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A Multiagent Approach to Q-Learning
for Daily Stock Trading

Jae Won Lee, Jonghun Park, Member, IEEE, Jangmin O, Jongwoo Lee, and Euyseok Hong

Abstract—The portfolio management for trading in the stock
market poses a challenging stochastic control problem of signif-
icant commercial interests to finance industry. To date, many
researchers have proposed various methods to build an intelligent
portfolio management system that can recommend financial deci-
sions for daily stock trading. Many promising results have been
reported from the supervised learning community on the possibil-
ity of building a profitable trading system. More recently, several
studies have shown that even the problem of integrating stock
price prediction results with trading strategies can be successfully
addressed by applying reinforcement learning algorithms. Moti-
vated by this, we present a new stock trading framework that
attempts to further enhance the performance of reinforcement
learning-based systems. The proposed approach incorporates mul-
tiple � -learning agents, allowing them to effectively divide and
conquer the stock trading problem by defining necessary roles for
cooperatively carrying out stock pricing and selection decisions.
Furthermore, in an attempt to address the complexity issue when
considering a large amount of data to obtain long-term depen-
dence among the stock prices, we present a representation scheme
that can succinctly summarize the history of price changes. Exper-
imental results on a Korean stock market show that the proposed
trading framework outperforms those trained by other alternative
approaches both in terms of profit and risk management.

Index Terms—Financial prediction, intelligent multiagent sys-
tems, portfolio management, � -learning, stock trading.

I. INTRODUCTION

BUILDING an intelligent system that can produce timely
stock trading suggestions has always been a subject of

great interest for many investors and financial analysts. Nev-
ertheless, the problem of finding out the best time to buy or
sell has remained extremely hard since there are too many
factors that may influence stock prices [1]. The famous “ef-
ficient market hypothesis” (EMH), which was tested in the
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economics over a 40-year period without definitive findings,
states that no investment system can consistently yield average
returns exceeding the average returns of a market as a whole.
Throughout many years, finance theoreticians argue for EMH
as a basis of denouncing the techniques that attempt to find
useful information about the future behavior of stock prices by
using historical data [2].

However, the assumptions underlying this hypothesis turns
out to be unrealistic in many cases [3], and in particular,
most approaches taken to testing the hypothesis were based
on linear time series modeling [4]. Accordingly, as claimed
in [4], given enough data and time, an appropriate nonpara-
metric machine learning method may be able to discover
more complex nonlinear relationships through learning from
examples. Furthermore, if we step back from being able to
“consistently” beat the market, we may find many interesting
empirical results indicating that the market might be somehow
predictable [5].

Indeed, the last decade has witnessed the abundance of such
approaches to financial analysis both from academia and indus-
try. Application of various machine learning techniques to stock
trading and portfolio management has experienced significant
growth, and many trading systems have been proposed in the
literature based on different computational methodologies and
investment strategies [6]–[10]. In particular, there has been a
huge amount of interest in the application of neural networks
to predict the stock market behavior based on current and
historical data, and this popularity continues mainly due to the
fact that the neural networks do not require an exact parametric
system model and that they are relatively insensitive to unusual
data patterns [3], [11].

More recently, numerous studies have shown that even the
problem of integrating stock price prediction results with dy-
namic trading strategies to develop an automatic trading system
can be successfully addressed by applying reinforcement learn-
ing algorithms. Reinforcement learning provides an approach
to solving the problem of how an autonomous agent that
senses and acts in its environment can learn to choose optimal
actions to achieve its goals [12]. Compared with the supervised
learning techniques such as neural networks, which require
input and output pairs, a reinforcement learning agent learns
behavior through trial-and-error interactions with a dynamic
environment, while attempting to compute an optimal policy
under which the agent can achieve maximal average rewards
from the environment.

Hence, considering the problem characteristics of design-
ing a stock trading system that interacts with a highly dy-
namic stock market in an objective of maximizing profit, it is
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a local maximum, it is called a downward TP. The sequence
of TPs shows the history of resistance to and support for
stock price changes, and it has implications on the future price
movements. For instance, the existence of a downward TP at the
price of 100 for a stock in the past may be an indication that the
future stock price is not likely to rise beyond 100. An example
of plots representing the five-day MAs is shown in Fig. 3, where
TPs are depicted as arrowheads.

