
■ Agent-based systems technology has generated
lots of excitement in recent years because of its
promise as a new paradigm for conceptualizing,
designing, and implementing software systems.
This promise is particularly attractive for creating
software that operates in environments that are
distributed and open, such as the internet. Cur-
rently, the great majority of agent-based systems
consist of a single agent. However, as the technol-
ogy matures and addresses increasingly complex
applications, the need for systems that consist of
multiple agents that communicate in a peer-to-
peer fashion is becoming apparent. Central to the
design and effective operation of such multiagent
systems (MASs) are a core set of issues and research
questions that have been studied over the years by
the distributed AI community. In this article, I pre-
sent some of the critical notions in MASs and the
research work that has addressed them. I organize
these notions around the concept of problem-solv-
ing coherence, which I believe is one of the most
critical overall characteristics that an MAS should
exhibit.

Most researchers in AI to date have
dealt with developing theories, tech-
niques, and systems to study and

understand the behavior and reasoning
properties of a single cognitive entity. AI has
matured, and it endeavors to attack more com-
plex, realistic, and large-scale problems. Such
problems are beyond the capabilities of an
individual agent. The capacity of an intelligent
agent is limited by its knowledge, its comput-
ing resources, and its perspective. This bound-
ed rationality (Simon 1957) is one of the
underlying reasons for creating problem-solv-
ing organizations. The most powerful tools for
handling complexity are modularity and
abstraction. Multiagent systems (MASs) offer
modularity. If a problem domain is particularly
complex, large, or unpredictable, then the only
way it can reasonably be addressed is to devel-

op a number of functionally specific and (near-
ly) modular components (agents) that are spe-
cialized at solving a particular problem aspect.
This decomposition allows each agent to use
the most appropriate paradigm for solving its
particular problem. When interdependent
problems arise, the agents in the system must
coordinate with one another to ensure that
interdependencies are properly managed. 

Furthermore, real problems involve distrib-
uted, open systems (Hewitt 1986). An open sys-
tem is one in which the structure of the system
itself is capable of dynamically changing. The
characteristics of such a system are that its
components are not known in advance; can
change over time; and can consist of highly
heterogeneous agents implemented by differ-
ent people, at different times, with different
software tools and techniques. Perhaps the
best-known example of a highly open software
environment is the internet. The internet can
be viewed as a large, distributed information
resource, with nodes on the network designed
and implemented by different organizations
and individuals. In an open environment,
information sources, communication links,
and agents could appear and disappear unex-
pectedly. Currently, agents on the internet
mostly perform information retrieval and fil-
tering. The next generation of agent technolo-
gy will perform information gathering in con-
text and sophisticated reasoning in support of
user problem-solving tasks. These capabilities
require that agents be able to interoperate and
coordinate with each other in peer-to-peer
interactions. In addition, these capabilities will
allow agents to increase the problem-solving
scope of single agents. Such functions will
require techniques based on negotiation or
cooperation, which lie firmly in the domain of
MASs (Jennings, Sycara, and Wooldridge 1998;
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For example, in meeting scheduling, a schedul-
ing agent that manages the calendar of its user
can be regarded as autonomous and interact-
ing with other similar agents that manage cal-
endars of different users (Garrido and Sycara
1996; Dent et al. 1992). Such agents also can be
customized to reflect the preferences and con-
straints of their users. Other examples include
air-traffic control (Kinny et al. 1992; Cammara-
ta, McArthur, and Steeb 1983) and multiagent
bargaining for buying and selling goods on the
internet. 

Fourth is to provide solutions that efficiently
use information sources that are spatially dis-
tributed. Examples of such domains include
sensor networks (Corkill and Lesser 1983), seis-
mic monitoring (Mason and Johnson 1989),
and information gathering from the internet
(Sycara et al. 1996).

Fifth is to provide solutions in situations
where expertise is distributed. Examples of
such problems include concurrent engineering
(Lewis and Sycara 1993), health care, and man-
ufacturing. 

Sixth is to enhance performance along the
dimensions of (1) computational efficiency
because concurrency of computation is
exploited (as long as communication is kept
minimal, for example, by transmitting high-
level information and results rather than low-
level data); (2) reliability, that is, graceful recov-
ery of component failures, because agents with
redundant capabilities or appropriate intera-
gent coordination are found dynamically (for
example, taking up responsibilities of agents
that fail); (3) extensibility because the number
and the capabilities of agents working on a
problem can be altered; (4) robustness, the sys-
tem’s ability to tolerate uncertainty, because
suitable information is exchanged among
agents; (5) maintainability because a system
composed of multiple components-agents is
easier to maintain because of its modularity;
(6) responsiveness because modularity can han-
dle anomalies locally, not propagate them to
the whole system; (7) flexibility because agents
with different abilities can adaptively organize
to solve the current problem; and (8) reuse
because functionally specific agents can be
reused in different agent teams to solve differ-
ent problems.

MASs are now a research reality and are
rapidly having a critical presence in many
human-computer environments. My purpose
in this article is not to provide a detailed review
of the field; I leave this task to others (see, for
example, Huhns and Singh [1997], O’Hare and
Jennings [1996], Wooldridge and Jennings
[1995], Chaib-draa et al. [1992], and Bond and

O’Hare and Jennings 1996; Bond and Gasser
1988). 

It is becoming increasingly clear that to be
successful, increased research resources and
attention should be given to systems consist-
ing of not one but multiple agents. The distrib-
uted AI (DAI) community that started forming
in the early 1980s and was tiny compared to
mainstream, single-agent AI is rapidly increas-
ing. The growth of the MAS field is indis-
putable. 

Research in MASs is concerned with the
study, behavior, and construction of a collec-
tion of possibly preexisting autonomous
agents that interact with each other and their
environments. Study of such systems goes
beyond the study of individual intelligence to
consider, in addition, problem solving that has
social components. An MAS can be defined as
a loosely coupled network of problem solvers
that interact to solve problems that are beyond
the individual capabilities or knowledge of
each problem solver (Durfee and Lesser 1989).
These problem solvers, often called agents, are
autonomous and can be heterogeneous in
nature. 

The characteristics of MASs are that (1) each
agent has incomplete information or capabili-
ties for solving the problem and, thus, has a
limited viewpoint; (2) there is no system global
control; (3) data are decentralized; and (4)
computation is asynchronous. The motiva-
tions for the increasing interest in MAS
research include the ability of MASs to do the
following:

First is to solve problems that are too large
for a centralized agent to solve because of
resource limitations or the sheer risk of having
one centralized system that could be a perfor-
mance bottleneck or could fail at critical times.

