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Abstract— Robustness is crucial for any robot team, especially 
when operating in dynamic environments.  The physicality of 
robotic systems and their interactions with the environment 
make them highly prone to malfunctions of many kinds.  Three 
principal categories in the possible space of robot malfunctions 
are communication failures, partial failure of robot resources 
necessary for task execution (or partial robot malfunction), and 
complete robot failure (or robot death).  This paper addresses 
these three categories and explores means by which the 
TraderBots approach ensures robustness and promotes graceful 
degradation in team performance when faced with malfunctions.  

Keywords-multirobot coordination; robustness; dynamic 
environments; communication failures; partial malfunctions; robot 
death; market-based. 

I. INTRODUCTION 

Many multirobot applications demand some level of 
robustness to malfunctions.  The requirement for robustness 
becomes increasingly important when the application domain 
requires the robots to interact within a highly dynamic 
environment, and where prior information about the 
environment is sparse.  Applications such as urban 
reconnaissance, urban search and rescue, planetary exploration, 
and hazardous cleanup inherently include hazardous conditions 
that will cause robotic malfunctions with high probability.  Key 
to the success of these applications is the team’s ability to 
gracefully degrade their performance and maximize the 
efficiency with which the available resources are used to 
complete the task.  Multirobot coordination approaches deal 
with malfunctions in different ways.  The three main categories 
of malfunctions, and multirobot coordination approaches that 
account for these malfunctions are explored next.   

A. Communication Failures 

Communication failures are abundant in many application 
domains.  These failures can vary from occasional loss of 
messages to complete loss of communication.  Different 
approaches handle losses in communication using a variety of 
strategies.  As described by Balch and Arkin [1], some 
approaches forego communication altogether and robots make 
action decisions entirely independent of decisions made by 
teammates. Other approaches forego explicit communication, 

but instead, coordinate team actions by basing action selection 
on observed environmental clues [1], anticipated actions of 
teammates [13], socially attentive monitoring of teammates 
[7], or pre-defined rules, triggered by environmental cues or 
observation of specific team formations or actions [11].  None 
of these coordination approaches are affected by failures in 
communication.  However, they are also unable to effectively 
use information that can improve team performance if shared 
with teammates. Vail and Veloso [13] show that teams can 
perform more effectively if teammates coordinate and share 
information.   

If the robots explicitly communicate with each other, there 
are still several methods to ensure graceful degradation in 
performance with communication failures and limitations.  
Stone and Veloso [11] present a set of techniques for dealing 
with communication-based coordination of robot teams in 
adversarial environments with unreliable, high-cost 
communication.  However, not all domains are adversarial.  
Parker’s ALLIANCE architecture [8] does not reason about 
hostile agents, but encourages fault tolerance in several ways. 
A method to ensure robustness to message loss in less stringent 
application domains is the use of acknowledgements, as in the 
original Contract Net Protocol by Smith [9].  While this 
approach adds a level of robustness to message loss, some 
limitations are evident.  The acknowledgement can be lost as 
easily as the message, the acknowledgements add to the 
communication load, and the approach does not explicitly deal 
with the scenario of complete loss of communication. 

B. Partial Robot Malfunction 

Relatively little work has been done to investigate efficient 
use of partially malfunctioning robots. When a robot 
malfunctions partially, it loses the ability to effectively use 
some of its resources but retains the ability to use others.  
Inherent in this definition of partial malfunction is the robot’s 
ability to plan for itself or the ability to communicate with a 
planning agent; if the robot loses this capability, it is 
considered dead.  One of the difficulties in dealing with partial 
robot malfunctions is detecting the malfunction.  A host of 
literature on fault detection and identification demonstrate 
different techniques that enable robots to detect and identify 
their own faults.  However, relatively little work has been 



done to address handling detected faults in a team.  
Techniques such as socially attentive monitoring [7] and 
regular monitoring of the task/environment state and adapting 
to it [6] allow teammates to discover faults that the robot 
cannot detect itself. Once a fault is detected, fewer techniques 
have been proposed to deal with them.  Bererton and Khosla 
([2] and [3]) analyze the merits and challenges of repairing 
robots when failures are detected.   

