
Transfer Learning of Hierarchical Task-Network Planning Methods in a
Real-Time Strategy Game

Stephen Lee-Urban Héctor Muñoz-Avila
Department of Computer Science

Lehigh University
Lehigh, PA

{sml3,hem4}@lehigh.edu

Austin Parker Ugur Kuter Dana Nau
Department of Computer Science
and Institute for Systems Research

University of Maryland
College Park, Maryland, 20742

{austinjp,ukuter,nau}@cs.umd.edu

Abstract

We describe a new integrated and automated AI planning and
learning architecture, called Learn2SHOP. Learn2SHOP
departs significantly from the previous works on AI planning
and learning in that its modular architecture integrates Hier-
archical Task Network (HTN) planning, concept learning, and
computer simulations. Using simulations during the planning
and learning process enables the system to get information
about the outcomes of the actions. We have implemented
Learn2SHOP and tested it on a transfer-learning task. The
objective of transfer learning is transferring knowledge and
skills learned from a wide variety of previous situations to the
current, and likely different, previously unencountered prob-
lems(s). The experiments with Learn2SHOP have demon-
strated the advantages of integrating planning, learning, and
simulation in a real-time strategy game engine.

Introduction
Learning in the context of automated planning has been a
frequently studied research topic (Zimmerman & Kamb-
hampati 2003), where the objective is to develop and use
automated techniques to learn some knowledge that is used
to improve the performance of a planner. Many different
techniques have been developed with this objective, includ-
ing learning macro-operators, e.g., (Mooney 1988; Botea,
Müller, & Schaeffer 2005), learning search control knowl-
edge (Mitchell 1977; Minton 1988; Fern, Yoon, & Givan
2004), learning of task hierarchies (Choi & Langley 2005;
Reddy & Tadepalli 1997; Ruby & Kibler 1991) and learn-
ing plan abstraction (Knoblock 1993; Bergmann & Wilke
1996).

This paper focuses on how to take knowledge that was
acquired under one model and harness it in the learning
within another model (e.g., taking lessons that were learned
in one planning scenario and using them in other (similar)
planning scenarios). We address this issue with a mod-
ular framework called Learn2SHOP based on Hierarchi-
cal Task Network (hereafter HTN) planning. Unlike other
systems, Learn2SHOP learns using simulation in an ac-
tual gaming environment to validate the expectations of a
provided model. Further, Learn2SHOP uses a general

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

HTN framework which contains methods describing stan-
dard techniques. Since these techniques can be applicable to
large classes of games, Learn2SHOP will be able to handle
changing environments and be able to transfer knowledge
from one game to the other.

Learn2SHOP has been tested in a transfer learning task.
The objective of transfer learning is transferring knowl-
edge and skills learned from a variety of previous situations,
called source problems, to the current, previously unencoun-
tered problems(s), called the target(s) (where significant dif-
ferences may exist between these two problem types). For
this, a transfer learner needs to have some knowledge about
the underlying characteristics of both source and target prob-
lems. Transfer can be especially effective when such knowl-
edge can be represented suitably structured, e.g., in a rela-
tional fashion as in reinforcement learning and/or in a hier-
archical fashion as in HTNs.

The overall algorithm employed by Learn2SHOP takes
as input example solutions to given problems. It acquires
data on the performance of these examples through simu-
lation in the game’s actual environment. This data is then
used in a concept learning algorithm to determine the ap-
plicability of the various HTN methods to the given game.
As learning progresses, Learn2SHOP becomes more and
more certain of which HTN methods are best in which sit-
uations and performs better at the provided game. If the
game is switched, Learn2SHOP will not be confused but
will proceed as expected: applying lessons already learned
that work, and re-learning those lessons which worked be-
fore but do not apply to the new environment.

Hierarchical Task Networks in AI Planning
For modeling structured knowledge about a problem do-
main, one of the best-known approaches is Hierarchical
Task Network (HTN) planning. An HTN planner formu-
lates a plan by decomposing tasks (i.e., symbolic representa-
tions of activities to be performed) into smaller and smaller
subtasks until tasks are reached that can be performed di-
rectly. The basic idea was developed in the mid-70s (Sac-
erdoti 1975; Tate 1977), and the formal underpinnings were
developed in the mid-90s (Erol, Hendler, & Nau 1996).