Second is to allow for the interconnection
and interoperation of multiple existing legacy
systems. To keep pace with changing business
needs, legacy systems must periodically be
updated. Completely rewriting such software
tends to be prohibitively expensive and is
often simply impossible. Therefore, in the
short to medium term, the only way that such
legacy systems can remain useful is to incorpo-
rate them into a wider cooperating agent com-
munity in which they can be exploited by oth-
er pieces of software. Incorporating legacy
systems into an agent society can be done, for
example, by building an agent wrapper around
the software to enable it to interoperate with
other systems (Genesereth and Ketchpel 1994).

Third is to provide solutions to problems
that can naturally be regarded as a society of
autonomous interacting components-agents.
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Gasser [1988] for surveys). Rather than present
an in-depth analysis and critique of the field, I
instead briefly discuss some key topics and
indicate how they are interrelated. Where
appropriate, references to more detailed treat-
ments are provided. 

Multiagent System 
Issues and Challenges

Although MASs provide many potential advan-
tages, they also present many difficult chal-
lenges. Here, I present problems inherent in
the design and implementation of MASs. The
list of challenges includes problems first posed
in Bond and Gasser (1988), but I have added
some:

First, how do we formulate, describe, decom-
pose, and allocate problems and synthesize
results among a group of intelligent agents?

Second, how do we enable agents to com-
municate and interact? What communication
languages and protocols do we use? How can
heterogeneous agents interoperate? What and
when can they communicate? How can we
find useful agents in an open environment?

Third, how do we ensure that agents act
coherently in making decisions or taking
action, accommodating the nonlocal effects of
local decisions and avoiding harmful interac-
tions? How do we ensure the MAS does not
become resource bounded? How do we avoid
unstable system behavior?

Fourth, how do we enable individual agents
to represent and reason about the actions,
plans, and knowledge of other agents to coor-
dinate with them; how do we reason about the
state of their coordinated process (for example,
initiation and completion)?

Fifth, how do we recognize and reconcile
disparate viewpoints and conflicting inten-
tions among a collection of agents trying to
coordinate their actions?

Sixth, how do we engineer and constrain
practical DAI systems? How do we design tech-
nology platforms and development method-
ologies for MASs? 

Solutions to these problems are intertwined
(Gasser 1991). For example, different modeling
schemes of an individual agent can constrain
the range of effective coordination regimes;
different procedures for communication and
interaction have implications for behavioral
coherence. Different problem and task decom-
positions can yield different interactions. It is
arguable whether one can find a unique most
important dimension along which a treatment
of MASs can cogently be organized. Here, I
attempt to use the dimension of effective over-

all problem-solving coherence of an MAS as
the organizing theme. 

Ensuring that an MAS exhibits coherent col-
lective behavior while it avoids unpredictable
or harmful behavior (for example, chaos, oscil-
lation) is indeed a major challenge: By its very
nature, an MAS lacks global perspective, global
control, or global data. Coherence is a global
(or regional) property of the MAS that could be
measured by the efficiency, quality, and consis-
tency of a global solution (system behavior) as
well as the ability of the system to degrade
gracefully in the presence of local failures. Sev-
eral methods for increasing coherence have
been studied. These methods, along with issues
of single-agent structuring in an MAS, cover
the topics I want to survey here. 

Individual Agent Reasoning
Sophisticated individual agent reasoning can
increase MAS coherence because each individ-
ual agent can reason about nonlocal effects of
local actions, form expectations of the behav-
ior of others, or explain and possibly repair
conflicts and harmful interactions. Numerous
works in AI research try to formalize a logical
axiomatization for rational agents (see
Wooldridge and Jennings [1995]) for a survey).
This axiomatization is accomplished by for-
malizing a model for agent behavior in terms
of beliefs, desires, goals, and so on. These works
are known as belief-desire-intention (BDI) sys-
tems (see Rao and Georgeff [1991] and Shoham
[1993]). An agent that has a BDI-type architec-
ture has also been called deliberative. 

In my own work on the RETSINA multiagent
infrastructure, agents coordinate to gather
information in the context of user problem-
solving tasks. Each RETSINA agent is a BDI-type
agent that integrates planning, scheduling,
execution, information gathering, and coordi-
nation with other agents (Decker, Pannu, et al.
1997; Sycara et al. 1996). Each agent has a
sophisticated reasoning architecture that con-
sists of different modules that operate asyn-
chronously. 

The planning module takes as input a set of
goals and produces a plan that satisfies the
goals. The agent planning process is based on a
hierarchical task network (HTN) planning for-
malism. It takes as input the agent’s current set
of goals, the current set of task structures, and a
library of task-reduction schemas. A task-reduc-
tion schema presents a way of carrying out a task
by specifying a set of subtasks-actions and
describing the information-flow relationships
between them. (See Williamson, Decker, and
Sycara [1996]). The communication and coordina-
tion module accepts and interprets messages
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Reactive agents do not have representations
of their environment and act using a stimulus-
response type of behavior; they respond to the
present state of the environment in which they
are situated. They do not take history into
account or plan for the future. Through simple
interactions with other agents, complex global
behavior can emerge. This characteristic is a
strength of the approach because the agents do
not need to revise their world model as it
changes. Thus, robustness and fault tolerance
are two of the main properties of reactive sys-
tems. A group of agents can complete a task
even if one of them fails. However, purely reac-
tive systems suffer from two main limitations:
First, because purely reactive agents make deci-
sions based on local information, they cannot
take into consideration nonlocal information
or predict the effect of their decisions on global
behavior. Such myopic behavior could lead to
unpredictable and unstable system behavior
(Thomas and Sycara 1998; Huberman and
Hogg 1988). In reactive systems, the relation-
ship between individual behaviors, environ-
ment, and overall behavior is not understand-
able, which necessarily makes it hard to
engineer agents to fulfill specific tasks: One
must use a laborious process of experimenta-
tion, trial, and error to engineer an agent or an
MAS. Despite these disadvantages, reactive sys-
tems have advantages of speed (the sophisticat-
ed reasoning of deliberative agents can slow
them; hence, they are useful in rapidly chang-
ing environments). 

