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Abstract

As massively multi-player gaming environments become
more detailed, developing agents to populate these virtual
worlds as capable non-player characters poses an increas-
ingly complex problem. Human players in many games must
achieve their objectives through financial skills such ad-tr

ing and supply chain management as well as through com-
bat and diplomacy. In this paper, we examine the problem
of creating intelligent trading agents for virtual marketks-

ing historical data from EVE Online, a science-fiction based
MMORPG, we evaluate several strategies for buying, sell-
ing, and supply chain management. We demonstrate that us-
ing reinforcement learning to determine policies baseden t
market microstructure gives trading agents a competitive a
vantage in amassing wealth. Imbuing agents with the ability
to adapt their trading policies can make them more resistant
to exploitation by other traders and capable of particigati

in virtual economies on an equal footing with humans.

Introduction

Managing virtual markets is a relatively new but impor-
tant aspect of maintaining an immersive multi-player gam-
ing environment. It is no longer enough to create a world
with interesting strategic and tactical gameplay oppad+tun
ties; many players want the additional option of achieving
their goals through financial means such as buying, sell-
ing, investing, and supply chain management. Although the
game designers can exert control over item scarcity, fees,
and wealth generation mechanisms, much of the economy
is dictated by the collective will of the players in the vir-
tual markets. In some virtual worlds, the participants use
the virtual world as an alternate means for advertising and
selling real-world goods. For instance, Second Life, by-Lin
den Labs, is inhabited by over 1.2 million regular visitors,
performing $600,000 of business transactions per day {Kirk
patrick 2007). In other virtual worlds, such as World of War-
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into these virtual financial ecosystems. The goal of theagen
is to buy components, manufacture goods, and sell finished
products while maximizing accrual of wealth in a fluctuat-
ing market. However, unlike the autonomous agents devel-
oped for Al competitions in trading agent and supply chain
management (Greenwald & Stone 2001), we want these
agents to cope with a marketplace created by a vast num-
ber of transactions by human players rather than markets
dictated by financial models or transactions with other au-
tonomous agents. Previous work on developing autonomous
agents for game environments has focused on issues such as
game replayability (van Lert al. 2005) and agent variabil-

ity (Wray & Laird 2003).

We selected the multi-player online game EVE Online,
as a testbed for our trading agent. EVE Online, developed
by CCP, has a very sophisticated player-controlled economy
that is actively regulated by a professional economist who
monitors inflation, deflation, commodity indicies, and pro-
duction levels within the virtual world. At the end of 2007,
there were 220,000 active subscribers and 460,000 player
characters, trading billions of units every month (EVE On-
line 2007). Since strategic battle planning is heavily in-
fluenced by logistics and access to resources, supply chain
management is an important operational problem for EVE
players.

In this paper, we focus on the problem of creating agents
with good “financial tactics” in buying, selling, and supply
chain management. We evaluate several strategies and show
that a reinforcement learning approach based on the market
microstructure can give a trading agent a competitive advan
tage in amassing wealth over standard fixed policies. An
additional consideration for developers of trading agénts
protecting their agents from player exploitation; the dntr
duction of easily duped trading agents in the virtual market
would create an easy avenue for smart players to cheaply

craft, the electronic marketplace is used as a mechanism for acquire rare items. We believe that imbuing agents with the
players to satisfy in-game needs such as equipment, food, orability to learn trading policies from recent historicaltéa

trade goods.
In this paper, we investigate the potential of introducing

autonomous trading and supply chain management agents

*This work was partially supported by NSF grants: 0341601,
0647018, 0717674, 0717680, 0647120, 0525429, 0203446
Copyright(© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

will make them potentially more resistant to predatory trad
ing practices.

Related Work

Previous work on developing agents for simulated
economies has centered around the Trading Agent Competi-
tion, which provides a standardized competitive benchmark



for the agents community. There are two different competi- through mining. These materials can be mined by the player
tion environments of interest: or purchased through the market from other player miners.