Many reactive and behavioral approaches ([1] and [8]) are 
resilient to partial robot malfunctions because robots execute 
tasks independently of what other team members do, and hence 
all tasks with no specific time deadlines are accomplished as 
long as at least one capable robot remains active.  Gerkey [6] 
demonstrates a fault-tolerant auction scheme that decomposes a 
cooperative box-pushing task into short-duration pusher and 
watcher/coordinator tasks.  Since the tasks span only a short 
duration, the team re-evaluates the progress of the task 
frequently and thus recovers from faults by reassigning short 
duration tasks designed to adapt to the most current state. 
However, these approaches do not reason about efficient 
utilization of remaining active resources of the partially 
malfunctioning robots.    

C. Robot Death 

Robot death is similar to the case of partial robot 
malfunction, except that the affected robot cannot aid in the 
recovery from the malfunction in any way.  Most of the 
research in fault tolerance ([6] and [8]) deals with robot death. 
As with partial robot malfunctions, many reactive and 
behavioral approaches are resilient to robot death.   

The detection problem is more difficult for robot death 
since the dead robot cannot detect its own death and reallocate 
its tasks.  A common method of detecting robot death is to 
monitor a heartbeat (a periodic signal) from robots and assume 
the robot is dead if the heartbeat is not detected.  Other 
methods of monitoring, such as socially attentive monitoring 
[7], can also be used to detect the death of teammates. Once a 
dead robot is discovered, any tasks assigned to that robot must 
be reassigned to other capable robots or the dead robot must be 
repaired.  Bererton’s and Khosla’s work on robot repair ([2] 
and [3]) can be applicable to some cases of robot death.  Note 
that in the cases where malfunctioning robots or dead robots 
can be repaired and return to the team, the coordination 
approach needs to be fluid in order to accommodate both the 
exit of the dead robots and the entrance of the repaired robots. 

D. Contribution 

The contribution of this paper is two-fold.  First, this paper 
identifies three principal categories of robotic failures: 
communication failures, partial robot malfunctions, and robot 
death, and presents the most comprehensive study of 
robustness of robot teams executing cooperative tasks in 
dynamic environments.  Second, this paper details an 
implementation of the TraderBots approach, capable of 
gracefully handling all three identified categories of robot 
malfunctions.   

II. THE TRADERBOTS APPROACH 

Dias and Stentz [4] report a detailed overview of the 
TraderBots approach; a market-based approach for multirobot 
coordination inspired by the contract net protocol by Smith [9].  
A brief overview of the TraderBots philosophy is presented 
here.  Consider a team of robots assembled to perform a 
particular set of tasks.  Consider further, that each robot in the 
team is modeled as a self-interested agent, and the team of 
robots as an economy. The goal of the team is to complete the 
tasks successfully while minimizing overall costs. Each robot 
aims to maximize its individual profit; however, since all 
revenue is derived from satisfying team objectives, the robots’ 
self-interest equates to doing global good.  Moreover, all robots 
can increase their profit by eliminating unnecessary waste (i.e. 
excess cost).  Hence, if the global cost is determined by the 
summation of individual robot costs, each deal made by a robot 
(note that robots will only make profitable deals) will result in 
global cost reduction. Furthermore, the individual aim to 
maximize profit (rather than to minimize cost) allows added 
flexibility in the approach to prioritize tasks that are of high 
cost but also high priority over tasks that incur low cost to 
execute but also provide lower value to the operation.  The 
competitive element of the robots bidding for different tasks 
enables the systems to decipher the competing local 
information of each robot, while the currency exchange 
provides grounding for the competing local costs in terms of 
the global value of the tasks being performed.  A detailed 
description of the current implementation of the TraderBots 
approach is published in the proceedings of the 2004 
conference on Intelligent Autonomous Systems [5]. 

A. Handling Communication Failures 

The TraderBots approach does not depend on 
communication to complete tasks.  Communication mainly 
plays the role of enabling improved efficiency in the generated 
solutions.  Zlot et al. [15] investigate the performance 
degradation of the team, in the TraderBots approach, given the 
absence of communication. Newer implementations of the 
TraderBots approach are made more robust to communication 
failures.  Message loss is expected and often witnessed 
resulting in only minor degradations in solution efficiency.  
Strategies used to improve robustness are: frequent auctioning 
and bidding which help reallocate tasks among robots more 
efficiently, the absence of assumptions that all robots will 
participate in any auction, monitoring of communication 
connectivity to robots that have subcontracted tasks, and 
continuous scheduling of assigned tasks for execution as tasks 
are completed. 