In fact, for most problems, neither a purely
deliberative nor a purely reactive architecture is
appropriate, but hybrid architectures can com-
bine aspects of both. Typically, these architec-
tures are realized as a number of software lay-
ers, each dealing with a different level of
abstraction. Most architectures find three lay-
ers sufficient. Thus, at the lowest level in the
hierarchy, there is typically a reactive layer,
which makes decisions about what to do based
on raw sensor input. The middle layer typically
abstracts away from raw sensor input and deals
with a knowledge-level view of the agent’s
environment, typically making use of symbolic
representations. The uppermost level of the
architecture tends to deal with the social
aspects of the environment. Coordination with
other agents is typically represented in the
uppermost layer. The way that the layers inter-
act with one another to produce the global
behavior of the agent differs from architecture
to architecture (Bonasso et al. 1996; Ferguson
1995, 1992; Müller and Pischel 1994). 

The area of agent architectures, particularly
layered architectures, continues to be an area

from other agents in KQML. Messages can con-
tain requests for services. These requests
become goals of the recipient agent. The sched-
uling module schedules each of the plan steps.
The agent scheduling process takes as input, in
general, the agent’s current set of plan instances
and, in particular, the set of all executable
actions and decides which action, if any, is to
be executed next. This action is then identified
as a fixed intention until it is actually carried
out (by the execution component). Agent-reac-
tivity considerations are handled by the execu-
tion-monitoring process. Execution monitor-
ing takes as input the agent’s next intended
action and prepares, monitors, and completes
its execution. The execution monitor prepares an
action for execution by setting up a context
(including the results of previous actions) for
the action. It monitors the action by optionally
providing the associated computation-limited
resources—for example, the action might be
allowed only a certain amount of time, and if
the action does not complete before the time is
up, the computation is interrupted, and the
action is marked as having failed. Failed actions
are handled by the exception-handling process.
The agent has a domain-independent library of
plan fragments (task structures) that are
indexed by goals as well as a domain-specific
library of plan fragments that can be retrieved
and incrementally instantiated according to
the current input parameters. 

Reactive agents have also been developed.
Reactive agents have their roots in Brooks’s
(1991) criticism of deliberative agents and his
assertions that (1) intelligence is the product of
the interaction of an agent and its environment
and (2) intelligent behavior emerges from the
interaction of various simpler behaviors orga-
nized in a layered way through a master-slave
relationship of inhibition (subsumption archi-
tecture). A different reactive architecture is
based on considering the behavior of an agent
as the result of competing entities trying to get
control over the actions of the agent. This idea
has its root in the society of the mind (Minsky
1986) and has been employed in different ways
by Maes (1990), Travers (1988), and Drogul and
Ferber (Ferber 1996; Drogul and Ferber 1992).
An agent is defined as a set of conflicting tasks
where only one can be active simultaneously. A
task is a high-level behavioral sequence as
opposed to the low-level actions performed
directly by actuators. A reinforcement mecha-
nism is used as a basic learning tool to allow the
agents to learn to be more efficient in tasks that
are often used. This architecture has been used
in the MANTA system to simulate the behavior of
ants (Ferber 1996). 
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of considerable research effort within the mul-
tiagent field. For example, there is ongoing
work to investigate the appropriateness of var-
ious architectures for different environment
types. It turns out to be hard to evaluate one
agent architecture against another, especially
within the context of an MAS. 

Organizations
An organization provides a framework for agent
interactions through the definition of roles,
behavior expectations, and authority relations.
Organizations are, in general, conceptualized
in terms of their structure, that is, the pattern
of information and control relations that exist
among agents and the distribution of problem-
solving capabilities among them. In coopera-
tive problem solving, for example (Corkill and
Lesser 1983), a structure gives each agent a high-
level view of how the group solves problems.
The structure should also indicate the connec-
tivity information to the agents so they can
distribute subproblems to competent agents. 

In open-world environments, agents in the
system are not statically predefined but can
dynamically enter and exit an organization,
which necessitates mechanisms for agent locat-
ing. This task is challenging, especially in envi-
ronments that include large numbers of agents
and that have information sources, communi-
cation links, and/or agents that might be
appearing and disappearing. Researchers have
identified different kinds of middle agent
(Decker, Sycara, and Williamson 1997) that
help agents find others. When an agent is
instantiated, it advertises its capabilities to a
middle agent. An agent that is looking to find
another that possesses a particular capability
(for example, can supply particular informa-
tion or achieve a problem-solving goal) can
query a middle agent. In the RETSINA infrastruc-
ture, there could be multiple middle agents,
not only in type but also in number. For exam-
ple, protocols have been developed for distrib-
uted matchmaking (Jha et al. 1998). 

Another perspective in DAI defines organiza-
tion less in terms of structure and more in
terms of current organization theory. For
example, Gasser (1986) views an organization
as a “particular set of settled and unsettled
questions about beliefs and actions through
which agents view other agents.” In this view,
an organization is defined as a set of agents
with mutual commitments, global commit-
ments, and mutual beliefs (Bond and Gasser
1988). An organization consists of a group of
agents, a set of activities performed by the
agents, a set of connections among agents, and
a set of goals or evaluation criteria by which

the combined activities of the agents are eval-
uated. The organizational structure imposes
constraints on the ways the agents communi-
cate and coordinate. Examples of organizations
that have been explored in the MAS literature
include the following: 

Hierarchy: The authority for decision mak-
ing and control is concentrated in a single
problem solver (or specialized group) at each
level in the hierarchy. Interaction is through
vertical communication from superior to sub-
ordinate agent, and vice versa. Superior agents
exercise control over resources and decision
making.

Community of experts: This organization is
flat, where each problem solver is a specialist in
some particular area. The agents interact by
rules of order and behavior (Lewis and Sycara
1993; Lander, Lesser, and Connell 1991).
Agents coordinate though mutual adjustment
of their solutions so that overall coherence can
be achieved. 

Market: Control is distributed to the agents
that compete for tasks or resources through
bidding and contractual mechanisms. Agents
interact through one variable, price, which is
used to value services (Müllen and Wellman
1996; Davis and Smith 1983; Sandholm 1993).
Agents coordinate through mutual adjustment
of prices.

Scientific community: This is a model of
how a pluralistic community could operate
(Kornfeld and Hewitt 1981). Solutions to prob-
lems are locally constructed, then they are
communicated to other problem solvers that
can test, challenge, and refine the solution
(Lesser 1991).

