
An Automatic Approach to Online Color Training
in RoboCup Environments

Patrick Heinemann∗, Frank Sehnke∗, Felix Streichert∗ and Andreas Zell∗
∗ Wilhelm-Schickard-Institute

Department of Computer Architecture
University of Tübingen

Email: {heinemann, sehnke, streichert, zell}@informatik.uni-tuebingen.de

Abstract— Many approaches for extracting landmarks and
objects from a camera image based on their color coding were
published in the RoboCup domain. They are quite sophisticated
and tuned to the typical RoboCup scenario of constant bright
lighting using a static subdivision of the color space into different
color classes. However, such algorithms will soon be of limited
use, as the future requirements of RoboCup include the possibility
to play under changing and finally natural lighting. This paper
presents an algorithm for automatic online color training, which
is able to robustly adapt the mapping of colors to color classes
onto different lighting situations online. Using the ACT algorithm
a robot will be able to play a RoboCup match while the
illumination of the field varies.

I. INTRODUCTION

The extraction of landmarks and objects from a camera
image is a crucial task for robots using vision as their main
sensor. In many applications the color of such features is
sufficient for their extraction. To further improve the robust-
ness of the feature extraction, all objects and landmarks in
RoboCup are of distinct colors that are easy to distinguish
in terms of their representation in the color space. Although
there were attempts to detect objects - mainly the ball -
using form or texture [4],[12], the majority of the RoboCup
teams uses algorithms exploiting these special colors to reduce
the computational load. Most of these algorithms utilize a
predefined subdivision of the three-dimensional color space
(RGB, HSI, or YUV) into several color classes. In the Middle-
Size-League (MSL) there are 6 color classes corresponding to
the different objects: green for the floor, white for the field
lines, black for the robots, orange for the ball, and blue and
yellow for the goals. If all or part of the image pixels are
transformed from the three-dimensional color space into these
color classes the extraction of the different objects can be very
efficient [6]). The approaches mainly differ concerning the
subdivision of the color space. Bruce et al. use a rectangular
subdivision with a minimum and maximum threshold for each
color class [2]. Others, such as Bandlow et al. use a prism
composed of an arbitrary base in the two color dimensions
of the YUV color space and two thresholds in the intensity
channel in order to achieve some independency of the lighting
conditions [1]. However, with changing lighting, the colors
do not only change their representation in two, but in all
three dimensions of the color space (cf. [10]). Therefore, our
team uses a color look-up table that maps each color to its

corresponding class. With such a table it is possible to model
an arbitrary subdivision of the color space that allows to
include the changes of a color at different lighting conditions.
For recent competitions this look-up table was trained by
manually chosing pixels in one or more camera images. A
sphere of colors centered at the color of a chosen pixel was
then marked as one of the color classes. In order to model
arbitrary subdivisions of the color space in acceptable time
there was also the possiblity to subtract colors from a color
class with the same mechanism. The robustness of this color
segmentation shows that this was a very good approach even
on fields where the lighting was moderately varying over
the field. Nevertheless, even this approach will fail if the
amount and the speed of changes in lighting conditions rises
when playing at natural light. In addition, the time needed to
manually train a color look-up table was still up to 5 minutes
per robot. Thus, there is clearly a need for a fast and automatic
training of a look-up table that dynamically maps the colors
to different color classes with changing lighting.

Related work on this topic includes the semi-automatic
self-calibration system for MSL robots presented in [9], that
subdivides the color space automatically into circular clusters.
However, the mapping of the clusters to their corresponding
color class has to be decided by a supervisor and the clusters
cannot be of arbitrary shape. Other methods used on robots
of the four-legged league require special movements of the
robot and the robot’s head to train the color look-up table
[3] or simplify the problem by training a color mapping for
only three different illumination scenarios and by classifying
the camera images into one of these scenarios [11]. A very
promising method coming from this league is presented in
[8]. This combined object detection and color training method
retrains a color look-up table without an a-priori known
subdivision of the color space. However, the three-layered
training method would require too much computation time
when applied to an image of our MSL robots (cf. section III).