TAC Classic: agents procure items in multiple simultane- ~ Once the player obtains the necessary minerals they can
ous auctions for hotel reservations, flights, and event tick install a manufacturing job at a station using a blueprint.
ets while trying to maximize utility functions for a group ~ These blueprints are acquired from the market and are one
of simulated clients. Agents compete against other au- Of the few items offered by the NPC agents. The blueprint
tonomous agents bidding for items offered by simulated describes what materials are necessary and what item will
vendors in a variety of auction styles; certain items are be produced. With the blueprint and the minerals in hand,
directly traded between autonomous agents in a continu- the player installs the job in a manufacturing slot at either
ous double-side auctions. The agent that obtains the travel a0 NPC station or a player-owned structure, and after a set
itineraries with the highest client utility wins the compe-  build time the item is returned. Nearly all goods in the game
tition. The agents developed for this competition must are produced throughthis process. Technology Level 2 ships
be able to rapidly calculate the marginal utility of acquir- ~and modules follow a very similar process, with the addition
ing the items in the various auctions to determine good Of Tech_2 component materials that are required forth_e man-
bidding strategies (Greenwald & Stone 2001). There has ufacturing process. These Tech 2 component materials are
also been some work on the problem of learning pricelines Manufactured in much the same way as normal materials,
predicting the future cost of market resources, based on but the base materials needed to make the components are
bidding in previous rounds (Greenwald & Boyan 2004).  acquired through a different production method.

TAC Supply Chain Management: agents act as computer In this paper, we examine the problem of _Tech 2 com-
manufacturers in a market with simulated customers and PONent production. Tech 2 components require a four step
part suppliers. Agents outbid other agents for customer process to maanacturg. First the base materials are mined
orders, buy components from simulated supplier with [FOMamoon. This requires the use of a Player Owned Struc-
fluctuating prices, and manage their factories produc- ture and can only be done in low security and null security
tion schedule (Pardoe & Stone 2006b). The agent that SPace- Nextthe base materials are processed by a simple re-
makes the most profit over the course of the competition 2¢L0F INto a simple material. Two or more simple materials
wins. TacTex-06, the winner of TAC SCM 2006, used &€ combined in an advanced reactor to produce an advanced
various prediction techniques for anticipating future-sup material. Finally two or more advanced materials are us_ed
plier prices and the likelihood of client bid acceptance to L@ Produce the T2 component through the normal blueprint

improve the performance of its supply chain (Pardoe & manufacturing process. It is not necessary for a single indi
Stone 2006a) vidual to handle every step of the process, and in most cases

) i players will focus their attention on an individual part bét

The supply chain management scenario faced by agents process, by buying the materials they need from the market
trading in EVE Online markets differs in several key ways and selling their product back to others doing the same thing
from these competition scenarios. First the volume of units  \ye designed our agent to handle the purchasing of simple
and number of transactions in the EVE Online markets is aterials to fill an advanced reaction chain. A single ad-
significantly larger than the number of trades executed in 4 ceq reactor can be configured to produce any of six dif-
the competition settings. Moreover, there is a constant flow ¢orent advanced materials without significant configuratio
of traders entering and leaving the EVE markets, whereas cpanges. The agent must determine which of the six differ-
each competition round occurs with a fixed group of agents gy materials would be most profitable to produce, based on
and simulated vendors. Because of the large and open na-ihe market value of the base materials and the final advanced

ture of the EVE markets, it is basically always possible 0 - maerial. The prices of these materials fluctuate because of
obtain commodities by paying a higher price, whereas the ey participants in the market also trying to choose the

TAC agents cannot always obtain items even by paying a o<t profitable reaction. Each of the materials go through

higher price. cycles of increased supply causing the prices to fall, then i
. creased demand so the prices rise again. The ebb and flow of
EVE Online the market for these materials is a direct effect of the piaye
EVE Online is a space-based MMORPG (massively multi- involved switching between the available reactions.
player online role playing game) in which the players play
Pod Pilots, immortal demi-gods capable of flying starships. Approach
The players affect the EVE universe through market trades,
player vs. player (PVP) combat, and political maneuvering. The large number of players involved in the EVE market
Although some commodities are supplied by non-player is one of the reasons we selected EVE as a testbed for our
character (NPC) agents, the EVE market is predominantly trading agent. Due to the high level of human participation,
player-controlled. Ships, modules, ammunition, and dsone the market in EVE appears to exhibit strong similarities to
are all built by player manufacturers; rare items are sold by real-world markets (Seller 2008). CCP hired an economist
players who obtained the items through NPC pirate hunting. to study and report on the health of the market in a se-
Production in EVE is a multi-step process that takes as in- ries of quarterly economic newsletters similar in scope to
put raw materials and gives as output a module or ship. The shareholder reports released by major companies. With this
first step of the process is the acquisition of raw minerals in mind, we considered trading and simulation approaches