However, in a case where only the OpTrader (an interface 
agent responsible for trading on behalf of the operator) is aware 
of all tasks, and the tasks are divided among the robots, a 
scenario such as a combination of communication failure 
between the OpTrader and all robots, plus the death of a robot 
with assigned tasks can result in the task assigned to the dead 
robot remaining incomplete.  Thus, domains where completion 
of the global task (i.e. all tasks assigned to the team) must be 
guaranteed (if resources are available) require a different 
strategy. A possible strategy for these domains is to 
disseminate knowledge of all tasks to all robots, as would be 



the case in many reactive approaches. Note that this strategy is 
only required if specific tasks are assigned to the team.  In the 
case where robots dynamically generate tasks (i.e. where the 
same tasks can be generated by other robots given sufficient 
time), as in work published by Zlot et al.[14], this strategy is 
unnecessary.   

In the current implementation, it is possible for more than 
one robot to believe it is responsible for executing the same 
task if communications are imperfect.  For example, when 
robot A awards a task to another (robot B), an acknowledgment 
is sent from B to A.  If the acknowledgment is lost, then robot 
A does not know if B has accepted the task.  In that case both A 
and B will maintain responsibility for completing the task.  It is 
also possible that this duplication of tasks can be repaired: one 
of the robots may subsequently try to auction the task, in which 
case the other will be likely to win it as its marginal cost for the 
task is 0.  

B. Handling Partial Robot Malfunctions 

Detecting partial robot malfunctions in the TraderBots 
approach is achieved by monitoring the resources available to 
the robots.  While specific algorithms for fault detection and 
identification are beyond the scope of this paper, in general, the 
TaskExec’s (the module responsible for task execution) loss of 
access to a particular resource, the Trader’s loss of access to its 
TaskExec, the discovery of an unforeseen depletion of a 
resource, or the discovery that the accrued cost in attempting to 
complete a task surpasses the estimated cost for that task, can 
indicate a partial robot malfunction. Once a Trader discovers a 
partial robot malfunction, it attempts to sell all tasks it cannot 
complete to other robots even if it has to take a loss for some of 
the trades.  (The trader still attempts to maximize profit, so any 
losses will be minimized). If however trading becomes 
impossible due to a coupling with loss of communication, then 
the relevant strategy described in the previous section needs to 
be used for the case where a static set of tasks, all of which 
must be completed, is assigned to the team.  Thus, graceful 
degradation with malfunctions of team performance is 
achieved.  If the malfunction occurs with the Trader, then it 
falls into the category of robot death.  In this implementation, 
robots were able to detect malfunctions caused by 
disconnection of the on-board SICK laser used for obstacle 
detection and mapping, and gyro errors caused by sudden 
drastic rotations of the robot due to a wheel getting stuck. 
Ongoing implementation efforts also include detection and 
appropriate handling of low battery conditions that require the 
robot to head back to a re-charging station.   

C. Handling Robot Death 

Once a robot is incapable of trading, it is considered dead.  
In this case, the robot cannot aid in the detection or recovery 
process.  Several methods can be employed to allow 
teammates to discover robot death as discussed above in 
section I.C. The TraderBots approach can deal with detected 
robot deaths by attempting to discover all trades that affected 
the dead robot.  Each trader can keep track of awards it makes 
and receives.  Thus, if a robot death is detected, each trader 
checks to see if it has awarded any tasks to the dead robot, or 
if it has won any tasks from the dead robot.   

If a robot has awarded a task to the dead robot, it makes an 
announcement to the remaining robots to find out if they 
subcontracted that task from the dead robot.  If such a trade is 
discovered, the two robots re-negotiate their deal with respect 
to that task.  If a robot cannot discover any robot that is 
currently committed to executing that task, the task is added 
back to its commitment list.  Note that this can result in the task 
being repeated due to communication limitations.  The premise 
of such an implementation would be that it is better to repeat 
the execution of a task rather than leave any task incomplete, if 
available resources permit.  Ongoing implementation efforts 
include enabling the TraderBots approach to gracefully and 
robustly accommodate robot death.  Results in detecting and 
handling robot death will be added in final submission of this 
paper if it is accepted for publication. Finally, note that the 
TraderBots approach easily accommodates fluidity by allowing 
repaired robots or new robots to enter the team since any 
available robot can participate in the frequently conducted 
auctions.  Initial experiments demonstrating this capability are 
reported in results submitted for publication to the 2004 
conference on Intelligent Autonomous Systems [5]. A 
limitation in the current implementation is that detection of a 
robot death is indistinguishable from a severe communications 
failure since the only way robots detect one another is via 
communication.  It would be possible to improve this if the 
robots additionally had some other mode of 
detecting/monitoring each other (for example, by using a 
camera or some other sensor). 

