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Abstract This paper presents a state-space perspective
on the kinodynamic planning problem, and introduces
a randomized path planning technique that computes
collision-free kinodynamic trajectories for high degree-
of-freedom problems. By using a state space formula-
tion, the kinodynamic planning problem is treated as a
2n-dimensional nonholonomic planning problem, derived
from an n-dimensional configuration space. The state
space serves the same role as the configuration space for
basic path planning; however, standard randomized path
planning techniques do not directly apply to planning tra-
jectories in the state space. We have developed a ran-
domized planning approach that is particularly tailored
to kinodynamic problems in state spaces, although it also
applies to standard nonholonomic and holonomic plan-
ning problems. The basis for this approach is the con-
struction of a tree that attempts to rapidly and uniformly
explore the state space, offering benefits that are simi-
lar to those obtained by successful randomized planning
methods, but applies to a much broader class of problems.
Some preliminary results are discussed for an implemen-
tation that determines kinodynamic trajectories for hov-
ercrafts and satellites in cluttered environments, result-
ing in state spaces of up to twelve dimensions.

1 Introduction

There is a strong need for a simple, efficient planning
technique that determines control inputs to drive a robot
from an initial configuration and velocity to a goal config-
uration and velocity while obeying physically-based dy-
namic constraints and avoiding obstacles in the robot’s
environment. Although many interesting approaches ex-
ist to specific kinodynamic problems, they fall short of
being able to solve many complicated, high degree-of-
freedom problems. Randomized techniques have led to
efficient, incomplete planners for basic path planning
(holonomic and purely kinematic); however, there ap-
pears to be no equivalent technique for the broader kin-
odynamic planning problem (or even nonholonomic plan-
ning in the configuration space). We try to account for
some of the reasons for this, and argue the need for a sim-
ple, general-purpose kinodynamic planner. We present
a heuristic, randomized approach to kinodynamic plan-
ning that quickly explores the state space, and scales well
for problems with high degrees-of-freedom and compli-
cated system dynamics.

The common model in motion planning research has
been to decouple the general robotics problem by solv-
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Figure 1. We consider planning problems with dynamic
constraints induced by physical laws. The above image shows
the state exploration trees computed for a rigid rectangular
object (left). The goal location is represented by a sphere

(upper right).

ing basic path planning, and then finding a trajectory
and controller that satisfies the dynamics and follows the
path [3, 16, 24]. The vast majority of basic path planning
algorithms consider only kinematics, while ignoring the
system dynamics entirely. Motion planning that takes
into account dynamic constraints as well as kinematic
constraints is known as kinodynamic planning [10]. In
this paper, we consider kinodynamic planning as a gen-
eralization of holonomic and nonholonomic planning in
configuration spaces, by replacing popular configuration-
space notions by their state space (or phase space) coun-
terparts. A point in the state space includes both con-
figuration parameters and velocity parameters (i.e., it is
the tangent bundle of the configuration space).

It may be the case that the result of a purely kinematic
planner will be unezecutable by the robot in the environ-
ment due to limits on the actuator forces and torques.
Imprecision in control, which is always present in real-
world robotic systems, may require explicitly modeling
system dynamics to guarantee collision-free trajectories.
Robots with significant dynamics are those in which
natural physical laws, along with limits on the avail-



able controls, impose severe constraints on the allow-
able velocities at each configuration. Examples of such
systems include helicopters, airplanes, certain-classes of
wheeled vehicles, submarines, unanchored space robots,
and legged robots with fewer than four legs. In general,
it is preferable to look for solutions to these kinds of sys-
tems that naturally flow from the physical models, as
opposed to viewing dynamics as an obstacle.

These concerns provide the general basis for kinody-
namic planning research. Algebraic approaches solve
for the trajectory exactly, though the only known so-
lutions are for point masses with velocity and accelera-
tion bounds in one-dimension[19] and two-dimensions[5].
Provably approximately-optimal kinodynamic trajecto-
ries are computed in [10] by performing a search of the
state space by systematically applying control inputs.
Other papers have extended or modified this technique
[9, 8, 12, 21]. In [11], an incremental, variational ap-
proach is presented to perform state-space search. An
approach to kinodynamic planning based on Hamilto-
nian mechanics is presented in [7]. Sensor-based motion
strategies that account for robot inertia have been de-
vised that maintain an emergency stopping path [25].