In open, dynamic environments, the issue of
organizational adaptivity is crucial. Organiza-
tions that can adapt to changing circumstances
by altering the pattern of interactions among
the different constituent agents have the
potential to achieve coherence in changing
and open environments. RETSINA exhibits orga-
nizational adaptivity through cooperation
mediated by middle agents. RETSINA agents find
their collaborators dynamically based on the
requirements of the task and on which agents
are part of the society at any given time, thus
adaptively forming teams on demand (Decker,
Williamson, and Sycara 1996a). 

Task Allocation
Task allocation is the problem of assigning
responsibility and problem-solving resources
to an agent. Minimizing task interdependen-
cies has two general benefits regarding coher-
ence: First, it improves problem-solving effi-
ciency by decreasing communication overhead
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assigned according to different crite-
ria, and it could alter its plan to
remove the interaction (avoid colli-
sion). Another approach to resolving
subproblem interdependencies that
result from an incomplete set of data
for each agent that could allow it to
solve a subproblem completely is the
FUNCTIONALLY ACCURATE MODEL (FA/C)
(Lesser 1991). In the FA/C model,
agents do not need to have all the nec-
essary information locally to solve
their subproblems but instead interact
through the asynchronous, coroutine
exchange of partial results. With the
FA/C model, a series of sophisticated
distributed control schemes for agent
coordination were developed, such as
the use of static metalevel information
specified by an organizational struc-
ture and the use of dynamic metalevel
information developed in partial glob-
al planning (PGP) (Durfee 1987). 

PGP is a flexible approach to coordi-
nation that does not assume any par-
ticular distribution of subproblems,
expertise, or other resources but,
instead, lets nodes coordinate in
response to current situations (Durfee
1987). Agent interactions take the
form of communicating plans and
goals at an appropriate level of
abstraction. These communications
enable a receiving agent to form
expectations about the future behav-
ior of a sending agent, thus improving
agent predictability and network
coherence (Durfee 1988). Because
agents are cooperative, the recipient
agent uses the information in the plan
to adjust its own local planning appro-
priately, so that the common planning
goals (and planning effectiveness cri-
teria) are met. Besides their common
PGPs, agents also have some common
knowledge about how and when to
use PGPs. Decker and Lesser (1995)
addressed some of the limitations of
the PGP by creating a generic PGP-
based framework called TAEMS to han-
dle issues of real time (for example,
scheduling to deadlines) and meta-
control (for example, to obviate the
need to do detailed planning at all
possible node interactions). TAEMS has
been used as a framework for evalua-
tion of coordination algorithms.

Another direction of research in
cooperative multiagent planning has

to CNP have been made by Sandholm
and Lesser (1995), where decommit-
ment penalties were introduced, and
by Sycara (1997), where the theory of
financial option pricing has been used
to achieve flexible contracting
schemes in uncertain environments.

Multiagent Planning
Agents can improve coherence by
planning their actions. Planning for a
single agent is a process of construct-
ing a sequence of actions considering
only goals, capabilities, and environ-
mental constraints. However, plan-
ning in an MAS environment also
considers the constraints that the oth-
er agents’ activities place on an agent’s
choice of actions, the constraints that
an agent’s commitments to others
place on its own choice of actions, and
the unpredictable evolution of the
world caused by other unmodeled
agents. 

Most early work in DAI has dealt
with groups of agents pursuing com-
mon goals (for example, Lesser [1991];
Lesser, Durfee, and Corkill [1989];
Durfee [1988]; Conry, Meyer and Less-
er [1988]; Cammarata, McArthur, and
Steeb [1983]). Agent interactions are
guided by cooperation strategies
meant to improve their collective per-
formance. Most work on multiagent
planning assumes an individual
sophisticated agent architecture that
enables them to do rather complex
reasoning. Early work on distributed
planning took the approach of com-
plete planning before action. To pro-
duce a coherent plan, the agents must
be able to recognize subgoal interac-
tions and avoid them or resolve them.
Early work by Georgeff (Rao and
Georgeff 1991) included a static agent
to recognize and resolve such interac-
tions. The agents sent this agent their
plan; the agent examined them for
critical regions where, for example,
contention for resources could cause
them to fail. The agent then inserted
synchronization messages (akin to
operating system semaphores) so that
one agent would wait till the resource
was released by another agent. In the
work by Cammarata on air-traffic con-
trol (Steeb et al. 1988; Cammarata,
McArthur, and Steeb 1983), the syn-
chronizing agent was dynamically

among the problem-solving agents.
Second, it improves the chances for
solution consistency by minimizing
potential conflicts. In the second case,
it also improves efficiency because
resolving conflicts can be a time-con-
suming process. 

The issue of task allocation was one
of the earliest problems to be worked
on in DAI research. On the one
extreme, the designer can make all the
task assignments in advance, thus cre-
ating a nonadaptive problem-solving
organization. This approach is limit-
ing and inflexible for environments
with a high degree of dynamism,
openness, and uncertainty. However,
one can do task allocation dynamical-
ly and flexibly. The issue of flexible
allocation of tasks to multiple agents
received attention early on (Davis and
Smith 1983). Davis and Smith’s work
resulted in the well-known CONTRACT

NET PROTOCOL (CNP). In this protocol,
agents can dynamically take two roles:
(1) manager or (2) contractor. Given a
task to perform, an agent first deter-
mines whether it can break it into sub-
tasks that can be performed concur-
rently. It utilizes the protocol to
announce the tasks that could be
transferred and requests bids from
agents that could perform any of these
tasks. An agent that receives a task-
announcement message replies with a
bid for the task, indicating how well it
thinks it can perform the task. The
contractor collects the bids and
awards the task to the best bidder. The
CNP allows nodes to broadcast bid
requests to all others. The CNP was sub-
sequently used to control factory floor
operations (Parunak 1987). Although
CNP was considered by Smith and
Davis and many DAI researchers to be
a negotiation principle, it is a coordi-
nation method for task allocation. CNP

enables dynamic task allocation,
allows agents to bid for multiple tasks
at a time, and provides natural load
balancing (busy agents need not bid).
Its limitations are that it does not
detect or resolve conflicts, the manag-
er does not inform nodes whose bids
have been refused, agents cannot
refuse bids, there is no preemption in
task execution (time-critical tasks
might not be attended to), and it is
communication intensive. Extensions
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been focused on modeling teamwork
explicitly. Explicit modeling of team-
work is particularly helpful in dynam-
ic environments where team members
might fail or be presented with new
opportunities. In such situations, it is
necessary that teams monitor their
performance and reorganize based on
the situation. 