A TP matrix M = [A/B] is a partitioned matrix in which
submatrices A and B are binary valued square matrices of
size n. An element of M represents an existence of TP with
specified properties that are defined for columns and rows.
The columns of M represent time windows, and they are
defined by the use of Fibonacci numbers F0, F1, . . . , Fn, where
F0 = 0, F1 = 2, and F2 = 3, in such a way that the jth column
corresponds to the time period (

∑j−1
k=0 Fk + 1,

∑j
k=0 Fk) in

the past. Given a time window (x, y) in the past, x represents
the xth day when the days are counted backward starting from
day D, which is a reference day on which the signal agent
makes a decision. That is, the first column indicates the
time window containing the yesterday and the day before
yesterday.

On the other hand, the rows of M represent the ranges of
price change ratio of a stock on day D with respect to the
price at TP, which is defined as CTP,D = (PC

TP − PC
D )/PC

D ,
where PC

TP and PC
D , respectively, indicate the closing prices

of a stock on days TP and D. Similar to the case of time
window definition, the whole range of the possible price change
ratio is subdivided into the distinct intervals according to
Fibonacci numbers. In particular, submatrix A represents the
case in which price has not fallen on day D compared to
that of TP, i.e., CTP,D ≤ 0, whereas submatrix B represents
the opposite case. Therefore, it follows that the first row
of A corresponds to the price increase within the range of
0% to 2%.

Each element aij ∈ A, i = 1, . . . , n and j = 1, . . . , n, is
formally defined as shown at the bottom of the page.

Fig. 4. Example of TP matrices.

The elements bij ∈ B, i = 1, . . . , n and j = 1, . . . , n, are
similarly defined as in the case of submatrix A except that the
condition on CTP,D is replaced with CTP,D > 0 for B.

The rationale behind the employment of Fibonacci numbers
to subdivide the time windows as defined previously is to pay
more interest in recent history. TPs in the recent past are consid-
ered by use of several time windows of small size, whereas TPs
in the distant past are aggregated by use of a few windows of
large size. Similarly, TPs with small price differences from PC

D

receives more attention than those with big price differences
since they resemble more closely the situation of day D. Fig. 4
shows an example of the upward and downward TP matrices
for the region circled in Fig. 3.

In Fig. 4, the past 230 days are considered, and accordingly,
n is set to 9 to make the last time window include the 230th day
in the past counted backward from D. From the definition of
the TP matrix, it follows that the Fibonacci number associated
with each column represents the size of a time window in terms
of days, and it also follows that the starting day for the time

(Case 1) 1 ≤ i < n

aij =






1, if there exists a TP such that CTP,D ≤ 0 and
i−1∑

k=0

Fk ≤ |CTP,D| × 100 <
i∑

k=0

Fk

during the period

(
j−1∑

k=0

Fk + 1,
j∑

k=0

Fk

)

0, otherwise

(Case 2) i = n

aij =






1, if there exists a TP such that CTP,D ≤ 0 and
i−1∑

k=0

Fk ≤ |CTP,D| × 100 <∞

during the period

(
j−1∑

k=0

Fk + 1,
j∑

k=0

Fk

)

0, otherwise
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TABLE I
SAMPLE ENCODING SCHEME FOR PROFIT RATIO

window is equal to the sum of all preceding Fibonacci numbers
plus one. For instance, the third column of the matrix in Fig. 4
corresponds to the time window of five days that starts six
days ago and ends ten days ago. Finally, an element marked
as “N” in Fig. 4 indicates that it is not allowed to make such
a price change within the corresponding time period due to the
regulation of a stock market considered.

In addition to the TP matrix, the sell signal agent has a few
more bits as its state to represent profit rate obtained by holding
a stock during an episode. The profit rate on day D, i.e., PRD,
is defined as follows:

PRD =
PC

D −BP

BP
× 100.

Finally, in order to encode the value of PRD as bits of fixed
length, we divide the whole range of possible profit ratio into
the intervals and map a bit to each interval to indicate whether
or not a profit ratio belongs to the specific interval. Table I
shows a sample case in which 8 bits are used for representing
the profit ratio. Under the encoding scheme presented in Table I,
a profit ratio of +15%, for example, will be represented as
00000100.

C. State Representations for Order Agents

The objectives of buy order and sell order agents are, re-
spectively, to figure out optimal bid and ask prices of orders
for a specific trading day. In contrast to the signal agents that
utilize the long-term price history information to predict future
stock price movements, the order agents need to learn the
characteristics of intraday stock price changes. For this purpose,
the proposed framework bases its state representation for the
order agents on the Granville’s law [18] and Japanese can-
dlesticks, which are popular methods for short-term technical
analysis.

