Graph-based Multi-agent Replanning Algorithm

Jian Feng Zhang, Xuan Thang Nguyen and Ryszard Kowalczyk
Faculty of Information and Communication Technologies
Swinburne University of Technology

] Melbourne VIC 3122, Australia
{jfzhang, xnguyen, rkowalczyk}@ict.swin.edu.au

ABSTRACT

The paper presents a new approach for multi-agent replan-
ning based on Distributed Constraint Satisfaction (DisCSP)
and Graph planning techniques. In this approach, a new
distributed refinement strategy is proposed to construct a
graph plan for fixing errors occurred during the plan exe-
cution. The strategy employs an ”max-branching” heuristic
that can reduce the final graph plan size and allow faster
completion time for the graph construction. The graph plan
is then compiled into a DisCSP problem and solved using
a multi-variable version of the Asynchronous Backtracking
Algorithm. The approach is demonstrated with experiments
which show that distributed planning graph and CSP can
practically solve the replanning problems in a multi-agent
environment.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:

Plan execution, formation, and generation; 1.2.11 [Distri-
buted Artificial Intelligence|: Multiagent systems

General Terms
Algorithms

Keywords

multi-agent, planning, replanning

1. INTRODUCTION

Many real life problems require planning in which a num-
ber of participants (i.e. agents) perform tasks collabora-
tively in order to achieve a goal [5]. With the increasing
popularity of distributed network environments and peer-
to-peer paradigm, distributed planning has captured the in-
terests of Al and MAS community and been investigated in
a number of work [5]. Examples of distributed planning can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’07 May 14-18 2007, Honolulu, Hawai’i, USA.

Copyright 2007 IFAAMAS .

978-81-904262-7-5 (RPS) (©2007 IFAAMAS

be found in logistics where an international transport com-
pany has to distribute transportation tasks among its sub-
divisions and subcontractors in different geographical areas,
or a network of coordinated sensors to monitor a large area
for vehicle movements [11].

Durfee[10] classifies distributed planning into three main
types: Centralized Planning for Distributed Plans, Distribut-
ed Planning for Centralized Plans, and Distributed Planning
for Distributed Plans. This classification is based on the dis-
tribution of the plans themselves or of the planning mecha-
nism. Centralized Planning for Distributed Plans refers to a
set of distributed plans that are formulated using a central-
ized coordinating agent, e.g [17]. Distributed Planning for
Centralized Plan(s) refers to a distributed solving process
carried out by cooperative planning agents to form a com-
plex plan. Distributed Planning for Distributed Plans are
popular in MultiAgent literature, e.g [21] [6]. For this type
of planning, both the plans and the planning mechanism are
distributed.

In a dynamic environment, execution errors may happen
to any plan due to uncertainty and failure of individual ac-
tions. Therefore, an indispensable part of a planning system
is the capability of replanning. The importance of replan-
ning in executing a plan has been discussed in [14] and [7].

Whilst a number of approaches have been proposed for
distributed planning and replanning [6] [12], most of them
assume that the planning and replanning are carried out by
a set of agents who have complete knowledge of the environ-
ment. This assumption does not hold for dynamic and open
environment such as the Internet where unrelated organiza-
tions (i.e. agents) can collaborate to do business and form
plans. However, hardly any single organization can possess
the knowledge of every other organization in order to solve
the whole planning problem effectively.

In this paper we address this limitation of existing ap-
proaches by proposing a new method for distributed multi-
agent replanning where the agents have local knowledge of
the environment and incomplete information of the other
agents. Major contributions of this work are an expansion
based replanning strategy and a novel Distributed-graph
Planning algorithm (Dis-graph Planning) to fulfill replan-
ning operation, to practically solve multi-agent replanning
problem.

The paper is organized as follows. Section 2 describes
related work, followed by preliminaries in Section 3. Sec-
tion 4 gives a detailed description of our approach, includ-
ing an overview, a description of the expansion-based re-
planning strategy, a description of Dis-graph Planning al-

798

gorithm. Section 5 presents a scenario and our prototype.
And we present the conclusion in Section 7.