The joint-intentions framework
(Cohen and Levesque 1990) focuses
on characterizing a team’s mental
state, called a joint intention. A team
jointly intends a team action if the
team members are jointly committed
to completing the team action while
mutually believing they were doing it.
A joint commitment is defined as a joint
persistent goal. To enter into a joint
commitment, all team members must
establish appropriate mutual beliefs
and commitments, which is done
through an exchange of request and
confirm speech acts (Cohen and
Levesque 1990). The commitment
protocol synchronizes the team in
that all members simultaneously enter
into a joint commitment toward a
team task. In addition, all team mem-
bers must consent, using confirma-
tion, to the establishment of a joint
commitment goal. If a team member
refuses, negotiation could be used;
however, how it is done remains an
open issue. 

The model of SHAREDPLAN (Grosz and
Kraus 1996; Grosz and Sidner 1990) is
not based on a joint mental attitude
but rather on a new mental attitude
intending that an action be done.
Intending is defined using a set of
axioms that guide a teammate to take
action or enter into communication
that enables or facilitates its team-
mates to perform assigned tasks. COL-
LAGEN (Rick and Sidner 1997) is a pro-
totype toolkit, which has its origins in
SHAREDPLAN, and is applied to building
a collaborative interface agent that
helps with air-travel arrangements.
Jennings (1995) presented a frame-
work called joint responsibility based
on a joint commitment to a team’s
joint goal and a joint recipe commit-
ment to a common recipe. This model
was implemented in the GRATE system. 

Tambe (1997) presents a model of
teamwork, called STEAM (a shell for
TEAMWORK), based on enhancements to

the SOAR architecture (Newell 1990),
plus a set of about 300 domain-inde-
pendent SOAR rules. Based on the team-
work operationalized in STEAM, three
applications have been implemented,
two that operate in a commercially
available simulation for military train-
ing and the third that is part of
ROBOCUP synthetic soccer. STEAM uses a
hybrid approach that combines joint
intentions (Cohen and Levesque
1990) but also uses partial SHAREDPLANS

(Grosz and Kraus 1996). 
Increasingly, the emphasis of multi-

agent planning has been on flexible
communication and action execution
in complex, dynamic environments,
including agents that might be hostile
or at least self-interested (Veloso et al.
1997) and perform well in dynamical-
ly changing environments (Kinny et
al. 1992).

Recognizing and 
Resolving Conflicts
Because MASs lack global viewpoints,
global knowledge, and global control,
there is the potential for disparities
and inconsistencies in agents’ goals,
plans, knowledge, beliefs, and results.
To achieve coherent problem solving,
these disparities must be recognized
and resolved. Disparities can be
resolved by making an agent omni-
scient so it can see the states of all
agents and determine where the dis-
parities lie and how to resolve them.
This approach is limiting because it
makes this agent a bottleneck and a
single point of failure. To detect and
correct disparities and conflicts using
only local perspective is difficult. To
facilitate detection and resolution of
conflicts, agents can rely on models of
the world and other agents. Disparity
resolution can be influenced by the
organizational structure of the agent
society and an agent’s role within it,
the kinds of models an agent has, and
the agent’s reasoning algorithms. 

The main approach for resolving
disparities in an MAS is negotiation.
Before I treat negotiation in some
detail, I present some less often used
approaches that are organized in
Gasser (1992). They include (1)
assumption surfacing, where inconsis-
tent propositions can be backed up to
their assumptions (Huhns and Bridge-

land 1991; Mason and Johnson 1989);
(2) evidential reasoning and argumen-
tation, where it might be possible to
construct arguments in support of a
particular perspective (Loui 1987;
Hewitt 1986, Kornfeld and Hewitt
1981; Lesser and Corkill 1981), or it
might be possible to construct persua-
sive arguments to change the inten-
tions, beliefs, preferences, and actions
of a persuadee (Sycara 1990b) so that
effective plans and solutions can be
produced; (3) constraint relaxation,
where conflicting constraints can be
resolved by relaxing them (Liu and
Sycara 1997; Sycara et al. 1991) or
reformulating the problem to elimi-
nate the constraints (Sycara 1991);
and (4) social norms that impose some
sort of common standard of behavior,
which when adhered to can lead to
conflict avoidance (Castelfranchi,
Miceli and Cesta 1992). Social norms
and standards, although helping avoid
conflicts, can impede adaptation. 

Negotiation is seen as a method for
coordination and conflict resolution
(for example, resolving goal disparities
in planning, resolving constraints in
resource allocation, resolving task
inconsistencies in determining organi-
zational structure). Negotiation has
also been used as a metaphor for com-
munication of plan changes, task allo-
cation (for example, CNP), or central-
ized resolution of constraint
violations. Hence, negotiation is
almost as ill defined as the notion of
agent. I give here what I consider as
the main characteristics of negotiation
that are necessary for developing
applications in the real world: (1) the
presence of some sort of conflict that
must be resolved in a decentralized
manner by (2) self-interested agents
under conditions of (3) bounded ratio-
nality and (4) incomplete informa-
tion. Furthermore, the agents commu-
nicate and iteratively exchange
proposals and counterproposals. 

My PERSUADER system (1990b, 1988,
1987) and work by Rosenschein
(Rosenschein and Zlotkin 1994;
Rosenschein and Genesereth 1985;
Zlotkin and Rosenschein 1991) are the
first AI research on negotiation among
self-interested agents. The two
approaches differ in their assump-
tions, motivations, and operational-
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agent about others’ knowledge,
beliefs, and goals that are useful in
planning when and what to commu-
nicate or allowing coordination with-
out communication. The ability to
model others increases an agent’s flex-
ibility. Instead of operating on the
basis of a fixed protocol of interaction,
modeling others allows the agent to
change the pattern of interaction.
Having a model allows an agent to
infer events or behaviors of the other
agent that it cannot sense directly.
Several typical components of agent
models are commitments, capabilities,
resources, beliefs, plans, and organiza-
tional knowledge. We saw already how
explicit commitments to joint activity
are the cornerstone of models of team-
work. In my own work on the RETSINA

multiagent infrastructure, commit-
ment of an agent to performing a task
is not communicated explicitly to oth-
ers but is implicit in its advertisement
to a middle agent. An agent’s adver-
tisement describes its capabilities, that
is, the set of services it can provide to
others. For example, the advertise-
ment of an information agent express-
es the set of queries that the agent is
capable of answering. In this way, an
agent that needs a particular service
can, through asking a middle agent,
find out who is capable of providing
the service and can contact the service
provider(s). Thus, an agent’s advertise-
ment is the model of itself it makes
available to the agent society. Thus,
for example, instead of agent X either
having a model of agent Y built into it
at design time or having to infer it,
agent Y makes its capability model
available to agent X through an adver-
tisement to a middle agent. These two
ways would be infeasible and extreme-
ly time consuming for agents in large-
scale and open environments such as
the internet. Providing a model of
oneself, however, is a solution that is
scalable and works in an open envi-
ronment. If the agent goes down, it
“unadvertises”; that is, it lets it be
known that it is no longer a member
of the society. 