An HTN planning problem description consists of the fol-
lowing: the initial state (a symbolic representation of the
state of the world at the time that the plan executor will begin



executing its plan) and the goal task network (a set of tasks to
be performed, along with some constraints over those tasks
that must be satisfied). A solution to an HTN planning prob-
lem is a plan; i.e., a sequence of actions that, when executed
in the initial state, perform the desired tasks.

In order to generate solutions for the planning problems,
an HTN planner uses an HTN domain description that con-
tains two kinds of knowledge artifacts: methods and oper-
ators. HTN planners may have other kinds of knowledge
artifacts as well. For example, the SHOP planner (Nau et
al. 1999) also has axioms that can be used to infer conditions
about the current state.

The operators are like the planning operators used in any
classical planner. The names of these operators are desig-
nated as primitive tasks (i.e., tasks that we know how to
perform directly). Any task that does not correspond to an
operator name is a nonprimitive task.

Each method is a prescription for how to accomplish a
non-primitive task by decomposing it into subtasks (which
may be either primitive or non-primitive tasks). A method
consists of three elements: (1) the task that the method can
be used to accomplish, (2) the set of preconditions which
must be satisfied for the method to be applicable, and (3) the
subtasks to accomplish.

For example, consider the task of moving a collection of
boxes from one location to another. One method might be
to move them by car. For such a method, the preconditions
might be that the car is in working order and is present at the
first location. The subtasks might be to open the door, put
the boxes into the car, drive the car to the other location, and
unload the boxes.

We define the notion of an HTN trace as follows. Given
a task t, an HTN trace for t consists of a plan p that accom-
plishes t and a subset of the methods from the input domain
description that, when successively applied to t and its sub-
tasks, generates the plan p. Given an HTN planning problem
P , a solution HTN trace is an HTN trace that generates a so-
lution plan for the goals of that planning problem.

We assume that operators do not have any preconditions,
and we focus on learning the preconditions of methods. An
HTN learning problem description consists of an HTN plan-
ning problem and a solution HTN trace for that planning
problem, and an incomplete HTN domain description which
includes the set of operators and possibly the axioms and
a list of skeletal methods. A skeletal method is an HTN
method as describe above, but it only contains the head (i.e.,
the task it accomplishes) and the subtasks. A skeletal version
of a method provides the learners with inferences derived
and decisions made while this plan was generated (e.g., by a
human expert), but it does not provide any information about
the applicability conditions of those methods.

Concept Learning via Candidate Elimination
Candidate elimination is an incremental concept learning al-
gorithm that uses training examples to construct a lattice of
possible hypotheses for the concept to be learned (Mitchell
1997a; Hirsh 1994; Hirsh, Mishra, & Pitt 2004). Each hy-
pothesis is a boolean formula which returns true or false,

and each training sample gives an example that either fits or
does not fit the target concept. A concept, in our case, cor-
responds to an applicability condition of an HTN method.

The lattice is defined by the generality operator, whereby
hypothesis h1 is more general than hypothesis h2 iff h1 re-
turns true whenever hypothesis h2 returns true. Notice that
by this definition h1 returns true at least as often as h2.

We can imagine the set of all hypotheses which correctly
label a set of given examples. These valid hypotheses are
called a version space. We can compactly represent a ver-
sion space with two borders, G and S, in the generality lat-
tice. G is the set of the most general hypotheses that are
consistent with the examples, and S is the set of the most
specific hypotheses that are consistent with the examples. It
is well known that anything which is more general than a
member of S and less general than a member of G will be in
the version space (Mitchell 1997b). As more training exam-
ples are given, G and S can easily be refined such that they
still contain the entire version space. The algorithm stops
when G and S converge to the same hypothesis.

To limit the sizes and to increase the effectiveness of G
and S, it is necessary to restrict the set of hypotheses the
algorithm may return. This restriction is called the inductive
bias. It limits the concepts which may be learned.