Granville’s law is a widely used method that considers the
correlations among the long-term and short-term MAs of clos-
ing prices in order to predict the short-term price movements.
According to Granville’s law, the short-term temporary behav-
ior of stock price changes eventually resembles the long-term
behavior, and therefore, a temporary deviation from the long-
term behavior can be identified as an indicator that the behavior
in the upcoming short period will soon follow the long-term
behavior.

We apply this principle to the problem of estimating the trend
of intraday stock price movements by introducing necessary
indicators to the state representations of order agents as follows.

Fig. 5. Japanese candlestick representation.

An MA is an indicator that shows the average value of stock
prices over a certain period of time. An arithmetic N -day MA
on a trading day D, i.e., MAN

D , is defined as

MAN
D =

D∑

i=D−N+1

PC
i

N

where D ≥ N and PC
i is the closing price of a considered

stock on the ith trading day such that i = D −N + 1, . . . , D.
We define two indicators that can capture the characteristics of
short-term price changes and incorporate them into the state
representation for the order agents. First, a gradient of the
N -day MA on day D, i.e., gN

D , is defined as

gN
D =

MAN
D −MAN

D−1

MAN
D−1

.

Second, the normalized distance between PD and MAN
D , i.e.,

dN
D , is defined as follows:

dN
D =

PC
D −MAN

D

MAN
D

.

Following the Granville’s law, gN
D and dN

D can be used to
derive some sufficient conditions to make predictions on the
price movements on day D + 1. When gN

D > 0 (i.e., a bull
market), the stock price is likely to rise on day D, and the value
of dN

D will normally be positive. However, if dN
D happens to

have a negative value for a bull market, it is quite likely that
it is an indication of price rise on day D + 1. Furthermore, if
the value of dN

D is too high, the stock price is expected to fall
on D + 1. Similar arguments can be made for the case when
gN

D < 0 (i.e., a bear market).
Fig. 5 shows a standard representation of Japanese candle-

sticks. In this representation, a black bar indicates that the
closing price of a stock is lower than the opening price on a
trading day, whereas a white bar indicates the opposite case.
Top line and bottom line of the candlestick, respectively, denote
the highest price and the lowest price on a trading day.

The shape of a candlestick conveys important information
for determining BP or SP. Accordingly, in MQ-Trader, the data
contained in the Japanese candlestick are represented as a state
for the order agents in terms of the following four indicators:
1) the body bD; 2) upper shadow uD; 3) lower shadow lD;
and 4) ratio of closing price difference qD that are formally
defined as follows. Let PO

D , PH
D , and PL

D , respectively, denote
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the opening, highest, and lowest price of a stock on a trading
day D. Detailed definitions are given as follows:

bD =
PC

D − PO
D

PO
D

uD =
PH

D −max
(
PO

D , PC
D

)

max
(
PO

D , PC
D

)

lD =
min

(
PO

D , PC
D

)
− PL

D

min
(
PO

D , PC
D

)

qD =
PC

D − PC
D−1

PC
D−1

.

III. LEARNING ALGORITHMS FOR MQ-TRADER AGENTS

Q-learning is an incremental reinforcement learning method
that does not require a model structure for its application. The
objective of the Q-learning agent is to learn an optimal policy,
i.e., a mapping from a state to an action that maximizes the
expected discounted future reward, which is represented as a
value function Q. One-step Q-learning is a simple algorithm in
which the key formula to update the Q value to learn an optimal
policy is defined as follows [12]:

Q(st, αt)← Q(st, αt)

+ λ
[
r(st, αt) + γmax

α
Q(st+1, α)−Q(st, αt)

]

where Q(st, αt) is a value function defined for a state–action
pair (st, αt) at moment t, λ and γ are the learning rate and
discount factor, respectively, and r(st, αt) is a reward received
as a result of taking action αt in state st.