In this paper we present a new algorithm to automatically
train such a table for a RoboCup robot, using only knowledge
of the field geometry. By incorporating the pose of the
robot computed by our self-localization algorithm ([5]) this
algorithm is able to constantly re-train the mapping according
to the changing lighting conditions. By keeping the amount
of training per cycle as low as possible, the algorithm can be

1-4244-0259-X/06/$20.00 ©2006 IEEE
4880

Proceedings of the 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

Authorized licensed use limited to: University of Central Florida. Downloaded on March 20,2010 at 17:07:18 EDT from IEEE Xplore. Restrictions apply.

processed 50 times a second on our RoboCup MSL robots.
With all the other processes like self-localization and path
planning running at the same cycle rate, our robot is able to
cope with the highly dynamic RoboCup environment. Yet, the
color training algorithm is still capable of adapting to sudden
changes in illumination in only a few cycles. The remainder
of the paper is organized as follows: the proposed algorithm is
presented in detail in the following section. Section III contains
a description of the hardware used for the experimental results
presented in section IV, which emphasize the robustness of
the algorithm concerning changes in lighting. The last section
concludes this paper.

II. THE AUTOMATIC COLOR TRAINING ALGORITHM

The main idea of the automatic color training (ACT) algo-
rithm is to exploit the knowledge about the well-structured
environment to train a color look-up table automatically.
Instead of a user specifying which pixels should be classified
as green or white, this algorithm uses the pose of the robot
from the self-localization and a model of its environment to
compute the expected color class of the image pixels. For this,
the field parameters (length, width, radius of center circle,
etc.) and a mapping from pixel to two-dimensional world
coordinates of the field are needed. While the field parameters
for RoboCup tournaments are known, the mapping from pixel
to world coordinates is trained automatically, too, using the
field markings and a predefined pose of the robot ([7]).

As this paper does not address self-localization, these
prerequisites are assumed to be known for the following.
However, the use of self-localization for the automatic color
training results in a mutual dependency, as there can be no self-
localization without the extraction of color coded landmarks
and there will be no color-based landmark detection without a
pose estimation of the self-localization. Two features are used
to overcome this mutual dependency. First, the image that is
used for automatic training of the mapping from pixel to world
coordinates is used for the training of an initial color look-up
table, too. Second, the extraction of the green and the white
color class is robust enough to cope with a sudden change in
illumination as shown in section II-A. This enables the robust
self-localization [5] to keep track of the correct pose of the
robot until the other color classes are adapted.

With the color values of the pixels and the expected color
class a look-up table can be trained automatically. As there
will obviously be errors in the computation of the expected
color class, e.g. moving black robots on the field where the
static model expects green floor, the algorithm does not make
a direct mapping from color values to the computed color
classes. Instead, ACT tracks clusters of the color classes in
the color space with a mean value and standard deviation,
to filter out such errors. Only colors of pixels that fit into
a sphere in the color space centered in the mean value of
a color class with radius equal to a multiple of the standard
deviation, are added to the look-up table. In addition, colors of
pixels that correspond to coordinates outside of the playable
field are removed from the look-up table, as these pixels would

otherwise decrease the robustness of the following algorithms.
This removal is only done for color values outside a sphere
around the mean value with a radius equal to a multiple of
the standard deviation, to keep a minimum configuration for
each color class. The multiples of the standard deviation for
addition and removal of colors are chosen such that there is a
hysteresis for a stable optimization of the color look-up table.