2. RELATED WORK

Replanning can be considered as a specific case of plan-
ning[19]. Distributed planning/replanning approaches [10,
15, 5] are in general influenced by and extended from ex-
isting centralized planning/replanning techniques. Many
centralized planning techniques and popular planners such
as[1][13] employ Planning graphs that is a special graph
based representation for a plan. In general, a planning graph
is constructed by a forward chaining search. Possible candi-
date action sequences of the graph are then searched back-
ward to form a final plan [1]. In [8], adaptation of CSP
algorithms has been proposed for this backward search.

Now a typical approach used for replanning is to antici-
pate possible situations in the planning phase and accom-
modate various situations occurring in execution phase. In
the work of Drabble et al [9], preassembled repair plans
are prepared in advance, and are invoked to deal with spe-
cific exceptions during execution. This class of approaches
may work well in relatively static and predictable environ-
ment. In more dynamic and uncertain environments where
it is hard to anticipate possible exceptions, monitoring-and-
replanning may work better. The basic idea is to generate a
(partially) new plan in case when one or more actions have
problems during execution [14]. For example, GPG [13] is
capable of replanning based on graph planning [2]. Replan
[3] replans by analyzing an abstraction hierarchy of actions.

Current state of the art of distributed planning and re-
planning can be found in [10, 15, 5, 6, 12, 12, 21], These ap-
proaches advocate some or all of the following 6 phases [10] [5]
of planning/replanning:

1. decomposing problems to subproblem;
2. allocating subproblems to agents;

3. defining constraints for individual agents to prevent
them from producing conflicting plans;

4. Solving planning problem at each individual agent;
5. coordinating the individual plans;

6. executing the individual plans and integrating their
results.

Under those phases, distributed planning is in fact a process
that combines planning and coordination [5], i.e. coordi-
nated individual planning. Similar to centralized planning,
individual agents are acquainted with their own goals and
then produce their plans to achieve their goals, except that
before or after their individual planning, they consider other
agents’ plans to avoid potential conflicts.

As can be seen, the above approaches are limited to prob-
lems that can be decomposed in the way they assume the ex-
istence of some problem distributor agent. This agent knows
or has frequently updated information about other agents,
including their capabilities and surrounding environments,
in order to carry out the decomposition task. Those ap-
proaches cannot scale up well for larger environments where
an agent may only have partial, obsolete, or even imprecise
about other agents and those agents’ local environments.

state action state action state
level level level level level

P1 /ﬂ

/Sl b2 p 35 » F7 >
Ry

/ 82 » P4 p 56 > kg >
|

Pz
‘L\~#S3 —»P5 —p 57 —pPI —p

\
\
84y PG g

Figure 1: Planning Graph

Domains P7:{35, null}, P& {56, null}, PS{37, 38, ull},
P3:{81, null}, P4:{31, 82 null}. ..
Constraints (rmutex):
F3=0381=>P6 # 34
Constraints (activity)
P1=385=>P3 #null, PE=36=>P4 #* mll
Po=37=>P5 #null, Po=38=>Ps = null

Figure 2: CSP translated from planning graph

Consequently, an effective distribution of a plan based on
agents’ capabilities is difficult.

In a relation to existing work on planning and replan-
ning, we explore DisCSP as an alternative for centralized
CSP in solving re-planning problems in a distributed large
scale network where decomposition of a problem is difficult
and impractical. To our knowledge, there has not been any
work on using DisCSP techniques for solving the planning
problem so far.

3. PRELIMINARIES
Distributed (Re-)Planning: Given:

e a set of actions A
e a set of states S

e a set of agents AG
For each agent Ag € AG, it has access to

e a subset of actions A’ where A’C A

e a subset of states S’ where §” C S

A distributed (re-)planning is the construction of a se-
quence of actions in A such that executing the actions by
AG can move the state of the real world from some initial
state to a final state in which certain goals can be achieved.

Graph based planning Graph based planning utilizes
planning graph [1] as a heuristic to constrain the search for
plans. This technique is popular in Al planning research due
to its good performance [1]. GRAPHPLAN (1] is the first
planning algorithm using this technique. Generally, graph
based planning consists of two interleaved phases — extend-
ing planning graph, and searching for valid plans. A plan-
ning graph is a directed leveled graph, as shown in Fig 1. It
consists of two kinds of alternating levels, state levels and

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 799

action levels. The first level consists of initial states. The
n+1 level consists of actions whose preconditions are present
in the n level. The n+2 level consists of the states appearing
in the n level and the states brought by the actions in the
n+1 level as their effects. In this way the graph is extended
by state levels and action levels alternatively. During the
construction, mutex relations are also identified. Two ac-
tions in the same level are mutex if their preconditions and
effects are inconsistent. Two states in the same level are
mutex if all the actions supporting the first state are mutex
with all the actions supporting the second state. [8]

When the graph reaches a level where all goal states are
present, the algorithm starts to search for a valid plan. A
valid plan is a subgraph where there are no mutex actions
in each level. If no valid plan is found, the planning graph is
extended again. Search for the valid plan can be carried out
by backward search as in GRAPHPLAN, or by translating
the graph to a CSP and solving it, as in [8].