The computational complexity of kinodynamic plan-
ning problems depends upon the assumptions made for
a particular instance of the problem. However, kinody-
namic planning in general is believed to be at least as
hard as the generalized mover’s problem, which has been
proven to be PSPACE-hard [22]. Hard bounds have also
been established for time-optimal trajectories. Finding
an exact time-optimal trajectory for a point mass with
bounded acceleration and velocity moving amidst poly-
hedral obstacles in 3D has been proven to be NP-hard
[10]. The need for simple, efficient algorithms for kin-
odynamic planning, along with the discouraging lower-
bound complexity results, have motivated us to explore
the development of randomized techniques for kinody-
namic planning. This parallels the reasoning that led to
the success of randomized planning techniques for basic
path planning.

2 A State Space Formulation

We formulate the kinodynamic planning problem as
path planning in an 2n-dimensional state space that has
first-order nonholonomic constraints. We would like the
state space to have the same utility as a representational
tool as the configuration space for a purely-kinematic
problem. Let C denote the configuration space (C-space)
that arises from a rigid or articulated body that moves
in a 2D or 3D world. Let X denote the state space, in
which a state, v € X, is defined as = (g, ¢), for ¢ € C.

Constraints When planning in C, nonholonomic con-
straints often arise from the presence of one or more
rolling contacts between rigid bodies, or from the set
of controls that it is possible to apply to a system.
When planning in X', nonholonomic constraints also arise
from conservation laws (e.g. angular momentum con-
servation). Using Lagrangian mechanics, the dynamics
can be represented by a set of equations of the form
hi(d,q,q) = 0. Using the state space representation, this
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Figure 2. Slices of X for a point mass robot in 2D with in-
creasingly higher initial speeds. White areas represent X cc;
black areas are X,pst; gray areas approximate Xpjc.
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can be simply written as a set of m implicit equations
of the form G;(z,%) =0, for i = 1,...,m and m < 2n.
It is well known that under appropriate conditions the
Implicit Function Theorem allows the constraints to be
written in the form of a control system

& =f(z,u) (1)

in which u € U, and U represents a set of allowable con-
trols or inputs. We assume that f is a smooth function
of (z,u). Equation 1 effectively yields a convenient pa-
rameterization of the allowable state transitions via the
controls in U.

Obstacles in X Assume that the world in which the
robot lives contains static obstacles. There are interest-
ing differences between finding collision-free paths in C
versus the state space, X. When planning in C, it is use-
ful to characterize the set C,ps; Of configurations at which
the robot is in collision with an obstacle (or itself) [16].
The path planning problem involves finding a continu-
ous path that maps into Crpree = C \ Copst- For planning
in X', this could lead to a straightforward definition of
Xopst by declaring x € Xy if and only if ¢ € Cppst for
z = (q,q4). However, another interesting possibility ex-
ists: the region of inevitable collision. Let X,;. denote
the set of states in which the robot is either in colli-
sion or, because of its velocity, it cannot do anything to
avoid collision (there exist no controls that will prevent
it). Note that X,pst C X4 Thus, it might be preferable
to define Xfpee = X\ Apic, as opposed to X\ Xppst-

Figure 2 illustrates conservative approximations of
Xic for a point mass robot. The robot is assumed to
have L2-bounded acceleration, and an initial velocity
pointing along the positive = axis. As expected intu-
itively, if the speed increases, X}.;. grows.

Solution Trajectory The kinodynamic planning
problem is to find a trajectory from an initial state x;p;;



to a goal state Tgqi- A trajectory is defined as a time-
parameterized continuous path 7 : [0,7] = Xfpee that
satisfies the nonholonomic constraints. By integrating
Equation 1 from an initial state and control, we obtain
a trajectory that inherently satisfies the nonholonomic
constraints. Our task is then reduced to finding a con-
trol function u : [0,7] — U, representing time-varying
input that when applied, moves the system from x;y,;
t0 T40a1 While avoiding obstacles. It might also be ap-
propriate to select a path that optimizes some criterion,
such as the time to reach zgoq:-

3 Issues in Randomized Kinodynamic
Planning

One of the key differences between X' and C is a fac-
tor of two in dimension. The curse of dimensionality
has already contributed to the success and popularity of
randomized planning methods for C-space; therefore, it
seems that there would be an even greater need to de-
velop randomized algorithms for kinodynamic planning.
One reason that might account for the lack of practi-
cal, efficient planners for problems in X-space is that
attention is usually focused on the decoupled planning
problem. Another plausible reason is that kinodynamic
planning is considerably harder, aside from the fact that
the dimension is larger. We briefly indicate some reasons
for this difficulty.