Candidate elimination is the ideal choice for
Learn2SHOP because it admits a useful intermediate
representation. That is, before the algorithm finishes via
convergence, we can still extract a provably correct partial
hypothesis from the lattice. This is accomplished with the
general and specific borders. If all members of the general
boarder tell us a given sample is false, then every hypothesis
in the version space will also return false, so we can safely
return false. If all members of the specific border tell us
a given sample is true, then again, every member of the
version space must return true for the same sample and
we can safely return true. If the borders disagree, then the
learning algorithm knows it cannot yet correctly classify the
given sample.

Consider now a version space which has been learning a
concept for a given game. The intermediate representation
allows us to use the current information from the game be-
fore the learner is finished learning.

Another property of the candidate elimination algorithm
is the collapse when presented with inconsistent data. That
is, sometimes the version space can contain zero hypothe-
ses, because there are zero hypotheses which match the in-
put data. So, for instance, if in the Learn2SHOP system
we begin learning a concept in one game, and then switch to
another game where the concept is fundamentally different,
the version space will collapse because the samples from
one game conflict with the samples from the other game.
This naturally informs the system that it needs to restart the
learning process for that concept in the new domain – we
were not able to transfer knowledge in these cases.

The Learn2SHOP Architecture
Figure 1 shows the Learn2SHOP architecture. The learn-
ing component’s inputs (label 1 in Figure 1) include the



Figure 1: The Learn2SHOP architecture includes the fol-
lowing integrated modules: SHOP as the planning engine,
a method-learning module that can accommodate any of
several different learning algorithms, and MadRTS as the
world simulation engine.

HTN planning problem, the HTN plan trace obtained while
solving the problem, the list of skeletal methods, and the
list of operators. The learning component uses a running in-
stance of MadRTS, a real-time strategy game engine, to test
via simulation if the plan resulting from the HTN plan trace
solves the problem. The learning component outputs meth-
ods, which are added to the list of methods (label 2 in the
figure). Given a new planning problem, the HTN planner
uses the methods learned so far and the operators to produce
a solution plan (labels 3 and 4). We now describe each of
these components in detail.

SHOP (Nau et al. 1999) is an HTN planner for a special
case of HTN planning in which the subtasks of each method
are totally ordered, (i.e., they need to be accomplished in a
strict linear order). SHOP proceeds by decomposing tasks
in a left-to-right depth-first fashion, backtracking whenever
it reaches a point where it cannot proceed further. As a con-
sequence, SHOP generates the steps of each plan in the
same order that the plan executor will execute those steps.
Because of this task-decomposition strategy, SHOP knows
the current state at each step of the planning process. Since
it is easier to reason about what is true than what might be
true, this makes it easy to incorporate substantial expressive
power into the planning system, such as the auxiliary func-
tions and axioms mentioned earlier.

In Learn2SHOP, training examples for the learning al-
gorithms are extracted from annotated HTN traces. An an-
notated HTN trace contains information about specific in-
stances in which methods were applicable. These instances
serve as the positive examples for the version space. The an-
notated HTN may also contain information on inapplicable
methods; i.e., information that indicates specific instances in
which methods were inapplicable. These instances serve as
the negative examples for the learner. Although there is no
requirement that negative examples be provided, the more
such examples are provided, the faster the version spaces
will converge to the applicability conditions of methods.

To create annotated plans for use as training samples,
Learn2SHOP uses a modified version of the SHOP plan-
ner described above. The modifications vary the order in
which SHOP attempts the applicable methods so that all
applicable methods are equi-likely to be returned. A further
modification causes the planner to record the negative meth-
ods in the annotated plan trace as necessary. This modified
SHOP can then take a correct set of HTN methods and use
them to create training samples for the system to learn from.

We use a system called CaMeL (Ilghami et al. 2005) to
learn HTN method preconditions from the annotated HTN
traces. CaMeL uses a variant of candidate elimination
to learn the preconditions for the input skeletal methods.
The algorithm maintains for each skeletal method a version
space, which represents the set of possible hypotheses for
the applicability conditions of that skeletal method. Each
such version space is refined as positive and negative exam-
ples are provided until it converges to a single hypothesis,
i.e., an applicability condition. At this point, the method,
with the learned condition, is added to the method library.