When the state space to be explored by an agent is large, it is
necessary to approximate the Q value. One of the most com-
monly used approaches to the approximation is a gradient-
descent method in which the approximated Q value at t, i.e.,
Q̂t, is computed by use of a parameterized vector with a
fixed number of real valued components, which is denoted as−→
θt . Specifically, the function approximation in the proposed
framework is carried out by use of a neural network in which
link weights correspond to

−→
θt . In this framework,

−→
θt is updated

by the following expression, where the gradient∇−→
θt
Q̂t(st, αt)

can be computed by use of the backpropagation algorithm [19]:

−→
θt+1 ←

−→
θt + λ∇−→

θt
Q̂t(st, αt)

×
[
r(st, αt) + γmax

α
Q̂t(st+1, α)− Q̂t(st, αt)

]
. (1)

Having discussed the employed Q-learning algorithm, we
now proceed to formally define the learning algorithms for
the agents of MQ-Trader. The algorithms are presented in
Figs. 6–9. In the algorithm descriptions, sδ denotes the state
on day δ and αsδ

denotes an action taken at state sδ . Further-
more, BPδ and SPδ, respectively, represent the BP and the SP
determined on δ. For the notational brevity, we omit the index
indicating the agent type throughout the algorithm descriptions

Fig. 6. Algorithm for the buy signal agent.

Fig. 7. Algorithm for the buy order agent.

although each agent has its own definitions of state, action,
reward, and Q function.

Fig. 6 shows the Q-learning algorithm for the buy signal
agent. The buy signal agent first examines the state of a stock
on a randomly selected day δ, which includes the TP matrix de-
scribed in the previous section. It then takes an action according
to a well-known ε-greedy policy function Γ(·) that is defined as
follows [19]:

Γ(sδ) =

{
arg max
α∈Ω(sδ)

Q̂(sδ, α), with probability 1− ε

random α ∈ Ω(sδ), with probability ε

where ε is an exploration factor, and Ω(sδ) represents the set of
actions that can be taken at state sδ .

If the agent decides to buy the stock, it immediately invokes
the buy order agent and waits until the sell order agent invokes
it. The reward is given later in terms of the resulting profit
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Fig. 8. Algorithm for the sell signal agent.

Fig. 9. Algorithm for the sell order agent.

rate by considering the following: 1) transaction cost (TC),
which is defined in terms of a fixed rate charged for a stock
price whenever a stock is purchased, and 2) the price slippage
caused by the difference between the estimated and actual stock
prices. Otherwise, the agent receives a zero reward to nullify
the episode. For the update of

−→
θ , the term γmaxα Q̂t(st+1, α)

in (1) is set to 0, since no further Q value update for the
current episode is necessary for the buy signal agent. Finally,
an early stopping method [20] is adopted for the buy signal

agent to terminate training when a validation error rate starts to
grow up.

As described in Section II, the buy order agent has a state
representation for the N -day MA, gradient, and normalized
distance, as well as for several indicators for Japanese candle-
sticks. The action space for the buy order agent, i.e., Ω(sδ),
is defined as a finite set of allowed BP ratio with respect to
MAN

δ , {β1, β2, . . . , βK} such that β1 < β2 < · · · < βK and
β1 > 0. We refer to βK as βN

MAX in what follows to repre-
sent the fact that it is dependent on N , which is the length
of time window for the MA, and that it limits the maxi-
mum allowed BP. Given a BP ratio β ∈ Ω(sδ), the actual
BP is determined by BPδ = MAN

δ × β on day δ for a trade
on δ + 1.

The learning algorithm for the buy order agent is presented in
Fig. 7 in which β is used in place of αsδ

whenever appropriate
for clarity. It starts on day δ that is provided by the buy signal
agent. If it turns out that a purchase cannot be made on day
δ + 1 with any BP ratio allowed in MQ-Trader, an episode ends
after giving the minimum reward, which is 0. In case that a
purchase is possible, the agent attempts to obtain a feasible
BP for day δ + 1 by repetitively trying different BP ratios by
invoking the ε-greedy policy function. Since no state transition
is made by the agent, the term γmaxα Q̂t(st+1, α) in (1) is set
to 0. The reward function for the buy order agent is defined in
such a way that the computed reward is bounded by 0 and 1,
and the reward becomes maximum when the BP determined is
the same as the lowest possible BP of day δ + 1.