Existing Randomized Techniques It would cer-
tainly be useful if ideas can be borrowed or adapted from
existing randomized path planning techniques that have
been successful for planning in C-space. For the purpose
of discussion, we choose two different techniques that
have been successful in recent years: randomized poten-
tial fields (e.g, [2, 6]) and randomized roadmaps (e.g.,
[1, 15]). In the randomized potential field approach, a
heuristic function is defined on the configuration space
that attempts to steer the robot toward the goal through
gradient descent. If the search becomes trapped in a lo-
cal minimum, random walks are used to help escape.
In the randomized roadmap approach, a graph is con-
structed in the configuration space by generating random
configurations and attempting to connect pairs of nearby
configurations with a local planner. Once the graph has
been constructed, the planning problem becomes one of
searching a graph for a path between two nodes.

Why is Kinodynamic Planning Harder? Consider
applying either of the previously mentioned randomized
techniques to the problem of finding a path in &’,.. that
also satisfies (1), instead of finding a holonomic path in
Csree. The potential field method appears nicely suited
to the problem because a discrete-time control can re-
peatedly selected that reduces the potential. The pri-
mary problem is that dynamical systems usually have
drift, which could easily cause the robot to overshoot
the goal, leading to oscillations. Without a cleverly-
constructed potential function (which actually becomes
a difficult nonlinear control problem), the method cannot
be expected to work well. Imagine how often the system

will be pulled into X,;.. The problem of designing a
good heuristic function becomes extremely complicated
for the case of kinodynamic planning.

The randomized roadmap technique might also ap-
pear amenable to kinodynamic planning. The primary
requirement is the ability to design a local planner that
will connect pairs of configurations (or states in our case)
that are generated at random. Indeed, this method was
successfully applied to a nonholonomic planning problem
in [27]. One result that greatly facilitated this extension
of the technique to nonholonomic planning was the ex-
istence of Reeds-Shepp curves [20] for car-like robots.
This result directly enables the connection of two config-
urations with the optimal-length path. For more compli-
cated problems, such as kinematic planning for a tractor-
trailer, a reasonable roadmap planner can be developed
using steering results [4, 17, 23, 26]. These results enable
a system to be driven from one configuration to another,
and generally apply to driftless systems that are nilpo-
tentizable (a condition on the underlying Lie algebra).
In general, however, the connection problem can again
be as difficult as designing a nonlinear controller. The
randomized roadmap technique might require the con-
nections of thousands of states to find a solution, and if
each connection is akin to a nonlinear control problem, it
seems impractical for systems that do not allow steering.

4 Rapidly-Exploring Random Trees

The observations of Section 3 motivated us to develop
a randomized planning technique that nicely extends
to kinodynamic planning (it also applies to the simpler
problems of nonholonomic planning in C and basic path
planning in C). Our intention has been to develop a
method that easily “drives forward” like potential field
methods, and also quickly and uniformly explores the
space like randomized roadmap methods. This led us to
develop Rapidly-Exploring Random Trees (RRTs).

To motivate and illustrate the concepts, first con-
sider the simple case of planning for a point robot in
a two-dimensional configuration space. To prepare for
the extension to kinodynamic planning, suppose that
the motion of the robot is governed by a control law,
ZTi+1 = f(@k, ur), which is considered as a discrete-time
approximation to (1). For this simple problem, suppose
that U represents a direction in S!' toward which the
robot can be moved a fixed, small distance in time At.
Consider Figure 3, in which the robot starts at (50,50)
in an environment that ranges from (0,0) to (100, 100),
and the robot can move 2 units in one application of
the discrete-time control law. The first scheme can be
considered as a Naive Random Tree, which is incremen-
tally constructed by randomly picking an existing ver-
tex, xj from the tree, a control u; € U at random, and
adding an edge of length 2 from zy to f(zg,ur). Al
though it appears somewhat random, this tree has a very
strong bias towards places it has already explored. To
overcome this bias, we propose to construct a Rapidly-
Exploring Random Tree as follows. Insert the initial
state as a vertex. Repeatedly select a point at random
in [0, 100] x [0, 100], and find the nearest-neighbor, zy, in
the tree. Choose the control u; € U that pulls the ver-
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Figure 3. A Naive Random Tree vs. a Rapidly-Exploring
Random Tree. Each tree has 2000 vertices.

tex toward the random point. Insert the new edge and
vertex for zp11 = f(zg,ur). This technique generates a
tree that rapidly and uniformly explores the state space.
An argument for this can be made by considering the
Voronoi regions of the vertices. Random sampling tends
to extend vertices that have larger Voronoi regions, and
are therefore have too much unexplored space in their
vicinity. By incrementally reducing the size of larger
Voronoi regions, the graph spreads in a uniform manner.

