted the regres-
sion fitted lines for the means of information sharing utility
of HAP teams with and without load displays. For the HAP
teams with load displays there is a strong negative linear
relationship between info-sharing utility and cognitive load
levels (Pearson correlation coefficient is —/0.899 = —0.948
with P-Value = 0.014). Because the info-sharing utility
measure and the cognitive load measure are indicators of
primary task performance and secondary task performance,
respectively, their linear relationship complies with cogni-
tive studies that secondary task performance can be used
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Figure 6: The distance of subgroup SMMs and the closeness of individual views of team SMMs.

to explain primary task performance. However, for teams
without load displays there is a strong quadratic rather than
linear relationship (correlation coefficient is v/0.974 = 0.987
with P-Value = 0.015). This indicates that the information
sharing performance of a HAP team can be significantly af-
fected by both the human subject’s own cognitive load, and
the awareness of other team members’ load. Knowing of oth-
ers’ load (by estimation) will reduce the quadratic relation
to a linear relation.
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6. CONCLUSION

Recent research attention on human-centered teamwork
highly demands the design of agent systems as cognitive
aids that can model and exploit human partners’ cognitive
capacities to offer help unintrusively. In this paper, we in-
vestigated several factors surrounding the challenging prob-
lem of evolving shared mental models of teams composed of
human-agent-pairs. The major contribution of this research
includes (1) HMM-based load models were proposed for an
agent to estimate its human partner’s cognitive load and
other HAP teammates’ processing loads; (2) The shared be-
lief map concept was introduced and implemented. It allows
group members to effectively represent and reason about
shared mental models; (3) Experiments were conducted to
evaluate the HMM-based cognitive/processing load models
and the impacts of multi-party communication on the evolv-
ing of team SMMs. The usefulness of shared belief maps was
also demonstrated during the experiments.
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