CSP and DisCSP Compiling a planning graph into CSP
brings several benefits to planning [16]. It enables planning
problems to be solved with available standard CSP tools,
and can exploit the latest advancement of CSP tools and
techniques. Another benefit is the potential to integrate
planning problem with other problems that can be solved
with CSP techniques, such like scheduling, resource alloca-
tion and QoS (Quality of Service) management problems.
It can be beneficial especially in the context of complex ap-
plications, e.g. Web service composition. Distributed Con-
straint Satisfaction (DisCSP) is a variation of CSP in which
variables and constraints are distributed among multiple
agents [23]. A number of distributed search algorithms, such
as ABT (Asynchronous Backtracking), Weak-Commitment
ABT and AAS(Asynchronous Aggregate Search), can be
used to solve a DisCSP [23] [18]. Solving a DisCSP does
not require all information to be gathered to a centralized
solver. It allows cooperation among agents concerned about
their privacy.

4. APPROACH

Our approach consists of three major parts: an expansion-
based unrefinement strategy, a method to construct plan-
ning graph in a distributed manner, and a mechanism to
encode the distributed planning graph into a DisCSP to find
plans.

In general, replanning process fixes a plan with two basic
operations, unrefinement and refinement [19]. The unrefine-
ment operation removes some actions that may obstacle the
reachability to goal. The refinement operation adds actions
that improve the reachability to goal.

We use an expansion-based unrefinement strategy in our
approach. It is an extension of the unrefinement strategies
presented in the existing work [13] [22][19][20]. In those
work unrefinement is started from actions depending on ini-
tial states or producing goals, and the plan is shrunk from
the outside in. The reason for that kind of strategy is as
remarked by Kambhampati [14], that previous research on
replanning stem from the research on plan reuse: reuse the
current plan to solve a new problem that has new initial and
goal states, hence the replanning systems often assume the
failure of a plan comes from altered initial or goal states.
However, in our work the objective of replanning is to solve
execution failure, which may happen in any action of the
plan. So in our work expansion-based refinement starts from

any actions that fail.

Our Dis-graph planning algorithm is built upon existing
research on graph based planning and CSP. Previous work
shows that search in a planning graph can be formulated as
solving a constraint satisfaction problem [8]. We extend the
idea of planning graph to distributed planning graph, and
combine it with DisCSP to generate plans in distributed
manner.

4.1 Expansion-based Replanning Strategy

In this section we present our expansion-based replanning
strategy. If an action in the plan fails, the expansion-based
replanning starts by considering the failed action as a re-
planning area. The unrefinement operation removes the ac-
tion(s) in replanning area in order to allow the refinement
operation to generate an equivalent sub-plan that covers the
replanning area. The refinement operation is in fact a dis-
tributed planning process, which will be described in the
next section. If the refinement operation does not find a
equivalent subplan, the unrefinement operation expands the
replanning area around the failed action, i.e. removes more
actions adjacent to the failed one, to allow the refinement op-
eration to search for an equivalent subplan for the enlarged
area. In this way, the unrefinement operation explores larger
and larger areas to allow the refinement operation to search
for sub-plans.

Combining with the refinement (planning) operation, we
can describe the expansion based strategy as follows:

1. Given the initial planning problem Pb=(I, G) where
I is a set of initial states and G a set of goal states, a
plan Pl is a network of actions that lead from I to G.

2. If an action a in Pl fails, we define a replanning area
RA = {a}.

3. We see RA as a small plan, and construct a planning
problem Pb’=(I’, G’) where I’ is the set of states
used by RA as preconditions and G’ is the set of states
produced by RA as effects.

4. We search for a plan for Pb’. If a plan Pl’ is found, Pl’
replaces RA in Pl and goto 5; if no plan is found, we
expand R A so that it includes more actions in Pl that
are adjacent to it RA «— RAU{ala is adjacent to RA},
and goto 3.