III. EXPERIMENTS 

An implementation of the TraderBots approach on a team 
of 3 Pioneer robots enables the reported results. The robot team 
(shown in Figure 1) consists of a homogenous set of off-the-
shelf mobile robot platforms outfitted with additional sensing 
and computing.   

Figure 1: Robot Team 

Serving as the mobility platform is an ActivMedia Pioneer 
II DX indoor robot. An 802.11b wireless card on each robot 
allows ad-hoc communication between robots. Encoder data 
from the drive wheels is collected on-board from which dead 
reckoning position is calculated (x, y, θ). Alternate angle 
measurements using a fiber optic rate gyroscope (KVH E-Core 
1000) allow improved localization. Sensing is accomplished 
using a 180˚ scanning laser range finder (SICK LMS 200). 
Horizontal scan-range-data is incorporated with position data to 
create a 2D map. In addition to providing information to the 
operator, the map is used for local navigation and cost 
estimation for trading.  Further implementation details are 



reported in our submission to the 2004 conference on 
Intelligent Autonomous Systems [5]. 

The chosen application is a distributed sensing problem 
where 3 robots are tasked with gathering sensory information 
from a number of designated locations of interest in a large 
dynamic environment. This translates into a version of the 
traveling salesman problem (TSP) with the robots being 
represented by multiple salesmen following paths instead of 
tours (i.e. without the requirement that robots need to return to 
their starting locations) and where all the robots can start from 
different base locations – this is known as the multi-depot 
traveling salesman path problem (MD-TSPP). The tasks can be 
considered as cities to be visited where the costs are computed 
as the time taken to traverse between cities.  A task is 
completed when a robot arrives at a city.  The global task is 
complete when all cities are visited by at least one robot.  The 
global cost is computed as the summation of the individual 
robot cost, and the goal is to complete the global task while 
minimizing the number of robot-hours consumed.  When the 
robots are not executing tasks, they remain stationary at their 
current locations.  

Figure 2: Photograph of test-site 

Figure 3: Map of environment showing assigned goals and 
robot paths (grid squares = 1mx1m) 

Each robot is responsible for optimizing its own local 
schedule (i.e. given a set of tasks, the robots attempt to find the 
optimal TSPP solution to their local problem instance).  In 

general, the TSPP is NP-hard, so approximation algorithms are 
often used when the problem instances encountered are large. 
In the implemented TSPP scenario, all valuations are derived 
from inter-point distance costs.  These costs are estimated using 
a D* path planner [10] with the robot’s local map as input. The 
experiments performed, using this implementation, are 
described in this section. The results obtained, and the relevant 
analysis is presented in section IV.  

A. Communication Failures 

1) Experiment A1: Simulated Message Loss 
Description: Communications between robots are 
blocked at different percentage levels (20%, 40%, 50%, 
60%, 80%, and 100%) and the corresponding 
performance for 3 robots assigned 23 tasks is reported. 

B. Partial Robot Failures 

1) Experiment B1: Simulated Malfunctions 
Description: Laser is turned off or gyro error is 
introduced at a specific point during execution and the 
resulting performance for 3 robots assigned 23 tasks is 
reported. 

C. Robot Death 

1) Experiment C1: Simulated Death Before Execution 
Description: A robot is turned off just prior to task 
execution, simulating an unforeseen hardware error that 
prevents operation, and the resulting performance for 3 
robots assigned 7 tasks is measured. 

2) Experiment C2: Simulated Death During Execution 
Description: One or more robots are turned off at 
random times during execution and the resulting 
performance for 3 robots assigned 7 tasks is measured. 

D. Fluidity 

1) Experiment D1: Re-Entering Dead Robots 
Description: One or more robots are turned off at 
random times during execution and one robot is returned 
to the base station, turned back on, and re-inserted into 
the team at a later random time. The corresponding 
effect on performance for 3 robots assigned 7 tasks is 
measured.   

IV. RESULTS AND DISCUSSION 

Experiments A1 through D1 were completed as described 
above.  The corresponding results are reported in this section. 
All reported results in experiments A1 and B1 are averaged 
over three consecutive runs in the same environment under 
nearly identical conditions. 