Managing Communication
Agents can improve the coherence of
their problem solving by planning the
content, amount, type, and timing of

final agreement that is reached. The
main conclusion is that delaying
agreements causes inefficiency in the
negotiation. 

Liu and Sycara (1994) and Garrido
and Sycara (1996) have modeled nego-
tiation as a constraint-relaxation
process where the agents are self-inter-
ested in the sense that they would like
to achieve an agreement that gives
them the highest utility but are also
cooperative in the sense that they are
willing to accept lower utility to facil-
itate reaching an agreement. The
agents communicate their constraints
through proposals and counterpropos-
als. The application domain of the
work has been a distributed meeting
scheduling. In Garrido and Sycara
(1996), experimental results were
obtained to study the scheduling effi-
ciency and quality of the agreed-on
final schedule under various condi-
tions of information privacy and pref-
erence structures of the participants. 

Because electronic commerce is
rapidly becoming a reality, the need
for negotiation techniques that take
into consideration the complexities of
the real world, such as incomplete
information, multiple negotiation
issues, negotiation deadlines, and the
ability to break contracts, will critical-
ly be needed. Work in nonbinding
contracts includes Sandholm and Less-
er (1995), where decommitment pen-
alties were introduced into the CNP,
and my work (Sycara 1997), where
financial option pricing has been used
to model the value of a contingent
contract and calculate optimal values
of different contracting parameters of
a contingent contract, such as when to
give a contract to a contractee, when
to break a contract, and which con-
tract to accept of a set of offered con-
tracts.

Modeling Other Agents
Agents can increase the accuracy and
efficiency of their problem solving if
they are given knowledge about other
agents or the ability to model and rea-
son about others. They can utilize this
knowledge to predict possible conflicts
and interpret, explain, and predict the
other agents’ actions under varying
circumstances. In addition, modeling
others provides information to an

ism. The work of Rosenschein was
based on game theory. Utility is the
single issue that the agents consider,
and the agents are assumed omni-
scient. Utility values for alternative
outcomes are represented in a payoff
matrix that is common knowledge to
both parties in the negotiation. Each
party reasons about and chooses the
alternative that will maximize its util-
ity. Despite the mathematical elegance
of game theory, game-theoretic mod-
els suffer from restrictive assumptions
that limit their applicability to realistic
problems.1 Real-world negotiations are
conducted under uncertainty, they
involve multiple criteria rather than a
single utility dimension, the utilities
of the agents are not common knowl-
edge but private, and the agents are
not omniscient. 

PERSUADER (Sycara 1990a) is an
implemented system that involves
three agents—(1) a union, (2) a com-
pany, and (3) a mediator—and it oper-
ates in the domain of labor negotia-
tion. It is inspired by human
negotiation. It models iterative
exchange of proposals and counter-
proposals for the parties to reach
agreement. The negotiation involves
multiple issues, such as wages, pen-
sions, seniority, and subcontracting.
Each agent’s multidimensional utility
model is private (rather than com-
mon) knowledge. Belief revision to
change the agents’ utilities so that
agreement can be reached is done
through persuasive argumentation
(Sycara 1990b). In addition, case-based
learning is also incorporated in the
model. The negotiation model of PER-
SUADER has also been applied to the
domain of concurrent engineering
(Lewis and  Sycara 1993). Parsons and
Jennings (1996) have followed the for-
malism described in Kraus, Nirke, and
Sycara (1993) to construct arguments
to evaluate proposals and counterpro-
posals in negotiation. 

Work by Kraus, Wilkenfeld, and
Zlotkin (1995) focuses on the role of
time in negotiation. Using a distrib-
uted mechanism, the agents conduct
negotiation and can reach efficient
agreements without delays. It is also
shown that the individual approach of
each agent toward the negotiation
time affects and even determines the
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the communication they exchange. It
has been noted (Durfee, Lesser, and
Corkill 1987) that using abstraction
and metalevel information (for exam-
ple, organizational knowledge) is help-
ful because they help decrease com-
munication overhead. In dynamic and
open environments, inhabited by het-
erogeneous agents, additional issues
need to be faced. The most prominent
among them is agent interoperability. 

Agents are populating the internet
at a rapid pace. These agents have dif-
ferent functions (capabilities). There
can, however, be many agents with
the same functions (for example,
many information agents provide
financial news). Agents can increase
their problem-solving scope by coop-
eration. In an open environment, het-
erogeneous agents that would like to
coordinate with each other (either
cooperate or negotiate, for example)
face two major challenges: First, they
must be able to find each other (in an
open environment, agents might
appear and disappear unpredictably),
and second, they must be able to inter-
operate. 

To address the issue of finding
agents in an open environment such
as the internet, middle agents (Decker,
Williamson, and Sycara 1996b) have
been proposed. Different agent types
were identified and implemented
(Decker, Sycara, and Williamson
1997). These types include matchmak-
ers or yellow page agents that match
advertisements to requests for adver-
tised capabilities, blackboard agents
that collect requests, and brokers that
process both. In preliminary experi-
ments (Decker, Sycara, and Wil-
liamson 1997), it was seen that the
behaviors of each type of middle agent
have certain performance characteris-
tics; for example, although brokered
systems are more vulnerable to certain
failures, they are also able to cope
more quickly with a rapidly fluctuat-
ing agent work force. Middle agents
are advantageous because they allow a
system to operate robustly in the face
of agent appearance and disappear-
ance and intermittent communica-
tions. 

To allow agents to interoperate,
communication languages, such as
KQML (Finin et al. 1994) and the one

developed by Cohen and his col-
leagues (Smith and Cohen 1996) that
provide a set of performatives based
on speech acts, have been designed.
Although such performatives can
characterize message types, efficient
languages to express message content
that allows agents to understand each
other have not been demonstrated
effectively (although KIF [Genesereth
and Ketchpel 1994] has been pro-
posed). The ontology problem, that is,
how agents can share meaning, is still
open (Gruber 1993).