The sell signal agent is informed about δ + 1, which is the
day when the stock is actually purchased, by the buy order
agent. It then decides whether or not to sell the stock on
δ + 1 according to the ε-greedy function. Subsequently, if the
decision is to sell the stock, the agent is provided with a zero
reward as it will exit the market for the current episode. On
the other hand, when the agent decides to hold the stock, the
successive days are examined for selling the stock one by one
by updating the Q value. The reward defined for this update is
the ratio of closing price difference, i.e., qδ+k, which is defined
in Section II, to inform whether the closing price has increased
or not on the next day. We remark that unlike the buy order
agent whose reward is bounded between 0 and 1, the reward for
the sell signal agent may have a negative value. Furthermore,
when the agent decides to sell, the term γmaxα Q̂t(st+1, α)
in (1) is set to 0, since no further state update is necessary for
the episode. The algorithm for the sell signal agent is presented
in Fig. 8.

Finally, δSELL, which is the day when the sell signal agent
decided to sell the stock, is provided to the sell order agent
that is responsible for determining an offer price. Similar to
the case of the buy order agent, we define the action space
for the sell order agent, i.e., Ω(sδSELL), to be a finite set of
allowed SP ratio with respect to MAN

δSELL
, {σ1, σ2, . . . , σK}

such that σ1 < σ2 < · · · < σK and σ1 > 0. We denote σ1 as
σN

MIN, since it determines the minimum allowed SP. Given an
SP ratio σ ∈ Ω(sδ), the actual SP is computed in the same way
as the case of the buy order agent.

As shown in Fig. 9, the agent first checks if it can sell the
stock on day δSELL + 1 at the minimum allowed SP. If selling
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of the stock even with the lowest possible price is not possible,
the SP is set to PC

δSELL+1, which is the closing price on day
δSELL + 1. The lowest reward, i.e., 0, is given in this case.
Otherwise, the agent tries different prices until a feasible SP
is obtained as in the case of the buy order agent. The reward
function that considers the TC and price slippage for this case
is defined similarly to that of the buy order agent and achieves
the maximum value when the SP determined is equal to the
highest possible price.

IV. EMPIRICAL STUDY

In this section, we first present the detail configuration of
the MQ-Trader that is defined for empirical study and then
discuss the predictability analysis results for the feedforward
neural network employed for value function approximation.
Finally, we present the results of an empirical study concerning
the application of our multiagent approach to KOSPI 200,
which is composed of 200 major stocks listed on the Korea
stock exchange market, by comparing it with other alternative
frameworks.

A. MQ-Trader Configuration

In addition to the major state definitions that were de-
scribed in Section II, some additional state components are
introduced for empirical study to further optimize the perfor-
mance of MQ-Trader. Specifically, the signal agent is provided
with ten additional binary technical indicators that include
the relative strength index, MA convergence and divergence,
price channel breakout, stochastics, on-balance volume, MA
crossover, momentum oscillator, and commodity channel in-
dex. Detailed description of these indicators can be found
in [21].

Furthermore, we consider the past 230 days for constructing
the TP matrix and configure the sell signal agent to have the
profit ratio representation scheme as shown in Table I where
8 bits are dedicated for the representation. Consequently, since
the total number of bits required to represent the TP matrix is
324, it follows that the state of the buy signal agent consists
of 334 bits and that the state of the sell signal agent consists
of 342 bits.

As for the order agents, Table II shows the detailed state
variables along with the number of bits configured for them
for a trading day D. The value range of each state variable is
divided into mutually exclusive intervals, and each interval is
assigned with 1 bit to represent the fact that the current value
belongs to the interval. Accordingly, both the buy order and the
sell order agents require 88 bits.

We set N = 5, which reflects the number of workdays in a
week to train the order agents. In an attempt to minimize the
required number of bits for representing the action space of the
buy order agent while accommodating possible actions as many
as possible, we analyzed the characteristics of KOSPI 200 by
plotting the distribution of PL

D+1/MA5
D, which is the ratio of

the lowest stock price on D + 1 to the five-day MA of stock
prices on a trading day D. The result is presented in the left
plot in Fig. 10, which suggests that the chance of producing

TABLE II
STATE REPRESENTATION FOR THE ORDER AGENTS

an infeasible BP by the buy order agent with β5
MAX = 1.12

is less than 2.5%. A similar conclusion can be drawn for the
sell order agent from the right plot in Fig. 10, which shows
the distribution of PH

D+1/MA5
D. Based on this observation,

the order agents are configured to have β5
MAX = 1.12 and

σ5
MIN = 0.88, and the actual action space and its encoding

used for the empirical study in this section are presented
in Table III.