 

 

 

 

 



Figure 4: System Performance with Communication 
Failures 

The first set of experiments investigates the effect of 
communication failures on the team performance.  Inter-robot 
communication is blocked at different percentages and the 
resulting solution recorded. Figure 4 shows the variation of 
solution cost with the percentage of message loss.  While the 
solution cost increases with loss of communication until 
approximately 60% loss, further communication loss has little 
added effect on performance.   The reason for this is that when 
the loss rate is significant but not too large, it is often the case 
that tasks are subcontracted, but their award acceptance 
acknowledgement message does not reach the seller.  When 
this happens, the task ends up being duplicated, thereby 
increasing the global cost. When the loss rate is high, the trades 
do not progress to this stage as often and this effect is not seen 
as frequently (e.g. the bids or the award are already lost, so the 
task is not awarded).  Since our initial solution based on the 
initial OpTrader auctions is reasonably good, the result is that 
we sometimes can do better with 100% loss rate than with 60% 
loss.  We hypothesize that if we start off with a worse solution 
(for example, an initial random allocation), then we would 
expect that this function would be more monotonic.  Also, if 
we enable the robot death handling, then there would be more 
duplications of tasks at the high loss rates when a death was 
detected and robots try to make up for the tasks of the “dead” 
robots.  Note that the different failure conditions were studied 
separately in these experiments and hence the death handling 
was disabled during the testing of communication failures and 
partial robot failures. 

The results from experiments A and B are reported in Table 
1.  For each experiment, the mean cost, the standard deviation 
in the cost over the three runs of the experiment, the number of 
tasks that succeeded, and the number of tasks that failed are 
shown.  Note that tasks can fail for several reasons due to the 
dynamic environment and conditions.  Note further that tasks 
are sometimes duplicated and hence the addition of succeeded 
and failed tasks sometimes exceeds the number of assigned 
tasks (23). Future implementations will be able to better deal 
with duplicate tasks as follows.  If a trader is selling task x and 
another robot already has committed to task x then that robot 
will bid very low for the task and win it (its marginal cost is 0).  
When the robot is awarded the task, it should check if it is a 
duplicate, and if so it should be discarded. 

 Cost (m) Tasks (#) 
Description Avg. +/- Succ Fail 

Nominal 121 12 21.0 2.0 
Partial Failure 140 5 22.0 1.0 
20% msg. loss 140 5 24.0 0.3 
40% msg. loss 153 3 24.7 2.0 
50% msg. loss 149 10 24.0 0.7 
60% msg. loss 162 9 25.3 0.7 
80% msg. loss 151 3 22.3 0.7 
100% msg. loss 159 5 21.0 2.0 

Table 1: Performance Statistics 

Figure 5: Nominal Performance  
with 3 Robots and 23 Tasks 

 

Figure 6: Partial Robot Malfunction 

 
Figure 5 and Figure 6 show the variation in the number of 

tasks assigned to each robot over time for a nominal run and a 
partial robot failure run respectively.  While the number of 
tasks gradually decreases with time as tasks are executed in a 
nominal run, when a partial failure occurs, that robot 
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immediately trades away all of its tasks attempting to minimize 
its losses, and hence the malfunctioning robot has a sudden 
loss in the number of assigned tasks.  The other two robots 
have a sudden gain since they are assigned the unfinished tasks 
of the malfunctioning robot. 

Figure 7 shows the nominal performance of a 3 robot 7 task 
scenario where robot 1 executes 3 tasks, and robots 2 and 3 
execute 2 tasks each.  This scenario corresponds to experiments 
C and D. 

Figure 7: Nominal Performance 
with 3 Robots and 7 Tasks 

In accordance with experiment C1, when robot 3 is killed 
after initial trading with the OpTrader has been completed, and 
before execution has commenced, the 2 tasks assigned to robot 
3 are later discovered and executed (one each) by robots 1 and 
2 as shown in Figure 8. 

Figure 8: Performance with 3 Robots and 7 Tasks 
with one robot death prior to execution 

Note that there is a delay after the completion of the initial 
tasks assigned to robots 1 and 2 while the death of robot 3 is 

discovered and the tasks assigned to robot 3 prior to its death 
are reassigned by the OpTrader. 

A similar scenario occurs in the case of Figure 9.  Here 
robot 1 is killed prior to execution having won 3 tasks.  These 3 
tasks are later executed by robot 2. 