Managing Resources
Another critical issue is effective allo-
cation of limited resources to multiple
agents. For example, we have all expe-
rienced large time lags in response to
internet queries because of network
congestion. 

Various approaches have been
developed for effective resource alloca-
tion to multiple agents. Some of them
hail from operations research–based
techniques for single-agent schedul-
ing, and others use market-oriented
approaches. In the first category of
approaches, I mention distributed con-
straint heuristic search (Sycara et al.
1991), which combines decentralized
search with constraint satisfaction and
optimization. The method relies on
(1) a set of variable and value-ordering
heuristics that quantify several charac-
teristics of the space being searched
and (2) a communication protocol
that allows the agents to coordinate in
an effective manner. Another distrib-
uted scheduling model exploits a large
number of simple agents by partition-
ing problem constraints and assigning
them to specialized agent classes. This
methodology was applied to solve job-
shop–scheduling constraint-satisfac-
tion and constraint-optimization
problems (Liu and Sycara 1997, 1995a,
1995b) with good results on standard

benchmark problems from the opera-
tions research literature in problem
scalability (as many as 5000 agents),
computational efficiency, and high-
solution quality under different opti-
mization criteria (for example, the
minimization of makespan, weighted
tardiness, and so on) (Liu and Sycara
1993). 

Economics-based mechanisms have
been utilized in MASs to address prob-
lems of resource allocation (the central
theme of economic research). Eco-
nomics-based approaches, such as
market mechanisms, are becoming
increasingly attractive to MAS re-
searchers because of the ready avail-
ability of underlying formal models
and their potential applicability in
internet-based commerce. In econom-
ics-based approaches, agents are
assumed to be self-interested utility
maximizers. In markets, agents that
control scarce resources (labor, raw
materials, goods, money) agree to
share by exchanging some of their
respective resources to achieve some
common goal. Resources are ex-
changed with or without explicit
prices. Market mechanisms have been
used for resource allocation (Müllen
and Wellman 1996; Huberman and
Clearwater 1995; Sandholm 1993).
Markets assume that the exchange
prices are publicly known. In auctions,
there is a central auctioneer through
which coordination happens. Hence,
the agents exchange minimal amounts
of information. 

It is probable that in the future,
most agents will be self-interested. A
self-interested agent simply chooses a
course of action that maximizes its
own utility. In a society of self-inter-
ested agents, it is desired that if each
agent maximizes its local utility, the
whole society exhibits good behavior;
in other words, good local behavior
implies good global behavior. The goal
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learn, the joint system utility is near
optimal, and agents’ individual utili-
ties are similar; (2) when no agent
learns, the agents’ individual utilities
are almost equal, but the joint utility is
low (much lower than in the all-
agents- learn condition); and (3) when
only one agent learns, its individual
utility increases at the expense of both
the individual utility of the other
agents as well as the overall joint util-
ity of the system (that is, only one
agent learning has a harmful overall
effect) (Zeng and Sycara 1998, 1997). A
survey of multiagent learning can be
found in Stone and Veloso (1997).

Multiagent System 
Applications

The first MAS applications appeared in
the mid-1980s and increasingly cover
a variety of domains, ranging from
manufacturing to process control, air-
traffic control, and information man-
agement. I give here a few representa-
tive examples. For a more detailed
description of agent-based applica-
tions, see Jennings et al. (1998) and
Chaib-draa (1995). 

One of the earliest MAS applications
was distributed vehicle monitoring
(DVMT) (Durfee 1996, 1987; Durfee
and Lesser 1989), where a set of geo-
graphically distributed agents monitor
vehicles that pass through their
respective areas, attempt to come up
with interpretations of what vehicles
are passing through the global area,
and track vehicle movements. The
DVMT has been used as an MAS test
bed. 

Parunak (1987) describes the YAMS

(YET ANOTHER MANUFACTURING SYSTEM)
system, which applies the CNP to man-
ufacturing control. The basic problem
can be described as follows: A manu-
facturing enterprise is modeled as a
hierarchy of functionally specific work
cells. These work cells are further
grouped into flexible manufacturing
systems (FMSs) that collectively consti-
tute a factory. The goal of YAMS is to
efficiently manage the production
process of these factories. To achieve
this complex task, YAMS adopts a mul-
tiagent approach, where each factory
and factory component is represented
as an agent. Each agent has a collec-

the environment effectively changes
as other agents learn. Moreover, other
agents’ actions are often not directly
observable, and the action taken by
the learning agent can strongly bias
which range of behaviors is encoun-
tered. In Hu and Wellman (1996), an
agent’s belief process is characterized
in terms of conjectures about the
effect of its actions. A conjectural equi-
librium is then defined where all
agents’ expectations are realized, and
each agent responds optimally to its
expectations. An MAS is presented
where an agent builds a model of the
response of others. Reported experi-
mental results show that depending
on the starting point, an agent might
be better or worse off than had it not
attempted to learn a model of the oth-
er agents. Such equivocal results have
also been observed in computational
ecosystems (Huberman and Hogg
1988), where a large number of simple
agents operate asynchronously with-
out central control and compete for
resources, with incomplete knowledge
and delayed information. Kephart,
Hogg, and Huberman (1989) per-
formed experimental simulations and
verified some of the previous theoreti-
cal results; thus, for certain parameter
settings, these systems exhibit behav-
ior characterized by fixed points, oscil-
lation, and even chaos. Complex
behavior thus can be exhibited by sim-
ple computational ecosystems. En-
hancing the decision-making abilities
of some of the individuals in the sys-
tem can either improve or severely
degrade overall system performance. 

Recently, there has been increasing
interest in integrating learning into
the negotiation process (for example,
Sen [1996]). Zeng and Sycara (1997)
have developed an economic bargain-
ing negotiation model, BAZAAR, where
the agents are self-interested. The
model emphasizes the learning
aspects. The agents keep histories of
their interactions and update their
beliefs, using Bayesian updating, after
observing their environment and the
behavior of the other negotiating
agents. The benefits of learning, if any,
on the individual utilities of agents, as
well as the overall (joint) system utili-
ty, were examined. The experimental
results suggest that (1) when all agents

is to design mechanisms for self-inter-
ested agents such that if agents follow
these mechanisms, the overall system
behavior will be acceptable, which is
called mechanism design. Many prob-
lems face such a society of self-inter-
ested agents: First, agents might
overuse and, hence, congest a shared
resource, such as a communications
network. This problem is called the
tragedy of the commons (Hardin 1968).
Generally, the problem of tragedy of
commons is solved by pricing or tax-
ing schemes. 