5. Resume the execution of Pl

The major motivation of the expansion-based strategy is
to save replanning cost. We consider two types of cost in-
volved in replanning. The first is the computing effort con-
sumed by the refinement operation, i.e planning. The less
is the resource (time, space) consumed by refinement, the
better is the performance of the replanning approach. The
second is the cost incurred by the change to the current
plan. The less is the change to the current plan, the less is
the business cost caused by replanning. In the worst case re-
planning will terminate when the replanning area has been
expanded as large as the original plan. However, in most
cases, replanning is expected to succeed in a smaller area
given that sufficient actions are available from the agents.

4.2 Distributed Graph Planning

800 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

Agent 3
— (j
d A

@ Action | State

ﬁ Action database

Figure 3: Constructing Distributed Planning Graph
(with Maz branching strategy)

In this section we present our Distributed Graph Planning
(Dis-graph Planning) algorithm that serves for the refine-
ment operation in replanning. Dis-graph planning enables
agents to generate a plan collectively in a distributed man-
ner. So practically, Dis-graph planning enables fully dis-
tributed planning, hence also provides the support to fully
distributed replanning. Dis-graph planning is a distributed
extension of centralized Graph-based planning paradigm.
For distributed planning, we devise a distributed planning
graph (dis-graph) based on the idea of a planning graph.
Similar to a planning graph, a dis-graph consists of alter-
nating levels of states and actions, except that the levels is
distributed among agents. Each agent constructs and keeps
a part of dis-graph, called a fragment. In the search phase,
we translate the dis-graph into a DisCSP (instead of a CSP)
and solve it in a distributed way.

A distributed planning graph (dis-graph) under construc-
tion is shown in Fig 3, where 3 agents are involved in con-
struction. Agent 1 contributes 1 block to the graph, agent
2 contributes 2 blocks and agent 3 contributes 1 block.

Block A block is a series of consecutive state and action
levels kept by one agent.

Fragment All the blocks maintained and kept by an
agent is referred to as a fragment of the planning graph.

From the perspective of the collective behavior of the
agents, dis-graph planning is carried out as algorithm 1.

Algorithm 1 Dis-graph planning

1: planning problem is dispensed to the agents; each agent
creates a planning graph in its memory, with initial
states as the first level

: extending graph

: publicize latest state level

. if reach-all-goals then
search-for-valid-plan
if found valid plan then

return,;
end if

end if

. decide-next-state-level

1 goto 2

PO XD RN

—

In line 2, the planning graph is extended. Since each

agent has access to only a subset A ’of available actions A,
it constructs new levels with actions from the subset A°.
Each time an agent executes line 2, it constructs one action
level and one state level in its graph fragment. Then agents
publicize their latest state levels. This information is used
to check goals (line 4) and decide on the next level (line
10). reach-all-goals checks whether all the goal states are
present. If all the goal states appear, search-for-valid-plan
(line 5) is launched, which includes compiling the planning
graph to DisCSP, and solving DisCSP. If a plan is found,
the algorithm terminates with success. If no plan is found,
the agents decide-next-state-level to prepare a state level as
foundation for further extending, and go to line 2.

Reach-all-goals: After the fragments are extended with
a new state level, goal states may appear in some of the
fragments. Since the latest state levels have been publicized,
the agents can check goal states independently, and proceed
to the next operation (search for plans or decide next level)
without further coordination.

Main features of dis-graph planning are briefly described
as follows:

1) Agents are of same authority. There is no centralized
coordinator.

2) Planning graph is distributed. Each agent keeps a frag-
ment and none of them has the complete vision. This feature
suits scenarios where agents are concerned about privacy.

3) The states in the graph are public information, and the
actions are kept by agents as private information.

4) The search for plans is distributed. Each agent com-
piles its fragment to a set of CSP variables and constraints,
and participates in distributed search to look for a solution
acceptable for all the agents.