A cycle of the ACT algorithm contains the following steps:

1) Obtain a new image and a new robot pose estimation
2) Select a subset of image pixels to adapt the cluster for

each color class
3) Select a different subset of pixels to add colors to the

look-up table
4) Select a different subset of pixels to remove colors from

the look-up table

A. Computation of the expected color class

Given the pose of the robot and the mapping from pixel to
world coordinates, the algorithm can compute, which part of
the field should correspond to which pixel. This works fine
for the floor and the lines, as the mapping is usually trained
for the field plane. Every pixel that corresponds to coordinates
inside of the field is either classified as white field line or green
floor, according to the field model. As green is the predominant
color in the image in RoboCup, situations where the static
model computes a different color class for a green pixel are
very uncommon, even if the pose estimation from the self-
localization is not accurate. Therefore, the mapping of colors
that are already marked as green cannot be changed. White,
however, is very rare in the image but has the main influence
on the landmark-based self-localization. Small deviations in
the position and the orientation of the pose estimation may
already result in a completely wrong mapping from colors to
this class. Therefore, a special treatment is used for pixels that
are mapped to the white class according to the model. Only
those pixels that have a higher intensity than their surrounding
are ultimately used to train white. Given the intensity of a pixel
I(px,y) at position (x, y) this filter is defined as

I(px,y) >

x+2∑
i=x−2

y+2∑
j=y−2

I(pi,j). (1)

Objects and landmarks like the two goals, extend into the
third dimension and thus only the contact points of these
objects to the floor can be mapped correctly. Starting with
these pixels, however, there is usually a clearly defined region
of the image that displays the rest of the object, depending
on the camera system used. In case of the omnidirectional
camera system used on our RoboCup robots this region would
be a trapezoid for the goals. Only pixels inside this area are
mapped to one of the goal color classes, yellow and blue. As
the other robots on the field are not static, the black color
class is trained using only pixels that correspond to the black
chassis of the robot itself. The ball color, though, is a problem
for a calibration-free algorithm, as the ball is not static, too,
and there is no way of training the ball color without some

4881

Authorized licensed use limited to: University of Central Florida. Downloaded on March 20,2010 at 17:07:18 EDT from IEEE Xplore. Restrictions apply.

previous knowledge about the color or position of the ball.
One possibility to overcome this problem would be to have
a special color marker of the ball color on the robot itself.
But as RoboCup robots are not allowed to use the ball color
this marker must on the one hand be hidden such that other
robots will not get distracted and on the other hand be still
illuminated enough to reflect the real ball color. The other
possibility would be to define a base color which represents
the real balls color good enough to initially locate the ball on
the field. From this point onwards, the balls position could be
used to retrain the ball color just as the color of the goals or
the robots. All pixels that are mapped to a position outside of
the field are assigned to the special color class unknown.

B. Adaptation of the cluster for each color class

For each color class k = 1 . . . 6, ACT tracks a cluster in the
color space with a mean value μk and a standard deviation σk

resulting from the previous cycles. For color values

c = (u, v, w) ∈ {0, Cmax}3, (2)

the parameters of the different clusters are initialized as

μk,0 =
1
2

(Cmax, Cmax, Cmax) (3)

σk,0 =
√

3
2

Cmax (4)

for t = 0 and are updated in each cycle as follows.
A random set of pixels of the image is taken to update

the clusters. To save computation time, the algorithm uses
a fixed pattern of every 400th pixel, starting at a random
pixel. According to the estimated pose of the robot and the
static field model the expected color class of all these pixels
is computed considering the special treatments of green and
white explained in section II-A. Given the set of colors Xk,t =
c1, . . . , cm at cycle t of all pixels that are expected to belong
to color class k the new values are computed as

μk,t =
1

η + 1

(
η μk,t−1 +

1
m

m∑
i=1

ci

)
(5)

σk,t =
1

η + 1

⎛
⎝η σk,t−1 +

√√√√ 1
m − 1

m∑
i=1

(ci − μk,t)
2

⎞
⎠(6)

σk,t = σmin , if σk,t < σmin. (7)