Second, a society of self-interested
computational agents can exhibit
oscillatory or chaotic behavior
(Thomas and Sycara 1998; Huberman
and Hogg 1988). The experimental
results show that imperfect knowledge
suppresses oscillatory behavior at the
expense of reducing performance.
Moreover, systems can remain in
nonoptimal metastable states for
extremely long times before getting to
the globally optimal state. In Thomas
and Sycara (1998), a similar problem is
considered. Two approaches are evalu-
ated: (1) heterogeneous preferences
and (2) heterogeneous transaction
costs; empirically, the transaction cost
case provides stability with near-opti-
mal payoffs under certain conditions. 

Third, agents might be untruthful
or deceitful to increase their individ-
ual utility. Lying and deceitfulness can
have harmful effects on the whole
society. Mechanism design techniques
have been reported that make it bene-
ficial for agents to report the truth
(Myerson 1989). Another body of
research explores the effective alloca-
tion of computational resources and
load-balancing issues. In Shehory, Jha,
and Sycara (1997), agent-cloning and
agent-merging techniques were devel-
oped as a way to mitigate agent over-
loading and promote system load bal-
ancing.

Adaptation and Learning
MAS adaptivity to changing circum-
stances by altering the problem-solv-
ing behavior of individual agents or
the patterns of agent interactions pro-
vides the potential for increasing
problem-solving coherence. 

Learning in a multiagent environ-
ment is complicated by the fact that
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tion of plans representing its capabili-
ties. The CNP allows tasks (that is, pro-
duction orders) to be delegated to indi-
vidual factories, and from individual
factories down to FMSs, and then to
individual work cells. Other systems in
this area include those for configura-
tion design of manufacturing products
(Darr and Birmingham 1996) and col-
laborative design (Cutkosky et al.
1993). 

The best-known MAS for process
control is ARCHON, a software platform
for building MASs and an associated
methodology for building applications
with this platform (Jennings, Corera,
and Laresgoiti 1995). ARCHON has been
applied in several process-control
applications, including electricity
transportation management (the
application is in use in northern
Spain) and particle accelerator control.
ARCHON also has the distinction of
being one of the world’s earliest field-
tested MASs. Other agent-based
process-control systems have been
written for monitoring and diagnos-
ing faults in nuclear power plants
(Wang and Wang 1997), spacecraft
control (Schwuttke and Quan 1993),
and climate control (Huberman and
Clearwater 1995). 

Ljunberg and Lucas (1992) describe
a sophisticated agent-based air-traffic
control system known as OASIS. In this
system, which is undergoing field tri-
als at the Sydney, Australia, airport,
agents are used to represent both air-
craft and the various air-traffic control
systems in operation. The agent
metaphor thus provides a useful and
natural way of modeling real-world
autonomous components. As an air-
craft enters Sydney airspace, an agent
is allocated for it, and the agent is
instantiated with the information and
goals corresponding to the real-world
aircraft. For example, an aircraft might
have a goal to land on a certain run-
way at a certain time. Air-traffic con-
trol agents are responsible for manag-
ing the system. OASIS is implemented
using the Australian Artificial Intelli-
gence Institute’s own BDI model of
agency (DMARS).

The WARREN financial portfolio man-
agement system (Sycara et al. 1996) is
an MAS that integrates information
finding and filtering from the internet

in the context of supporting a user
manage his/her financial portfolio.
The system consists of agents that
cooperatively self-organize to monitor
and track stock quotes, financial news,
financial analyst reports, and company
earnings reports to appraise the portfo-
lio owner of the evolving financial pic-
ture. The agents not only answer rele-
vant queries but also continuously
monitor internet information sources
for the occurrence of interesting events
(for example, a particular stock has
gone up past a threshold) and alert the
portfolio manager agent or the user.
WARREN also includes agents that ana-
lyze user buy and sell decisions with
respect to asset allocations and risk
(Sycara, Decker, and Zeng 1998). 

In addition, there are a variety of
MAS applications in telecommunica-
tions. In one such application (Weih-
mayer and Velthuijsen 1994), Griffeth
and Velthuijsen use negotiating agents
to tackle the feature interaction prob-
lem by utilizing negotiating agents to
represent the different entities that are
interested in the set up of a call. When
conflicts are detected, the agents nego-
tiate with one another to resolve them
so that an acceptable call configura-
tion can be established. Other prob-
lems for which agent-based systems
have been constructed include net-
work control, transmission and
switching, service management, and
network management.

Conclusions
Designing and building agent systems
is difficult. They have all the problems
associated with building traditional
distributed, concurrent systems and
have the additional difficulties that
arise from having flexible and sophis-
ticated interactions between auton-
omous problem-solving components.
The big question then becomes one of
how effective MASs can be designed
and implemented.

At this time, there are two major
technical impediments to the wide-
spread adoption of multiagent tech-
nology: (1) the lack of a systematic
methodology enabling designers to
clearly specify and structure their
applications as MASs and (2) the lack
of widely available industrial-strength

MAS toolkits.2 Flexible sets of tools are
needed that enable designers to speci-
fy an agent’s problem-solving behav-
ior, specify how and when agents
should interact, and visualize and
debug the problem-solving behavior
of the agents and the entire system. 

The other major impediment to the
widespread adoption of agent tech-
nology has a social, as well as a tech-
nical, aspect. For individuals to be
comfortable with the idea of delegat-
ing tasks to agents, they must first
trust them (Bradshaw 1997; Maes
1994). The process of mutual adjust-
ment between user and agents (both
in terms of the agent learning user
preferences but also in terms of the
user learning agents’ capabilities and
limitations) takes time. During this
period, agents must strike a balance
between continually seeking guidance
(and needlessly distracting the user)
and never seeking guidance (and
exceeding their authority). 
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Notes
1. It should be noted that some of the very
recent game-theoretic models are directly
motivated by considerations of dropping or
relaxing some of these assumptions.
Although there has been interesting
progress reported in the literature (for
example, Jordan [1992]), the fundamental
framework and methodology of game the-
ory remains almost the same, and it might
be too early to tell whether these new
results will reshape the current game-theo-
retic framework.

2. Existing technologies such as CORBA are
at a low level and, thus, unable to provide
the support needed for the structuring of
flexible multiagent systems.
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