Figure 9: Performance with 3 Robots and 7 Tasks 
with one robot death prior to execution 

Experiment C2 investigates the robustness of the 
TraderBots approach to multiple deaths at random times during 
execution.  Figure 10 shows the scenario where both robot 2 
and 3 are killed after executing one task each.  These two tasks 
are later completed by robot 1. 

Figure 10: Performance with 3 Robots and 7 Tasks 
with two robot deaths during execution 

Two similar scenarios are shown below in Figure 11 and 
Figure 12.  In the first case, robot 1 and robot 2 are killed after 
executing 1 task each.  The remaining 3 tasks assigned to these 
two robots are later completed by robot 3.  In the second case, 
robot 1 and robot 3 are killed after executing 1 task each.  
Robot 2 completes the 2 tasks assigned to it and also the 3 tasks 
assigned to the robots that were killed.  Note that in all these 
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scenarios, the tasks assigned to robots that are killed are 
reassigned once the OpTrader discovers the death of a 
particular robot.  This discovery can happen because the 
OpTrader loses a connection to the robot for a sufficiently long 
period of time such that a death is suspected and that suspicion 
is reinforced by any remaining “live” robots, or because a live 
robot detects and reports the death of a robot to the OpTrader.  
Note further that in general tasks will be robustly completed as 
long as the generator of the task is alive and detects the death 
of a robot, or if the task was assigned to one of the live robots 
at some point in time. 

Figure 11: Performance with 3 Robots and 7 Tasks 
with two robot deaths during execution  

Figure 12: Performance with 3 Robots and 7 Tasks 
with two robot deaths during execution  

A final experiment conducted was to demonstrate the 
fluidity of the TraderBots approach.  Previous work [5] 
demonstrated the ability to insert a robot into the team during 
execution and allow it to participate in executing the team 
mission.  Experiment D1 demonstrates the ability to kill a robot 

during task execution, have its tasks reassigned, repair the dead 
robot, re-enter it into the team, and allow it to execute any 
incomplete tasks. 

Figure 13: Performance with 3 Robots and 7 Tasks 
with two robot deaths and one robot re-entry during 

execution 

Figure 13 shows robot 1 and robot 3 being killed prior to 
execution.  Robot 2 completes the 2 tasks assigned to it.  The 
remaining 5 tasks are then split between robot 2 and robot 3 
who is re-entered into the team from its start location (thus 
simulating a repair and re-launch from a base station). 

Figure 14: Performance with 3 Robots and 7 Tasks 
with two robot deaths and one robot re-entry during 

execution 

A similar scenario is demonstrated in Figure 14. Robot 2 
and robot 3 are killed soon after initial trading is complete in 
this scenario.  Thus only robot 1 completes all of its 3 assigned 
tasks.  Robot 2 completes 1 task before being killed, and robot 
3 is killed before it can complete any of its tasks.  Robot 3 is 
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later repaired and re-entered into the team.  Thus, robot 1 and 
robot 3 complete the remaining 3 tasks, and thus, the team 
mission. 

One final observation worthy of discussion is the delay in 
detecting and responding to the death of a robot.  This delay is 
evident in Figures 8-14.  Note that there is a tradeoff between 
the response time to a suspected death and the number of false 
positives that might be detected.  For example, a perceived 
death could simply be the result of a temporary 
communications failure.  If this perceived death is immediately 
treated as a death, several tasks could be repeated 
unnecessarily.  In the current implementation of TraderBots, 
the robot team experiences a delay on the order of ~100s before 
re-assigning the tasks of a dead robot.  This delay could be 
made smaller or larger depending on the requirements of the 
application domain.    

V. CONCLUSION AND FUTURE WORK 

This paper presents a comprehensive study of how the 
TraderBots approach is robust to failures.  Three categories of 
failure are identified and explored in this study: communication 
failures, partial robot malfunctions, and robot death.  All three 
categories of failure are studied for a team of 3 Pioneer robots 
assigned a distributed sensing task.  Some robots are also re-
introduced into the team following a simulated revival from 
death. 

Ongoing work introduces random combination of failures at 
random times during the experiment, to gauge the effect on the 
overall performance. Introduced failures include 
communication failures, partial robot malfunctions, and robot 
deaths.   

Disallowing robots to recover from malfunctions and not 
investigating cooperative means of robot repair thus far limits 
this study.  Adversarial domains are not addressed either.  
Future work includes developing techniques for more efficient 
use of partially malfunctioning robots, examining strategies for 
cooperative recovery from failures, and more rigorous testing 
of the robustness of TraderBots in different scenarios. 
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