The choice of η determines the responsiveness of the color
look-up table update. A value of η = 4 was empirically
determined as optimal, enabling the algorithm to extremely
reduce the number of examined pixels. Values of η < 4 for
the filtering result in quicker adaptation of the table but also
in a very noisy estimation of the cluster parameters. In order
to avoid the cluster from collapsing, a lower bound of the
standard deviation σmin is introduced, ensuring a minimum
cluster size. If sudden changes in illumination occur, it is
possible that the cluster is too small to include the new color

values. In such cases the set of color values for a color class
is empty, and the standard deviation is doubled

μk,t = μk,t−1 (8)

σk,t = 2σk,t−1, (9)

to increase the size of the cluster until it includes the new color
values. The resulting clusters do not specify the colors that
are finally stored in the color look-up table for the associated
color class. They are rather a hint, where the color values of
the color class might be located in the color space, however,
they can be arbitrarily distributed around the cluster center and
part of the cluster may belong to another color class.

C. Add colors to the color look-up table

To find out which color values are finally mapped to the
different color classes, again a subset of every 400th image
pixel is selected, starting at a different random pixel. After the
calculation of the expected color classes, each color value is
compared to the mean value of the corresponding color class.
Given a color value c that is computed to belong to color
class k, the Euclidian distance to the mean of color class k is
compared to a multiple of the standard deviation σk, and the
mapping from c to k is only added into the look-up table if

‖μk − c‖ < ζ σk, with ζ > 1, (10)

with ‖·‖ being the Euclidian norm and ζ being a threshold
controlling the ratio between higher adaptability of the color
look-up table and a higher false positive rate. The influence of
this parameter is investigated through experiments in section
IV-A. Similar to the manual training of the look-up table not
only the color value itself is added into the table but also a
small set of colors around c.

D. Remove colors from the color look-up table

Sometimes the manual or automatic addition of such a
set of color values is too much, resulting for example in
many occurences of the white color class outside of the field.
Therefore, after the addition of the color classes to the look-
up table, colors that are mapped to the special unknown class
are removed from the table. Once again a different subset of
pixels is selected to do this. To process a large number of
pixels outside of the field, this time every 20th pixel is used,
starting from a random pixel. The higher number of processed
pixels is also neccessary to completely remove unwanted color
mappings, as this time only the color value itself is removed
from the color look-up table. A color value c that is expected
to belong to the unknown class in this step but that is already
mapped to color class k is removed from the table. As this
may remove colors that are needed for a good classification
of pixels inside the field, only colors that comply with

‖μk − c‖ > ξ σk, with ξ > 1, (11)

are removed, with ξ being a threshold controlling the ratio
between a lower false positive rate and lower true positive
rate. The influence of ξ is also investigated in section IV-A.

4882

Authorized licensed use limited to: University of Central Florida. Downloaded on March 20,2010 at 17:07:18 EDT from IEEE Xplore. Restrictions apply.

Fig. 1. Test images: The one in the middle was taken at the RoboCup World Cup 2004 at Lisbon with robot I, the other two were generated from this image
by changing the brightness and the contrast of the image by 50% with an image manipulation program to simulate different lighting situations.

III. HARDWARE AND SETTINGS USED FOR THE

EXPERIMENTS

Three types of robots were used for the following ex-
periments, two generations of robots of our own Attempto
Tuebingen team and one robot of the Mostly Harmless team.
All robots are equipped with an omnidirectional camera sys-
tem consisting of a perspective camera pointing upwards to
a hyperbolic mirror. Robot I is from our previous RoboCup
MSL team and has a standard 25fps camera with a resolution
of 768×576 pixels and only 5bit resolution per color channel.
The color look-up table trained for this camera system uses
only 32KB of data which easily fits into the 2nd level cache
of modern computers. However, the resolution of 5bit per
color channel is critical if the illumination on the field is very
low. Therefore, robot II of our new team is equipped with a
50fps, 580 × 580 pixel camera with 8bit resolution per color
channel. Although the size of the look-up table is increased
to 16.7MB, this larger table improves the performance of the
algorithm significantly, when playing in changing, low illumi-
nation scenarios. Robot III is a robot of the Mostly Harmless
MSL team and is equipped with a camera comparable to that
of robot II but has a different mirror. Although all camera
systems used for the experiments are omnidirectional, the ACT
algorithm is independent of the type of camera system used,
if a mapping from camera to world coordinates exists. In
addition to different robots and camera systems, we also tested
the algorithm on different RoboCup fields. Two of the fields
are training fields, which are not large enough to fulfill the
requirements of current MSL fields. They are of 6×5m2 (field
I) and 10× 5m2 size (field II). For the third setting (field III),
images from the RoboCup World Cup 2004 at Lisbon from a
field of size 12 × 8m2 are used.