Finally, we remark that the algorithms presented in Figs. 7–9
may not terminate in some very rare cases. Therefore, we set
the limit on the maximum number of iterations allowed during
execution of the algorithms to prevent an infinite loop. When
the loop is exited abruptly by this condition, the episode is
discarded.

B. Predictability Analysis

The structure of a neural network for the Q value function
approximation has a significant influence on the performance of
MQ-Trader. In order to determine an appropriate structure, we
considered several network structures by varying the number of
hidden layers and the number of units for each layer.

The data set for the experimentation is drawn from KOSPI
200. The whole data set is divided into four subsets as follows:
1) the training set with 32 019 data points, which covers the time
period from January 1999 to December 2000; 2) the validation
set with 6102 data points from January 2001 to May 2001;
3) the first test set with 33 127 data points from June 2001 to
August 2003; and finally 4) the second test set with 34 716 data
points from September 2003 to November 2005.

Training of the neural networks was carried out by applying
the Q-learning algorithms presented in Section III. Specifically,
we considered the network configurations with at most two
hidden layers, and each of them was trained ten times with
different initial weights. The same neural network structure was
used for all the agents of MQ-Trader. Prediction performance
of the agents was investigated by examining the correlation
between the estimated Q values and the actual discounted
cumulative rewards as well as the accuracy, which is defined
as the ratio of the number of successful trades to the number
of recommendations made by MQ-Trader, all under γ = 0.9,
λ = 0.3, and ε = 0.1.

We remark that the correlation was calculated for all the
stock items, whereas the accuracy was measured only for the
stock items that were recommended by MQ-Trader. That is,
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Fig. 10. Distribution of the ratio of the difference between the five-day MA and the lowest stock price to the five-day MA.

TABLE III
ACTION SPACE FOR THE ORDER AGENTS

the accuracy essentially represents how many stock trades were
actually profitable out of those recommended for purchase.
Table IV shows the prediction performance results for the con-
sidered neural network configurations. It suggests that the pre-
dictability for the recommended trades can be satisfactory even
though the predictability for individual stocks is not. Based on
these, we chose the network with 80 units in the first hidden
layer and 20 units in the second hidden layer for implementing
MQ-Trader.

The behavior of the trading agents with the selected network
structure in MQ-Trader during the training process is depicted
in Fig. 11, where the average number of trades made and the
average profit rate incurred every 20 000 episodes are shown in
the upper and lower graphs, respectively. In Fig. 11, the solid
line represents the case of the validation set, whereas the dotted
line represents the case of the training set. The vertical axes
on the left- and right-hand sides in the upper plot in Fig. 11
represent the cases of the training set and the validation set,
respectively.

It is worth mentioning that the number of trades made during
the first 3 200 000 episodes is very small mainly due to the
fact that MQ-Trader in this stage makes decisions only through
the random exploration. In fact, the trading performance in
terms of the profit rate in this stage is not satisfactory as
shown in the bottom plot in Fig. 11. However, after this
initial phase, the number of trades and the profit rate begin
to increase in both data sets, indicating that MQ-Trader starts
to trade stocks by use of the greedy policy. Finally, since it
was observed that there was degradation of profit rate after
5 000 000 episodes, the training was stopped to prevent the
overfitting.

C. Performance Evaluation Results

We implemented a simulation platform for trading systems to
evaluate our approach. The platform consists of five indepen-
dent subtraders for which initial assets are equally allocated.
Each trader is allowed to hold only one stock item at a time.
Motivation behind introducing multiple subtraders comes from
the fact that the platform with a single trader may result in
high variances of trading performance, making the performance
comparison a sophisticated task. Indeed, in practice, there are
very few investors who allocate their whole asset to a single
stock.

At runtime, MQ-Trader implemented in the simulation plat-
form constructs a set of recommended candidates out of
200 stock items based on the profit rate estimated by the
trained neural network, and distributes the stocks with highest
profitability randomly to the subtraders that do not hold a stock.
Once a stock is to be purchased by a subtrader, BP is determined
by comparing the estimated Q values for the set of possible
actions. When the selected BP of the stock is unfortunately
lower than the lowest stock price of the trading day, the stock
is abandoned, and another randomly chosen profitable stock is
provided to the subtrader. This process is repeated until there is
no profitable stock left in the candidate set.