Fragments of a dis-graph are extended by the agents syn-
chronously. From the perspective of an individual agent, it
constructs its graph fragment as described in Algorithm 2

Algorithm 2 Construction of graph fragment

1: construct the first level with the initial states

2: construct the action level with actions supported by pre-
vious state level

3: construct the state level with the states produced by the
previous action level

4: publicize the latest state level to other agents via mes-
sage, and wait for the other agents’ messages

5: after receive messages from all agents, checks whether
reach-all-goals

6: if If all the goals are reached in this level then

7: search-for-valid-plan

8: else

9 decide-next-state-level

0 goto 2

1: end if

In the operation decide-next-state-level within Algorithm 2,
an agent decides whether to extend its fragment from its lat-
est state level, or to adopt other agents’ latest state level as
foundation for further extending. We introduce two strate-
gies for decide-next-state-level.

Max branching strategy This strategy chooses the agent
that has the largest number of states in the latest state level
as the winner. All the other agents adopt the winner’s latest
state level as the foundation for extending their fragments,

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 801

as in Fig 3.

Merge all This strategy merges all the agents’ latest state
level to form a larger one. All agents adopt it as the foun-
dation for further extending.

The Maz branching strategy has less communication over-
head than Merge all, but Merge all strategy has chances to
reach a plan earlier. Maz branching strategy does not dis-
card any possibility of finding a plan, i.e. if there is a plan
that can be reached by Merge all strategy, it can also be
reached by Maz branching strategy (although it is probably
not the first plan being reached), and vice versa. The reason
resides in the fact that the states present in one state level
of the planning graph will be carried to the following state
level, so every certain state level accumulates all the states
that appeared in previous state levels. Suppose an action
a belonging to an agent agt, with the precondition ¢! and
the effect c¢2. If in a certain state level c! is present, when
constructing the next levels agt will select a in its action
level and put ¢2 in its next state level. Therefore:

e In the case of Merge all strategy, action a and state
c2 are included in planning graph as well as c1.

e In the case of Max branching strategy, if agt is the
winner, action a and state ¢2 are included in planning
graph as well as c1. If agt is not the winner, agt’s
next action level, which includes a, and its next state
level, which includes c2, are discarded. However, state
c1 will still appear in the following state levels of the
planning graph, so a and ¢2 can be rediscovered later.

4.3 DisCSP to find plans

If all the goal states are present, the search for plans is
launched. From the viewpoint of a collective behavior of
the agents, search is carried out by compiling dis-graph to
DisCSP and solving it. Fromm each agent’s perspective, it
compiles its dis-graph fragment to a set of CSP variables
and constraints, and participates in distributed search for a
DisCSP solution.

Compiling planning graph to CSP

All agents compile their planning graph fragments to CSP
independently. We illustrate the compilation with the exam-
ple in Fig 4, which shows a part of a dis-graph constructed
with Maz branching strategy. Two of agentl’s blocks and
one of agent2’s blocks are shown in the figure. In principle,
each agent performs the following tasks: 1) Provide each
state in its fragment with a unique CSP variable number,
and each action with a unique CSP value number. The
mapping from states/actions to numbers is maintained by
the agent locally. 2) Generate variables, including private
variables and shared variables as described below. 3) Gen-
erate constraints, including private constraints and shared
constraints as described below.

Shared and private variables: States on the borders
of the blocks, e.g. P4, concern two agents, and the corre-
sponding variables are shared variables. States inside the
blocks, e.g. P6, concern one agent, and the corresponding
variables are private variables.

A shared variable’s domain in one agent is different from
the domain in another agent. For example, agent2 can assign
S9, S10 or null to P12, and agentl can assign null or some
action belonging to agent?2, without knowing the name to it.
In order to indicate the some action without knowing the
name, we introduce a dummy action TRUEOP. Hence P12

has domain {null, S9, S10} in agent2, and domain {null,
TRUEOP} in agentl.

Shared and private constraints: The constraints be-
tween the states within a block concern one agent, and they
are the agent’s private constraints. If we view each block as
a small planning graph, private constraints are generated in
the same way as in classical graph planning.

Besides those, we need constraints on shared variables.
For example, agentl and agent2’s assignments to P12 must
comply with the rule:

”agentl assign TRUEOP to P12 = agent2 assign an ac-
tion (S9 or S10) to P12; agentl assign null to P12 = agent?2
can assign any value (null, S9 or S10) to P12.”

These rules are shared constraints.

It is notable that the shared constraints are directional.
From left to right in Fig 4, the succeeding block depends
on the preceding block, so the shared constraints are put
by the succeeding block to the preceding one. For example,
the constraint upon P12 is the requirement from agentl to
agent2, and the constraint upon P4 is from agent2 to agent1.