IV. RESULTS

This section presents experimental results of the ACT
algorithm. First, the influence of the two thresholds for adding
and removing color mappings from the color look-up table is
analysed. To prove the applicability of the ACT algorithm to
automatic color training in RoboCup, several experiments with
different static robots are presented followed by an experiment
with a moving robot.

1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

ζ

F
it

n
e

s
s

Normal illumination
High illumination
Low illumination

Fig. 2. Fitness of the color mapping of the resulting color look-up tables when
ACT is applied to the test images.

A. Influence of the thresholds

To analyse the influence of the thresholds ζ σk and ξ σk for
adding and removing color mappings from the color look-up
tables the algorithm was tested on three images with different
brightness shown in figure 1. The image in the middle is an
original image taken by robot I on field III, while the other two
were generated from this image by changing the brightness
and the contrast of the image with an image manipulation
program to simulate different lighting situations. First, for each
image, several runs of the algorithm were started with different
values for ζ and using the appropriate pose estimation. As
these experiments were aimed to investigate the influence of
ζ when adding colors to the look-up table, the removal of
colors was not included. After a few cycles the color look-up
table converged to a stable state in each run and the quality
or fitness of the resulting color look-up table was computed
as the sum of the fitness of the k color classes

f =
∑

k

(
1 − TPk

TPk + FNk

)
, (12)

where TPk is the number of true positives for class k and FNk

is the number of false negatives for class k. The fitness values
for all runs are shown in figure 2. For the darkened image,
the algorithm converges to the best fitness for values ζ =
[1.75, 3.0], while the interval of best fitness is ζ = [2.0, 3.25]

4883

Authorized licensed use limited to: University of Central Florida. Downloaded on March 20,2010 at 17:07:18 EDT from IEEE Xplore. Restrictions apply.

Fig. 3. Influence of ζ: The left image was classified with a very low value
for ζ, while for the right image ζ was set too high.

Fig. 4. Influence of ξ: The left image was classified with a very low value
for ξ, while for the right image ξ was set too high.

and ζ = [2.25, 3.0] for the normal and the brightened image,
respectively. On the one hand, lower values of ζ force the color
classes to converge to a very small part of the color space that
might not include all color values needed to correctly classify
all pixels (cf. figure 3, left). If the image is very dark, however,
the differences between the color classes and the deviation of
the colors from the common mean per class are very low.
Therefore good results can be achieved with lower values of
ζ in the darker image. On the other hand, higher values of ζ
enable the color class to spread out in the color space, resulting
in a high standard deviation. This includes many colors that
should not be mapped to this color class (cf. figure 3, right).
Fortunately, there is a broad range of values ζ = [2.25, 3.0] for
which all three images are classified with a very high fitness.
For all subsequent experiments, a value of ζ = 2.5 was used.

Secondly, the influence of ξ was tested. The experiments
done with the three test images show that different values of
ξ result in similar classification results for all three images. In
fact, the selection of ξ for a good quality of the algorithm is
depending far more on the selection of ζ. With ζ = 2.5 the
best results were achieved with a value of ξ = [1.2, 1.5]. For
lower values of ξ, too many colors are removed from the table,
while for higher values of ξ, too many colors from outside of
the field remain in the table (cf. figure 4). For all subsequent
experiments, a value of ξ = 1.35 was used.