On the other hand, the decision of selling a stock proceeds as
follows. On every trading day, two alternative actions, namely
SELL or HOLD, are compared according to the Q values
returned by the trained neural network. In case that the stock
is to be sold, the SP is determined similarly to the case of the
stock purchase. Whenever the SP determined is higher than the
highest price of the trading day, the stock is sold at the closing
price of the day.

In order to incorporate real-world trading constraints, we
further introduced TCs, price slippage, and limitation on the
stock purchase amount into the simulation model. First, three
different rates for computing TCs based on the BP or SP,
namely 0.5%, 1.0%, and 1.5%, were considered,1 and the TC

1The actual rate for the transaction cost in KOSPI market is between 0.3%
and 0.4%.
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TABLE IV
PREDICTION PERFORMANCE OF THE CONSIDERED NEURAL NETWORK CONFIGURATIONS

Fig. 11. Behavior of trading agents during the training process.

was charged whenever a stock is purchased or sold. Second, in
order to account for the price slippages that may occur due to
the difference between the estimated and actual stock prices,
we introduced random perturbation of the actual stock prices
by 0%, 0.5%, and 1%. Third, in an attempt to address the issue
of minimizing the market influence caused by a stock trader, we
limited the daily purchase amount of a single stock item by the
trader to less than 1% of the daily trading volume of the stock
in the market.

We now proceed to compare the performance of the proposed
MQ-Trader with other trading systems with different archi-
tectures. The stock trading systems considered in this experi-
mentation for performance comparisons are given as follows:
(a) the Ideal 2Q (I2Q)-Trader that replaces the order agents
of MQ-Trader with an ideal policy in which buy orders
are traded at the lowest daily prices and sell orders are
traded at the highest daily prices; (b) the MQ-Trader; (c) the
2Q-Trader in which only the signal agents are employed and the
BP and SP are set to the closing price of a trading day; (d) the
SMQ-Trader, which is the MQ-Trader without the TP matrix;
(e) the 1Q-Trader where only the buy signal agent is employed
and the selling signal is automatically generated after some
predefined holding period; and finally (f) the SNN-Trader that
has basically the same neural network structure as 1Q-Trader
but employs a supervised learning algorithm.

TABLE V
STATISTICAL BENCHMARKING RESULTS FOR THE TRADERS

It should be noted that all traders except the SMQ-Trader
implement the TP matrices for their state representations. We
also remark that the 2Q-Trader and I2Q-Trader are the traders
defined for the purpose of showing how the order agents
play roles in enhancing the performance of the MQ-Trader by
removing the order agents from the MQ-Trader and, respec-
tively, replacing them with two extreme pricing policies. From
the definitions of the 2Q-Trader and I2Q-Trader, it follows that
the performance of the MQ-Trader should fall between those of
the 2Q-Trader and I2Q-Trader.

In this experimentation, the neural network of each trad-
ing system (introduced as (a) to (f) previously) was trained
with 20 different random initializations of the weights, and
Table V summarizes the statistical benchmarking results in
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TABLE VI
ASSET GROWTH RATES OF MQ-TRADER FOR DIFFERENT

TRANSACTION RATES AND PRICE SLIPPAGES

that is similarly defined as the S&P 500 index of the U.S.
stock market. KOSPI index is shown to compare the perfor-
mances of the aforementioned trading systems to the baseline
market performance during the test period, and it is equated to
0.4 billion at the beginning for visualization purposes. The
series (a) through (f) in Fig. 12 show the accumulated assets
for each trading system during the first test period (June 2001
to August 2003) when each system starts with an initial asset
of 0.4 billion won. To make the performance comparison clear,
the starting assets for the trading systems during the second test
period (September 2003 to November 2005) are also equated to
0.4 billion in Fig. 13.

As can be seen from these results, the proposed MQ-
Trader outperformed the other alternative trading frameworks
(represented by the series (c) to (f) in Figs. 12 and 13)
by achieving more than four times of asset growth for the
first test period and more than 2.5 times for the second test
period. The performance of MQ-Trader has always lied be-
tween those of the I2Q-Trader and the 2Q-Trader (respectively
represented as the series (a) and (c) in Figs. 12 and 13) as
expected. Accordingly, the performance difference between
MQ-Trader and 2Q-Trader can be attributed to the contri-
butions of the order agents. Furthermore, it can be deduced
by comparing the series (b) and (d) that the proposed TP
matrix can facilitate the performance improvement of a trading
system.