In the example, agentl generates the following variables
and constraints:

Variables(private): none

Variables(shared): P1: {TRUEOP,null},

Constraints(private):

(activity) P5 = S2 = P2 # null A P3 # null,

P4=51= Pl#null, ...

(Mutex) P13 = S11 = P16 # S14

Agent2 compiles its block in Fig 4 in the same way.

Furthermore, both of the agents generate shared constraints
as follows:

P4(agent2) = TRUEOP = P4(agentl) # null,

P5(agent2) = TRUEOP = P5(agentl) # null,. ..

Now each agent has 1) a set of private variables, 2) a set of
shared variables, and 3) a set of shared constraints involving
shared variables.

With these variables and constraints, agents participate in
distributed search for assignments of values to the variables
that satisfy both private and shared constraints.

Solving CSP

From an agent’s viewpoint, it has two overlapped goals:
1) an assignment to shared and private variables satisfying
private constraints, and 2) an assignment to shared variables
satisfying shared constraints.

For the first goal, the agent carries out local CSP search
with existing CSP algorithms/implementations, e.g. JSolver [4].
For the second goal, the agent participate in a distributed
search, e.g. ABT (Asynchronous Backtracking) [23]. Local
search and distributed search interact by exchanging assign-
ments to shared variables.

Regarding distributed search, we describe how ABT can
be extended to solve our DisCSP. A detailed description of
ABT can be found in [23]. To apply ABT, we made two
extensions:

1) ABT assumes one agent has exactly one variable, but
in our case one agent has a number of (shared) variables.
We relax the assumption to allow one agent to have more
than one variable.

2) In ABT there is only one constraint between two agents,
and the constraint is directed from higher priority agent to
lower priority agent. In our problem there are multiple con-
straints between two agents, say A and B, and some of the
constraints are from A to B while the others are from B to A.

802 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

|
| |
| |
|
| Pl /311—“ Fl13 I
| \\Sl—*]-’-’t.l\ PN |
|
! 1 /s12— p1a ||
i F2 i e1’1< |
| \ ! |
i 52—>Ps5, | A ST s |
]
l P3 VA ffp12— SH—* P16 | |
! — { |
L L O S ?r_rf_ri ———————————————— 4
__________________ 1_T_____________________TTT_________________‘
1\ ll rr JJ
LR} - - “(i
| L ’/;b PG—»S7 —*P10 r;r
P—L 1
?\

\
P5*T85—'P8—'s9ﬁ 12/
A
Sﬁ_’pg—rsw/

|
|
|
I
|
S4—p7—> S8 —>P11/) !
|
|
I
|
|
|
|
|
|

Figure 4: Compile Distributed Planning Graph

To meet this assumption we bundle shared constraints be-
tween two agents as a ”compounded constraint”. However,
in ABT, a constraint is directed from higher priority agent
to lower priority agent, but in our case there are constraints
in both directions between two agents. For example, the
constraint on P12 is the requirement from agentl to agent2,
and the constraint on P4 is the requirement from agent2 to
agentl. To bundle these constraints into one ”compounded
constraint”, we remove the directions of requirements by
specifying an order as

null < TRUEOP < actions
and transforming the constraints to < and > relationships.
For example, the constraints on P12 is transformed to

P12 in agentl < P12 in agent2
Similarly, the constraint on P4 is transformed to

P4 in agentl > P4 in agent2 To set up the order, we
simply reserve the CSP value number 0 for null and 1 for
TRUEOP as public numbers, and allow agents assign 2 and
above to their actions. Then we bundle the constraints and
direct them arbitrarily.

Agents cooperate to look for assignments to shared vari-
ables following ABT algorithm, except for a difference from
regular ABT that when an agent checks shared variables
after receiving an ok?, or instantiates shared variables, it in-
vokes local search to evaluate their consistency with private
variables and constraints.

5. SCENARIO AND PROTOTYPE

We present a scenario in this section to illustrate how
expansion-based replanning works.The task requested by
the customer is to transport goods from the factory A in
city A to factory B in city B. Three companies accept the
request. One company performs local transportation inside
city A, one company performs local transportation inside
city B, and the last company performs inter-city transporta-
tion between city A and B. The map (Fig 5) shows the pos-
sible ways from factory A to factory B. The dash lines mark
three areas that the three companies are responsible for re-

spectively.