that had been proven successful in real-world financial mar- the following transactions. By placing an order into the or-
kets (Nevmyvaka 2005). Since the underlying assumptions der book prior to applying the transactions, it is possible t
behind the motivations of actors in real-world markets, we simulate that orders’ performance in the market. Using our
turned our attention to empirical models—how observable assumptions, we can reconstruct which transactions have oc
variables such as prices, volumes, and spreads affecsprice curred, but the order and timing of the simulated transastio
According to the theory espoused in market microstruc- can differ from the actual transactions, which cannot be ex-
ture, real-world markets are constantly engaged in the pro- tracted with the tools currently available in the EVE Online
cess of price discovery, in which the actual value of the client. Based the length of time between successive snap-
item is revealed through repeated negotiations between the shots, it is expected that some orders have been placed and
market agents. In an order-driven market, unlike the quote- consumed in the interval that are not reflected in the data
driven market in TAC SCM, these interactions occur in the collected, but this problem can be mitigated by increasing
form of sell orders and buy orders placed by market par- the data collection frequency.
ticipants. There are two basic types of orders that traders  Although it would be preferable to have direct access to
can makemarket or limit orders. Amarket order transac- the sequences of transactions, simulating the marketsn thi
tion occurs immediately at the best price currently offered way provides a close approximation of the true nature of
whereas in dimit order a reservation price is specified for the market in question. We chose this approach because it
the transaction. In a buy limit order, the agent indicates fits well with the data collected from the live market, and
a willingness to buy a certain volume at a fixed price (or has shown good results as a basis for training a RL algo-
lower); in a sell limit order, the agent will accept no price rithm (Nevmyvaka 2005). It allows for an analysis of true or-
lower than the limit. All market transactions which can be der books from the market to be incorporated into the agent’s
satisfied immediately occur, leaving an order book of re- decision process and for the evaluation of the simulated or-
maining orders, arranged by price, that are used to fulfill ders against real transactions. The main drawback of this
incoming market orders. The two main approaches used to method is that the simulated market does not react to the new
analyze the relationship between sequences of these trans-order placed by the agent as a real market would. However,
actions and the success of future transactions are: (1§ usin it is reasonable to assume that an autonomous agent that is
time-series analysis to characterize the relationshiwéen continuously monitoring the market can place transactions
stochastic processes; (2) machine learning to learn optima to counter unexpected shifts in the market more rapidly than
transaction policies. In this paper, we focus on the second the typical human traders who interact with the market on a
approach—learning bidding policies from data of past trans  daily basis.
actions.

Trading and Production Scenario

We evaluated our trading agent on the amount of wealth
amassed over the course of the scenario. To be successful,
the agent must minimize the costs associated with purchas-
ing the supplies that serve as the input for the manufagurin
process and maximize the gains associated with the selling
the product. Additionally, the agent uses market infororati
as an input for identifying which manufacturing process is
likely to result in the most profit.

When buying items from the market, the agent has the op-
tion of placing a market order to buy directly from the limit

Simulating an EVE Market

The EVE market interface has the ability to record a snap-
shot of available orders for an item and export them to a file.
This user interface function was used to collect four weeks
of hourly data from the EVE market for every item related
to our Tech 2 supply chain. Data collection was restricted
to the Jita 4-4 market hub to simplify logistics. In this fgrm
the data is useful for retrieving statistics about the @rick
the items over time, but it is not useful for simulating the
agent’s interactions with the market. To simulate the dgent
interactions with the live EVE market it is necessary to in-

fer the transactions occurring between market snapshots by
comparing successive snapshots and determining the-differ
ence between them.

For orders that are on the market in both snapshots, the
volumes are monitored and changes are attributed to mar-
ket order interactions.

When an order disappears between snapshots it is as-

sellers or placing a limit buy order. When buying directly
from the sellers the buyer is essentially paying a premium
above the perceived price of the item for the privilege of im-
mediate satisfaction. When placing a limit order the agent
is providing liquidity for someone else and forcing them to
pay the premium, but runs the risk of the buy order not being
fulfilled. The agent's task is to identify the optimal policy
specifying which order to place at every timestep.

sumed that the order has been consumed and thus a mar- The most relevant features affecting the agent’s decision

ket order is inferred.

is assumed that a new limit order has been placed during
the interval.

In this way a list of transactions for each snapshot are built
and stored in the database. With these transactions it is now
possible to simulate interactions with the market by build-
ing the order book at each time step and then simulating

are:

When a new order has appeared in the second snapshot itTimegeps: timesteps remaining, ranging from- 1 to 0

wheret is the time horizon.