It is interesting to note that MQ-Trader performs satis-
factorily during the long period of bear market between
April 2002 and April 2003. In addition, it endured quite well
the short stock market shock during May 2004 with a relatively
small loss. Note that, however, in the period of bull market
(May 2005 to July 2005), the traders with multiple agents
including MQ-Trader were not able to exploit the opportunity,
while the other two single agent traders (indicated by the sharp
rises of the series (e) and (f) during the period) were able to
exploit the opportunity. Based on this observation, it appears
that MQ-Trader can achieve a good performance particularly
when the stock prices are sharply declining due to the mar-
ket inefficiency incurred by some psychological reasons of
investors.

The results of experimentation study to examine the effects
of TCs and price slippages on the performance of MQ-Trader
are presented in Tables VI and VII, where only the best case
performances are shown among 20 multiple trials with different
random initializations of neural networks. Three different rates
for calculating TCs as well as three different probabilities of
price slippages were considered, resulting to a total of nine
configurations. Tables VI and VII, respectively, present the

TABLE VII
TRADING FREQUENCIES OF MQ-TRADER FOR DIFFERENT

TRANSACTION RATES AND PRICE SLIPPAGES

results of the asset growth rates and the trading frequencies
achieved by MQ-Trader for different configurations during the
entire period of June 2001 through November 2005. The initial
asset given to MQ-Trader was 0.4 billion won.

From Table VI, it can be seen that the most profitable results
(1138.7% asset growth) were obtained when both of the TC
rate and the price slippage percentage were lowest, and that
the profit decreases as the TC rate increases and the chance of
price slippages becomes higher. Similar results were observed
for the experimentation on the number of trades made during
the same test period, as shown in Table VII. These together
imply that MQ-Trader has learned the risks associated with
stock trading, which were introduced through the TC and price
slippage. When the TC is expensive, MQ-Trader buys and sells
a stock carefully, leading to less frequent trades and smaller net
profits. This is a natural consequence since a trade with small
profit may end up with overall loss after paying the TCs for the
stock purchase and disposition. In addition, with high chance
of price slippage, it is advantageous for MQ-Trader to avoid
aggressive trading.

Furthermore, Figs. 14 and 15 show how the profitability of
MQ-Trader decreases as the risks increase throughout the entire
test period. The TC rate and the percentage of price slippage
used for each series in Figs. 14 and 15 are summarized in
Table VIII. As expected, the profitability becomes highest when
the risks represented by the TC and price slippage are lowest,
and it becomes lowest when the risks are highest.

Finally, we found out that consideration of the current profit
or loss by MQ-Trader did not necessarily lead to the disposition
effect in contrast to the human investors who are subject to the
disposition effect due to psychological reasons. The average
number of days of holding a stock item by MQ-Trader for
the profitable trades was 6.9, whereas it was 7.3 days for the
unsuccessful trades. Therefore, this small difference of 0.4 day
suggests that the MQ-Trader is not prone to the disposition
effect.

V. CONCLUSION

There has long been a strong interest in applying machine
learning techniques to financial problems. This paper has
explored the issues of designing a multiagent system that
aims to provide an effective decision support for daily stock
trading problem. The proposed approach, which was named
MQ-Trader, defines multiple Q-learning agents in order to
effectively divide and conquer the stock trading problem in an
integrated environment. We presented the learning framework
along with the state representations for the cooperative agents
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Fig. 14. Performance comparison result for different levels of risks during the first test period.

Fig. 15. Performance comparison result for different levels of risks during the second test period.

of MQ-Trader and described the detailed algorithms for
training the agents.

Furthermore, in an attempt to address the complexity prob-
lem that arises when considering a large amount of data to
compute long-term dependence among the stock prices, we had
proposed a new state representation scheme, which was named
TP matrix, that can succinctly represent the history of price
changes.

Through an extensive empirical study using real financial
data from a Korean stock market, we found that our approach

produces better trading performances than the systems based
on other alternative frameworks. Based on these observations,
the profits that can be obtained from the proposed framework
appear to be promising.

From the future research point of view, there are some clear
extensions to be investigated. These include addressing the
issues of distributing the asset to multiple portfolios and of
adapting to the trend of a stock market. While the reinforcement
learning is promising, introduction of these considerations will
make the problem more complex. Therefore, one of the future
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TABLE VIII
LEGEND FOR THE SERIES IN THE PLOTS OF FIGS. 14 AND 15

research problems will be to make the reinforcement learning
formulation with these considerations tractable.
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