B. Automatic color training on a static robot

Two experiments were carried out on a static robot. The
first experiment demonstrates, that the ACT algorithm works
on different camera systems and field settings. An image taken
by robot III on field I and the same image classified with the
color table trained by ACT are shown in figure 5. The result is
a clear classification of the important parts of the field, while
the number of classified pixels outside of the field is low.

The second experiment demonstrates that a robot using the
ACT algorithm is able to cope with sudden changes of lighting.
First, the image in the middle of figure 1 is used for training a
color look-up table. The classified version of this image using
the table trained by ACT is shown on the left side in figure 6.
Then, to simulate such a sudden change in lighting, the same
look-up table was used to classify the darkened version of this
image (cf. figure 1, left). The image shown on the right side
in figure 6 shows how a robot with static color look-up table

Fig. 5. An image taken from robot III on field I (left) and the same image
classified with the color look-up table trained by the ACT algorithm (right)

Fig. 6. The classified version of the image shown in the middle in figure 1
using the look-up table trained by ACT (left). Using the same table to classify
the darkened version of this image (cf. figure 1, left) to simulate a sudden
change in lighting, results in the image shown on the right. Clearly, a robot
without online color training would have no chance of playing using such a
color classification.

Fig. 7. The classified image after 1, 2, and 8 steps of retraining the color
look-up table shown on the right in figure 6 with the ACT algorithm.

would classify an image after the change of lighting. Clearly,
a robot without online color training would have no chance
of playing using such a color classification. With the ACT
algorithm, however, the color look-up table is adapted to a
stable optimum in only 12 cycles, which would result in only
240ms without color classification on robot II. In addition, the
look-up table is already close to the optimum after 2 cycles, at
least for the important color classes green and white. Figure 7
shows the classified image after 1, 2, and 8 cycles of adaption.

4884

Authorized licensed use limited to: University of Central Florida. Downloaded on March 20,2010 at 17:07:18 EDT from IEEE Xplore. Restrictions apply.

Fig. 8. After a few cycles of adaptation the ACT algorithm is able to train
a color look-up table in these situations, even with a wrong pose estimation.

C. Automatic online color training on a moving robot

As the presentation of results from a moving robot is
difficult, one experiment was carried out to show that the ACT
algorithm embedded in the robot control system including the
self-localization is able to handle a wrong pose estimation.
For that, three different images were consecutively given to
the algorithm, two from a known pose of the robot and one
from a pose where the robot was located 2.5m away from
the old pose and rotated by 165 degrees (cf. figure 8, right).
These images were taken by robot II on field II, the first one
with some direct illumination that is reflected on the blue PVC
floor, the others with very low illumination (cf. figure 8, top
row). While the self-localization uses the trained color look-
up table for the pose estimation, the ACT algorithm always
used the known pose as estimation. The classification results
are shown in figure 8. With this setup, two features are shown:
first, the ACT algorithm is able to cope with the worst-case
scenario that contains very low ambient illumination (lower
than 200lux) and rather bright spot lights. Secondly, ACT is
able to keep a good color look-up table, even if the pose
used for retraining is completely wrong. As the quality of
the look-up table adapted by ACT is hardly depending on the
quality of the pose estimation, the mutal dependency of the
self-localization and the color training is no problem when
using the ACT algorithm. The quality of the self-localization,
however, might be decreased for those cycles where ACT is
adapting to considerable changes in lighting. Nevertheless, the
pose estimation was very good in this experiment after a few
cycles of retraining the color look-up table for each image.

As the computation time per cycle was below 4ms on an
Athlon XP 2400+ with 2GHz in all experiments presented
in this paper, the ACT algorithm perfectly fits into the 20ms
main cycle time on our new RoboCup MSL robots. First
experiments show that the robot is able to maintain this main
cycle during the play which is very important to compete in
the highly dynamic environment of RoboCup MSL. In these
experiments we could also show, that the robot is able to
localize and play well using the online adapted color look-
up table generated by the ACT algorithm.