Volume: the volume left to be bought ranging frovto 0
whereV is the initial volume.

Order Book Spread (OBS): size of the order book spread,
BestAsk — BestBid. We discretize the order book



Table 1: Agent trading options (ISK: EVE Currency)
Agent Action  Description
Do Nothing
Bid 10% lower than the current Best Bid
Bid 1 ISK below the current Best Bid
Bid 1 ISK above the current Best Bid
Bid 10% higher than the current Best Bid
Place a Market Buy order

G WNEFEO

spread into-1, 0, 1 for low, average, and high, based on
the average and standard deviation of past values.

Immediate Market Order (IMMO): the cost of placing
an immediate market order.

Signed Volume (SV): This features denotes whether the
buy volume is increasing (-1), remaining constant (0), or
whether the sell volume is increasing(+1).

Learning Trading Policies

We use an offline version of the reinforcement learning algo-
rithm described in (Nevmyvaka 2005) to learn a set of trad-
ing policies for the agent based on historical data. The trad
ing policy describes the optimal sequence of transactions t
buy or sell a particular item, assuming that the agent has pre
viously decided which item to acquire. Based on the training
data, we exhaustively search all possible actions and apdat
our cost estimate of taking various actions using the follow
ing rule:

c(s,a) = ac(s,a) + (1 — a)[cim(s,a) + argmainp(s’7 a)],

wheres is the initial statea is the action takens’ is the
new statep(s’, a) is the expected cost of an action in the
new staten is the number of times has been tried i,
ais -4, ande;y, is the immediate cost of the action. The
immediate cost;,, is calculated by placing the bid associ-
ated with the action and simulating the market until the next
time step. If the order is fulfilled or partially fulfilled the
cost is calculated as:;,,, = 2L, wherep is the average

price per volume angy is the initial perceived price. The

We make the assumption that our orders do not have a
large enough effect on the market between timesteps to sig-
nificantly change the state of the market. With this assump-
tion we can determine the next state by simulating the result
for each action and updating the remaining volume accord-
ingly. In this situation the next state will be the state &t1
andv volume, wherev is the amount traded because of the
action, and the market variables remain fixed for that point
in time.

To learn a trading policy using our RL approach, buying
and selling policies for each of the items being studied are
trained on three weeks of live game data, with one week
of live data held in reserve for testing purposes. Buying
and selling are treated separately because the cost associa
with each action is reversed. When selling an item it is de-
sirable to sell above the perceived price, while when buying
the reverse is true.

Results

To evaluate the effectiveness of the trading policies le@rn
by the RL algorithm, we compared it to the following trading
strategies: spread market order (SMO), upfront marketrorde
(UFMO), last minute market order (LMMO), and variable
weight average pricing (VWAP). SMO, LMMO, UFMO, are
all methods that place direct market orders, and differ @ th
timing of the orders. VWAP places both limit orders and
market orders. At the beginning of the time step VWAP
places a limit order slightly better than the current besttli
order price, and at the end of the time step whatever vol-
ume is left over is placed in a market order. To compare the
strategies the test data is divided up into five step epochs.
For every item, each strategy is evaluated for every epoch in
the test data. The average cost associated with each strat-
egy is listed in Table 2. The costs are normalized against
the perceived price of each item so that comparison between
items is possible. Negative costs indicate that pricegbett
than the perceived price were attained. Table 2 shows the RL
performance of the best performing set of market variables
and which market variables were used.

In all cases of the buying task, RL outperformed all other
strategies for every combination of the market variables.

perceived price is calculated based on the order book spread However in the selling task there were some combinations

(BestAsk — BestBid) /2.
As the state-action pairs are visited, their costs are up-

of the market variables that were slightly outperformed by
the VWAP strategy, but in every item the best market vari-

dated according to the update rule; this process is repeatedables outperformed all other strategies.

for all the combinations af andwv for all of the training data.
The Q-table is updated in reverse order since logicallyat th
final timestep the only option to successfully complete the
task is to place a market order for all of the remaining vol-
ume (action #5). This state is a terminating state and its