Rapidly Exploring the State Space When moving
from the problem shown in Figure 3 to exploring A" for
a kinodynamic planning problem, several complications
immediately occur: i) the dimension is typically much
higher; ii) the tree must stay within X,..; iii) drift and
other dynamic constraints can yield undesired motions
and biases; iv) there is no natural metric on X" for se-
lecting “nearest” neighbors. For the first complication,
approximate nearest neighbor techniques [14] can be em-
ployed to help improve performance; it is not crucial to
have the absolute closest neighbor. The second compli-
cation can make it harder to wander through narrow pas-
sageways, much like in the case of randomized roadmaps.
The third complication can be partly overcome by choos-
ing an action that brings the velocity components of x as
close as possible toward the random sample. The fourth
complication might lead to the selection of one metric
over another for particular kinodynamic planning prob-
lems, if one would like to optimize performance. In the-
ory, there exists a perfect metric (or pseudo-metric due
to asymmetry) that could overcome all of these compli-
cations if it were easily computable. This is the optimal
cost (for any criterion, such as time, energy, etc.) to get
from one state to another. Unfortunately, computing
the ideal metric as hard as solving the original planning
problem. In general, we try to overcome these additional
complications while introducing as few heuristics as pos-
sible. This enables the planner to be applied with minor
adaptation to a broad class of problems.

A Randomized Planning Algorithm We present
an algorithm that grows two RRTSs, one rooted at the
start state x;ni;, and the other rooted at x4,q;. The al-
gorithm searches for states that are “common” to both
trees. Two states, x and z', are considered to be com-
mon if p(z,z') < € some some metric p and small € > 0.
Our basic algorithm stops at the first solution trajec-

GROW_RANDOM_TREES()

1 InsertState(Tinit, nil, Tinit);

2 InsertState(7goar, nil, Tg0ai);

3  while continuePlan do

4 Zrand < RandomState();

5 i  GEN_STATE(Tinit, Trand, FWD);

6 if z; # nil and NearbyState(Tgoq, ;) then

7 record candidate solution 7 connecting
Tinit and Tgoa through x;;

8 Tg < GEN_STATE(EOM, Trand, BACK),
9 if ¢, # nil and NearbyState(7;nit, 4) then
10 record candidate solution 7 connecting

Tinit and Tgoq through z;

Figure 4. The algorithm incrementally grows two RRTSs,
from the start and the goal, until meeting at a common state.

tory found, but one could continue to grow the trees
and maintain a growing collection of solution trajecto-
ries. The “best” solution found so far can be chosen ac-
cording to a cost functional based on some criteria (such
as execution time or energy expended).

Here we present the algorithm in detail. The pseu-
docode for GROW_RANDOM_TREES() is shown in Fig-
ure 4. To begin, we define two RRTS, Tini and Tyoat,
each initialized to contain a single node representing x;,;
and Zgoq , respectively. We pick a random state ,qnq
and generate new nodes in both trees via the function
GEN_STATE(). First, the nearest neighbor of z,,,q in
Tinit is selected. From this state, all possible controls are
applied to the system for a fixed time interval At, yield-
ing successor states derived from (u, At) — bangmotions.
The successor states are generated by integrating (1)
over At. A successor state zpy; that satisfies velocity
bounds, is collision-free, and minimizes p(Zg+1, Trand) iS
inserted into the tree and returned. It is then tested
to see if it lies within an e-neighborhood of any of the
states generated so far in Tgoa. If so, we have found a
common state that joins the two trees, and we record
the candidate solution trajectory 7 that joins 7;,; and
Tg0ar and passes through the node. If not, we invoke
GEN_STATE() again on Tgoq with the same random
state x,.qnq. Successor states are generated exactly as be-
fore, except for one minor change. Since we are searching
backwards from the goal, we integrate the state transi-
tion equation backwards in time. The returned successor
state is tested to see if it lies within an e-neighborhood
of any of the currently explored states in T;ni:. If so, the
candidate solution trajectory is recorded. The algorithm
terminates on the first successful solution found.

Our initial experiments attempted to grow a single
RRT from z;,; to connect with the goal zgoq;. These
experiments worked well for state spaces of low dimen-
sion. However, growing dual trees improves efficiency
for state spaces of high dimension, at the expense of
having to connect a pair of nodes between the two trees.
In higher dimensions it becomes more difficult to ran-
domly wander upon a state that is close enough to the
goal state for each of the state space variables. It might
also be possible to improve performance by biasing the



Figure 5. Various stages of state exploration during plan-
ning. The top two images show the RRT's after 500 and 1000
nodes, respectively. The bottom two images show the final
trees and the computed solution trajectory after 1582 nodes.

sampling toward goal states; this is currently under in-
vestigation as an alternative to using dual trees. We
generally want to avoid defining some complicated artif-
ical bias because we might be faced with a challenge that
is similar to defining a good artificial potential function
for the potential field approach to path planning (this
task should be even harder for kinodyanmic planning).