V. CONCLUSIONS

This paper presents an algorithm for automatic online
training of a look-up table that maps the colors of a three-
dimensional color space onto different color classes used for
the detection of objects and landmarks in camera images.
For that the ACT algorithm incorporates knowledge about its
environment to compute which colors correspond to which
color class. In the RoboCup scenario this knowledge is the
dimension and the layout of the field as stated in the rules
and a pose estimation of the robot coming from a self-
localization algorithm. ACT consecutively adapts the look-
up table to changing lighting situations resulting in a robust
classification of the image pixels. The presented results show
that the main parameters of the algorithm can be chosen in a
way to produce good results over a large variety of lighting
scenarios. Additionally, it is shown that the algorithm is not
restricted to specific hardware and offers a good performance
even with sudden changes in lighting. Finally, the algorithm
was implemented on a RoboCup MSL robot for online training
of the color look-up table. Here, the mutual dependency of
the color training and the self-localization is shown to have
very little impact on the robustness of the algorithm, as the
color training is very stable, even for a completely wrong pose
estimation. With a cycle time of only 4ms the ACT algorithm
was easily embedded into the control system of our RoboCup
robots with a main cycle time of 20ms.

REFERENCES

[1] T. Bandlow, M. Klupsch, R. Hanek, and T. Schmitt. Fast Image Seg-
mentation, Object Recognition and Localization in a RoboCup Scenario.
In 3. RoboCup Workshop, IJCAI’99, 1999.

[2] J. Bruce, T. Balch, and M. Veloso. Fast and inexpensive color image
segmentation for interactive robots. In Proc. 2000 IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, volume 3, pages 2061–2066, 2000.

[3] D. Cameron and N. Barnes. Knowledge-Based Autonomous Dynamic
Colour Calibration. In RoboCup-2003: Robot Soccer World Cup VII,
volume 3020 of LNCS, pages 226–237. Springer, 2004.

[4] R. Hanek, T. Schmitt, S. Buck, and M. Beetz. Towards RoboCup without
Color Labeling. In RoboCup 2002: Robot Soccer World Cup VI, volume
2752 of LNCS, pages 426–434. Springer, 2003.

[5] P. Heinemann, J. Haase, and A. Zell. A Novel Approach to Efficient
Monte-Carlo Localization in RoboCup. In RoboCup 2006: Robot Soccer
World Cup X. Springer, 2006.

[6] P. Heinemann, T. Rückstieß, and A. Zell. Fast and Accurate Environment
Modelling using Omnidirectional Vision. In Dynamic Perception 2004.
Infix, 2004.

[7] P. Heinemann, F. Sehnke, F. Streichert, and A. Zell. Automatic
Calibration of Camera to World Mapping in RoboCup uing Evolutionary
Algorithms. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2006), 2006.

[8] M. Jüngel. Using Layered Color Precision for a Self-Calibrating Vision
System. In RoboCup 2004: Robot Soccer World Cup VIII, volume 3276
of LNCS, pages 209–220. Springer, 2005.

[9] G. Mayer, H. Utz, and G. Kraetzschmar. Towards autonomous vision
self-calibration for soccer robots. In Proc. 2002 IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2002.

[10] G. Mayer, H. Utz, and G. Kraetzschmar. Playing Robot Soccer under
Natural Light: A Case Study. In RoboCup-2003: Robot Soccer World
Cup VII, volume 3020 of LNCS, pages 238–249. Springer, 2004.

[11] M. Sridharan and P. Stone. Towards Illumination Invariance in the
Legged League. In RoboCup 2004: Robot Soccer World Cup VIII,
volume 3276 of LNCS, pages 196–208. Springer, 2005.

[12] A. Treptow, A. Masselli, and A. Zell. Real-Time Object Tracking for
Soccer-Robots without Color Information. In European Conference on
Mobile Robotics (ECMR 2003), pages 33–38, 2003.

4885

Authorized licensed use limited to: University of Central Florida. Downloaded on March 20,2010 at 17:07:18 EDT from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