Itis also apparent from Table 2 that selling and buying are
asymmetric and experience different levels of cost. Inyver
item in the sell group the average cost of the RL and VWAP
strategies is negative. This indicates that they both tfade
better than the perceived price of the items. However, in the

only costs are the immediate costs. Under the assumption buy group only carbon polymers and hexite trade for better
that our state space is Markovian, we use dynamic program- than perceived price. These differences can be attriboted t
ming to construct the Q-table. The only features that have the different styles of market behavior in the EVE market. In
an effect on the algorithm’s run time at@ndv. The other most situations EVE players who are buying are looking for
market-based feature variables are only affected by the sam immediate transactions while players who are selling items
ple data, hence it is possible to add more features without are willing to be patient and place limit orders. This leads
substantially increasing the amount of time required tolea  to a large amount of market buy orders, a large amount of
the Q-table. limit sale orders, and low amounts of limit buy orders and



market sell orders. Hence limit sale orders have a high prob-
ability of transacting. This is also the cause of the VWAP
strategy performing much closer to the RL strategy on the
sell task, because the limit orders placed by VWAP are con-
sumed much more frequently than they are in the buy task.

In most cases the RL learns a policy of placing limit or-
ders at slightly better than best limit price at all time step
but the last, and then placing a market order for the remain-
ing volume. This strategy mimics a strategy commonly fol-
lowed by many human participants in the EVE market. The
RL also learns when to place orders inside the order book
in order to reduce costs further. It learns this strategyamor
frequently in the sell case, as a result of the high volstilit
on the sell side of the order book. Figure 1 shows the ac-
tions chosen by the RL agent for titanium carbide using the
OBS, and IMMO market variables. As shown the RL agent
chooses to place a limit order just above or just below the
BestAsk most of the time while choosing to place a mar-
ket sell or to do nothing in just a few cases. The policies
learned by the RL approach are effective in buying or sell-
ing in terms of the simulation techniques used, and should
transition well to the live EVE market since they are based
on data from the market.

Supply Chain Management
In the supply chain scenario, a single factory is simulated

< xaen RL (Best Feature Set) vs Spread Market Order

Titanium Carbide Actions Chosen
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Figure 1: (a) The total profit gained over the course of the
scenario using the RL approach vs. SMO.(Greedy Selection)
(b) The distribution of actions in the policy learned by the
RL agent for selling titanium carbide.

over the course of four weeks. The trading agent must decide
which of six reactions to run. Each of these reactions takes and robust to player exploitation. Giving the agents multi-
as input items from the buy group, and produce items from ple strategic options and enabling them to learn from market
the sell group. data has the potential of making them both adaptive and ro-
Some experiments were carried out to ascertain the use- bust. There are two types of events that occur in EVE On-
fulness of predicting which reaction will produce the most line that cause large market shifts. Periodically the desig
profit based on the market data. Greedy reaction choice was ers introduce game patches that change resource scarcity or
compared to an oracle with perfect knowledge of the future modify the wealth generation mechanisms and cause dra-
market prices to evaluate the potential worth of prediction matic shifts in the relative value of items. For instanceg on
techniques. For the three day cycle being simulated having game patch was the addition of “invention” into EVE as a
the oracle’s prediction only affected one decision over the mechanism for producing blueprint copies for manufactur-
course of a month. This result is expected, since the short ing items. These blueprint copies (BPCs) enabled players

cycle time leaves very little time for the prices of the items
involved to shift significantly in relation to each other. We
believe that over a longer period of time the oracle’s chwice
would diverge more from the greedy choice and thus the
profit acquired by the oracle would be greater. For the short
cycle times studied here and the relatively short timeframe
of the test data, prediction of the market does not give sig-
nificant gains.

to produce limited numbers of items at a reduced efficiency
and deflated the artificially high prices caused by blueprint
original (BPO) monopolies. Market shifts can also be ini-
tiated by players that decide to wage economic “war” by
using their wealth to deny others profit rather than maximiz-
ing their own gain. By entering and systematically under-
cutting a market, a wealthy player can take consistent but
manageable losses while completely denying others profit

generation opportunities. This strategy can be as effectiv
at crippling other players as destroying their manufaotyri

Discussion I 5 8 _
Th | roles th di facilities. Frequent retraining on recent market data can i
ere are several roles that autonomous trading agents cangrese the resiliency of a reinforcement-learning baset tr

fulfill in MMORPG marketplaces. They can provide liq- g a5ents to these externally instigated market shifts.
uidity for human players in less active markets in the same

way that NPC vendors serve as a reliable outlets for play- .
ersyto obtain and sell items at fixed prices. Also, introgug- Conclusion and Future Work

ing a population of trading agents can be a market control The line between virtual and real-world economies is blur-
mechanism for the game designers to subtly manage mar-ring. Economists routinely create computer simulations of
kets and deflate prices. Even though trading agents in a vir- real-world economies, and virtual MMORPG economies
tual marketplace do not function as “adversaries” for the hu like the one in EVE Online are beginning to approach the
man players, it is equally important for them to be adaptive size of real-world markets. Virtual worlds such as Sec-



Table 2: Average normalized cost for all buying and sellinfigies.