5 Hovercrafts and Satellites

Basic experiments involving RRTs in the state space
were conducted on simple kinodynamic systems. The
algorithm was implemented in C++ on a 200MHz SGI
Indigo2 with 128MB of memory. The systems considered
involve both non-rotating and rotating rigid objects in
2D and 3D with velocity and acceleration bounds obey-
ing Ls norms. The dynamic models were derived from
Newtonian mechanics of rigid bodies in non-gravity en-
vironments. All experiments utilized a simple metric on
X based on a weighted Euclidean distance for position
coordinates and their derivatives, along with a weighted
metric on unit quaternions for rotational coordinates and
their derivatives.

Planar Translating Body (dim X = 4) The first
experiment considered a rigid object with a set of trans-
lational controls that restrict its motion to a plane. A
total of 4 controls were used, consisting of a set of two
pairs of opposing forces acting through the center of mass
of the body. Figure 5 shows snapshots during various
stages of the computation. Anywhere between 500 and
2500 nodes are explored on average before a solution tra-
jectory is found, with total computation time ranging
between 5 and 15 seconds.

Planar Body with Rotation (dim X = 6) We ex-
tend the previous experiments to consider systems with

Figure 6. RRTs of 13,600 nodes and solution trajectory
for the planar body with unilateral thrusters that allow it to
rotate freely but translate only in the forward direction.

rotation. First, we consider the case of a rigid object
with two unilateral thrusters each producing a torque of
opposite sign, such as the one described in [18]. Each
thruster provides a line of force fixed in the body frame
that restricts its motion to a plane. This model is similar
to that of a hovercraft, navigating with drift. The state
space of this system has 6 degrees of freedom, but only 3
controls: translate forward, rotate clockwise, and rotate
counter-clockwise are provided. Figure 6 shows the RRT
after 13,600 nodes. The total computation time for this
example was 4.2 minutes.

Translating 3D Body (dim X = 6) We consider
the case of a free-floating rigid object, such as an unan-
chored satellite in space. The object is assumed to be
equipped with thruster controls to be used for translating
in a non-gravity environment. The satellite has three op-
posing pairs of thrusters along each of its principal axes
forming a set of six controls spanning a 6-dimensional
state space. The task is to thrust through a sequence
of two narrow passages amidst a collection of obstacles.
Figure 7 shows the RRTs generated during the planning
process, and Figure 8 shows the candidate solution found
after a total of 16,300 nodes were explored. The total
computation time for this case was 4.1 minutes.

3D Body with Rotation (dim X = 12) Finally,
we consider the case of a fully-orientable satellite model
with limited translation. The satellite is assumed to have
momentum wheels that enable it to orient itself along
any axis, and a single pair of opposing thruster controls
that allow it to translate along the primary axis of the
cylinder. This model has a 12-dimensional state space.
The task of the satellite, modeled as a rigid cylindrical
object, is to perform a collision-free docking maneuver
into the cargo bay of the space shuttle model amidst a



Figure 7. The RRTs computed for the task of navigating a
sequence of narrow passages for the 3D translation case.

cloud of obstacles. Figure 9 illustrates all trajectories ex-
plored during the planning process, and Figure 10 shows
the candidate solution found after 23,800 states were ex-
plored. The total computation time was 8.4 minutes.

6 Discussion

We believe randomized kinodynamic planning tech-
niques will prove useful in a wide array of applications
that includes robotics, virtual prototyping, and com-
puter graphics. We presented a state-space perspective
on the kinodynamic planning problem that is modeled
after the configuration-space perspective on basic path
planning. We then presented an efficient, randomized
planning technique that is particularly suited to the dif-
ficulties that arise in kinodynamic planning. We im-
plemented this technique and generated experiments for
hovercraft problems of up to 12 degrees-of-freedom. We
still consider this work to be in a preliminary stage, and
we are experimenting with different RRT-based variants
of the algorithm. Many more experiments will have to be
performed, on a wide array of dynamical systems, to as-
sess the full generality and adaptability of the approach.
The planning technique appears to generate good paths;
however, we make make no claims that the paths are
optimal or near optimal (this assumption is common for
path planning algorithms in C). One idea for further in-
vestigation might be to construct RRTs to find initial
trajectories, and then employ a variational technique to
optimize the trajectories (see, for example, [28]). We are
currently exploring the use of RRTs for other problems,
such as kinodynamic planning for automobiles).
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