In our approach, planning from draft is treated as a spe-
cial case of replanning which involves refinement but not
unrefinement. Given initial state "atFactoryA” and goal
state ”atFactoryB”, the three companies (agents) generate
the initial plan as follows:

tl - t2 - t3 - t4d — tb — 6

t1l: Factory A to Warehouse A2

t2: Warehouse A2 to Airport A

t3: Airport A to Airport B

t4: Airport B to Warehouse B2

t5: Warehouse B2 to Warehouse Bl
t6: Warehouse B1 to Factory B.

During the execution, t3 (from Airport A to Airport B)
fails. Figure 6 shows the replanning process, in which t3,t2,t4
and t5 are removed sequentially until a subplan (t11, t12,
t13 and t14) is found to fix the plan.

We implemented the algorithm for illustration and exper-
iment within a prototype. Figure7 shows its screenshot with
a sample plan generated by the system. The actions and task
requests are described in a simplified subset of PDDL (Plan-
ning Domain Definition Language), and the agents are run-
ning on a multi-agent simulation system developed by our
group IAMAS of Swinburne (http://ciamas.it.swin.edu.au/
software /simulator-doc). The plan generated in the scenario
described above is a sequence of actions, however, by the
nature of graph based planning, the plans generated by our
approach are partially ordered in general. In scenarios in-
volving more actions the plans can accommodate concurrent
actions.

Our observation in experiment explains that the expan-
sion based strategy saves the cost of refinement and changes
to the current plan. We observed that the number of added
actions and the number of removed actions are in an ap-
proximate direct ratio:the number of added actions is no

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 803

Company 1 |

Wirehouss Al

Factory A

I
1
i Company 3
1

Wardhouse E1

tl t2 3 t4 t5 t6
Factory A Warchouse Airport A Airport B Warchouse Warchouse Factory B
A2 B2 Bl
L J
| |
L J
t11 t12 t13 t14

Warehouse
Al

Port A

Port B

Figure 6: Replanning after t3 fails

less than, and will not be too much larger than the number
of removed actions. Since the number of removed actions is
decided by the size of replanning area, if the replanning suc-
ceeds in a smaller replanning area, the size of the planning
problem solved by refinement operation (hence the compu-
tation resource consumed by refinement) is smaller, and the
change to the current plan (i.e. the number of removed ac-
tions and added actions) is less. Due to space limits the
detailed results of the experiments will be presented in a
separate paper.

6. CONCLUSIONS

In this paper we have presented an approach to distributed
multi-agent replanning where the agents have separate sets
of actions and are willing to contribute their actions to fulfill
a task cooperatively. Our approach has following features:

1. It is a decentralized replanning algorithm. It solves
replanning problems without collecting the knowledge
necessary for planning (i.e. actions) from individual
agents. Agents are of equal authority during replan-
ning, without centralized coordinator.

2. It limits the knowledge shared during replanning and
allows agents to keep their privacy as much as possible.

804

Specifically, individual agents do not need to reveal
their actions to other agents.

3. It removes the reliance on problem decomposition. Ex-
isting multi-agent planning/replanning algorithms rely
on the assumption that the given problem can be de-
composed properly into sub-problems that can be solved
by individual agents. This assumption is often too
strong for real life problems.

4. It saves replanning efforts and limits changes to the
executing plan with an expansion based strategy.

5. Since the algorithm is based on planning graph, the
result plan is a partially ordered plan, i.e. it allows
some actions executed concurrently.

Our approach combines techniques from Distributed Con-
straint Satisfaction and Graph planning fields. It shows
the Planning Graph + CSP paradigm may succeed in dis-
tributed environment as it did in centralized centralized
planning environment.

In future work we intend to explore the following issues.
We will investigate different expansion strategies and study
their performances in relation to the factors such as number
of actions and number of participating agents. We will look

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

an |

hop Eniectasl Senden ol A3 AVAT /N ATPel ACY /ooy C2Por BB /1
() O ¥ L fted c2 —— -
e ~(#) (&) q

Liaad Densaln |
Load Protilem |

Aded Services |

-1
|

St Warking
Quit
priftiad States:

G0 States: §
. »
neaitabiln Saedcn Stoppod Sondce

Berate [Procondi | Ffiects |Eecuti i| gemico Nam Precandsons Efisets

Slo Fustor

Figure 7: A screenshot of the implemented proto-
type

into the situations where there are multiple simultaneous
failures. Extensive experiments will be carried out to study
the scalability and performance of the approach.