Item [ 0BS | IMBO [ SV | RL (best) [ vwAP [ smo | UFMO | LMMO
Buying
Carbon Polymers 0 0 1 -0.028504579 | 0.082028063 | 0.14643748 | 0.158661913 | 0.133918673
Ceramic Powder 1 0 0 0.002357998 | 0.094899403 | 0.145539648| 0.15691056 | 0.127830972
Crystallite Alloy 1 0 0 0.159725478 | 0.201720732 | 0.219629257| 0.228338457 | 0.222763274
Fernite Alloy 1 0 1 0.109048314 | 0.145763227 | 0.165234565| 0.16647955 | 0.167223286
Hexite 0 1 0 -0.00674535 | 0.052654967 | 0.102081265| 0.102325669 | 0.096176695
Platinum Technite 1 0 0 0.026604871 | 0.053103663 | 0.066995723| 0.065303677 | 0.066490438
Rolled Tungsten 0 0 1 0.109001374 | 0.213010068 | 0.250940359| 0.261046177 | 0.248051276
Silicon Diborite 1 0 0 0.14209394 0.293296089 | 0.396878418| 0.368555284 | 0.398358207
Sulfuric Acid 1 0 1 0.035423585 | 0.086367207 | 0.108323317| 0.111466645 | 0.102229287
Titanium Chromide | 0 0 1 0.03438384 0.066614538 | 0.080647685| 0.0836483741| 0.076908795
Selling
Crystalline Carbonide| 0 0 0 -0.042070845 | -0.031703087| 0.059422992| 0.058534444 | 0.058171544
Fernite Carbide 1 0 0 -0.022444448 | -0.008468892| 0.037583333| 0.03736483 | 0.039398718
Fullerides 0 0 0 -0.025773631 | -0.021543334| 0.032569338| 0.029058182 | 0.03510464
Sylramic Fibers 0 0 0 -0.03238247 | -0.030585387| 0.04085 0.044264554 | 0.0448763
Titanium Carbide 1 1 0 -0.030455756 | -0.020375989| 0.041083696| 0.04590129 | 0.035326763
Tungsten Carbide 1 0 0 -0.03466989 | -0.003565254| 0.05535917 | 0.055273444 | 0.054097885

ond Life and Entropia Online use currencies that can be formance and resiliency of our agent in real-time trading

traded for real-world dollars. Within EVE Online, players
can use real-world money to buy virtual objects (time cards)
that are traded in the EVE marketplace. These time cards
can be used to offset the cost of game subscription games
so a player who is sufficiently financially successful can
play EVE Online for free. Even purely virtual objects have
some intrinsic real-world value based on the investment of
real-world resources such as playing time and membership
fees. Dedicated MMORPG players are willing to spend real-
world money purchasing virtual items through eBay or other
vendors to enhance their gaming experience.

As these virtual markets approach the complexity of real-
world markets, developing agents to populate these virtual
worlds as capable, autonomous, non-player characters pose
a daunting research problem. In this paper, we have demon-
strated some initial steps towards the problem of devetppin
adaptive trading agents for inhabiting virtual marketpkc
Our reinforcement-learning approach for learning a trgdin
policy from a short time-window of market data, outper-
forms standard trading policies such as VWAP (variable-
width average price). Over the time intervals considered in
this study, price prediction, even through the use of a marke
oracle, did not prove to be a decisive advantage for supply
chain management, although we believe that in cases where
the market is not exhibiting a stable downward trend it is
likely that the use of prediction would outperform the grnged
scheduling strategy.

In future work, we are interested in addressing the fol-
lowing problems. First we will evaluate the use of different
function approximators as a replacement for our Q-table,
since exactly calculating a Q-table for a large state space
is intractable (Sutton & Barto 1998). Second, we are inter-
ested in expanding the agent’s supply chain management op-
tions, including allowing the use of more complicated seched
ules and calculating logistics for moving materials betwee
markets. Finally, we are interested in evaluating the per-

against human players.
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