7. REFERENCES

(1] A. Blum and M. Furst. Fast planning through
planning graph analysis. In Proceedings of the 14th
International Joint Conference on Artificial
Intelligence (IJCAI 95), pages 1636-1642, 1995.

[2] A. L. Blum and M. L. Furst. Fast planning through
planning graph analysis. Artif. Intell.,
90(1-2):281-300, 1997.

(3] G. Boella and R. Damiano. A replanning algorithm
for a reactive agent architecture.
j-LECT-NOTES-COMP-SCI, 2443:183-192, 2002.

[4] H. Chun. Constraint programming in java with
jsolver. In Proceedings of the First International
Conference and Ezhibition on the Practical
Application of Constraint Technologies and Logic
Programming. London., 1999.

(5] M. de Weerdt, A. ter Mors, and C. Witteveen.
Multi-agent planning: An introduction to planning
and coordination. In Handouts of the European Agent
Summer School, pages 1-32, 2005.

(6] K. S. Decker and V. R. Lesser. Generalizing the
partial global planning algorithm. International
Journal of Intelligent and Cooperative Information
Systems, 1(2):319-346, 1992.

[7] M. Desjardins, E. Durfee, C. Ortiz, and M. Wolverton.
A survey of research in distributed, continual
planning. Al Magazine, 4, 1999.

[8] M. B. Do and S. Kambhampati. Solving
planning-graph by compiling it into CSP. In Artificial
Intelligence Planning Systems, pages 82-91, 2000.

[9] B. Drabble, J. Dalton, and A. Tate. Repairing plans

on the fly. In Proc. of the NASA Workshop on

Planning and Scheduling for Space, 1997.

E. H. Durfee. Distributed problem solving and

planning. In Multiagent systems: a modern approach

to distributed artificial intelligence, pages 121-164.

MIT Press, Cambridge, MA, USA, 1999.

E. H. Durfee and V. R. Lesser. Partial global

planning: A coordination framework for distributed

hypothesis formation. IEEE Transactions on Systems,

[10]

[11]

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

Man, and Cybernetics, 21(5):1167-1183, - 1991.

E. Ephrati and J. S. Rosenschein. Multi-agent
planning as the process of merging distributed
sub-plans. In Proceedings of the 12th International
Workshop on Distributed Artificial Intelligence, pages
115-129, 1993.

A. Gerevini and I. Serina. Fast plan adaptation
through planning graphs: Local and systematic search
techniques. In Proceedings of the 5th International
Conference on Artificial Intelligence Planning Systems
(AIPS-00), 2000.

W. C. a. S. Kambhampati. Replanning: A new
perspective. In Poster Program, ICAPS 2005,
Monterey, California, U.S.A., 2005.

A. D. Mali and S. Kambhampati. Distributed
planning. In The Encyclopedia of Distributed
Computing, Kluwer Academic Publishers, 2003.

D. Nau, M. Ghallab, and P. Traverso. Automated
Planning: Theory & Practice. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

F. Pecora and A. Cesta. Planning and Scheduling
Ingredients for a Multi-Agent System. In Proceedings
of UK PLANSIG02 Workshop, Delft, The
Netherlands, 2002.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with aggregations. In
AAAI/IAAIL pages 917-922, 2000.

R. van der Krogt and M. de Weerdt. The two faces of
plan repair. In Proceedings of the Sizteenth
Belgium-Netherlands Conference on Artificial
Intelligence (BNAIC-04), pages 147-154, 2004.

R. van der Krogt and M. de Weerdt. Plan repair as an
extension of planning. In Proceedings of the
International Conference on Planning and Scheduling
(ICAPS-05), pages 161-170, 2005.

R. van der Krogt and M. de Weerdt. Self-interested
planning agents using plan repair. In Proceedings of
the ICAPS 2005 Workshop on Multiagent Planning
and Scheduling, pages 36-44, 2005.

R. P. van der Krogt and M. M. de Weerdt. The two
faces of plan repair. In Proceedings of the BNAIC
(BNAIC-04), pages 147-154, 2004.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
Formalization and algorithms. Knowledge and Data
Engineering, 10(5):673-685, 1998.

805