The applicability conditions of a method may contain
free variables, yet a version space is always restricted to
only ground formulas. CaMeL resolves this conflict by
manipulating the version space input. This manipulation
comes in the form of inverse substitution, or the reintro-
duction of variables into the state. For instance, the in-
version of the state variables {fact(5, 3), fact(2, 5)} with
the substitution (?x → 5, ?y → 2) would yield to
{fact(?x, 3), fact(?y, ?x)}, where ?x and ?y are two vari-
able symbols. To the version space, the variables in the
inverted state appear as syntactic objects of the domain lan-
guage (i.e., as constant symbols), while outside the version
space we know they are not. Because the annotated HTN
traces contain ground methods, CaMeL can calculate the
substitution needed to unify the skeletal method with that in
the provided state. This is used for positive samples which
are applicable when unified with the provided state. For
negative samples, the system constructs all possible substi-
tutions, and uses each to construct an independent negative
example from the given state.

We note that this inverse substitution method is not cor-
rect and sometimes results in errors when the same constant
appears in both a substituted predicate and an unrelated state
predicate. In cases where the errors are significant, they
cause version space collapse and the system recovers via
version space restart.

The overall CaMeL algorithm thus works as follows. For
each skeletal method m, the algorithm creates a version
space. The version space uses the inductive bias contain-
ing conjunctions of literals. Any annotated HTN trace that
includes m is used as training data for this version space. If
m is part of an HTN trace, then the state at which it is used
is inverted to contain the appropriate variables and given to
the version space as a positive example. If m is mentioned
as inapplicable, then the state at which it was inapplicable is
taken, and, for every possible variable assignment, inverted
and given to the version space as a negative example.

When extracting an answer from the version space we by-
passed the usual method of considering only the consensus



of all hypotheses in the version space, and instead choose
a random member of the most general border. The HTN
preconditions were therefore too general and admitted false
positives; better too many plans than too few plans.

As the simulation framework in our architecture, we
used MadRTS (TM), a real-time strategy game developed
by MadDoc (R) Software, LLC. Real-time strategy (RTS)
games describe a class of games involving real time com-
petition against other human or AI opponents. These games
are popular in the consumer market, and as such are not con-
trived for AI researchers and developers. Consequently, RTS
games are characterized by their complexity, often having
large decision and state spaces (Aha, Molineaux, & Pon-
sen 2005). Tasks such as economic/resource management,
technology tree exploration, unit production, combat tactic
decisions and diplomacy are common in these games.

MadRTS was created for non-commercial military and
academic AI research purposes, and is funded by the Naval
Research Laboratory. In addition to having a good coverage
of the common RTS tasks already described, there is a net-
working API for the game whereby state information may be
queried, and game action messages sent over a TCP/IP con-
nection. In particular, a program may start MadRTS, load a
scenario, and start “playing” the game by executing actions
and examining the resulting state. This simulation ability
ended up being crucial to the transfer learning task. Because
the HTN domain modeling game play was approximate and
inaccurate there were sometimes errors. However, we could
take plans from the approximate HTN domain and simulate
them within the actual scenario. By using only those plans
which accomplished the goal task, we were able to elimi-
nate errors implicit in the fact that we learn using only an
approximate model of the domain.

The Integrated System
The integrated system starts by being given a problem to
solve and a set of training samples showing the problem
being solved. Further input provide skeletal HTN meth-
ods with no preconditions. The training samples are an-
notated HTN traces (i.e., plans and HTN skeletons anno-
tated with one applicable and inapplicable method for each
task that appears in the hierarchy), which can be fed to the
CaMeL learning system, however, to determine the veracity
of the provided samples, we first run their associated plans in
MadRTS. Those HTN traces generated by SHOP which do
not solve the problem in MadRTS (i.e., any annotated HTN
trace generated by SHOP which turned out to fail due the
simulation due to the noise) are thrown out. The remaining
samples are actually given to the CaMeL framework pro-
ducing preconditions for the skeletal HTN methods. Now
complete, the skeletal HTN methods with their precondi-
tions are then output to SHOP which then can solve any
problem similar enough to the provided problem.

Transfer Learning
The objective of transfer learning is transferring knowledge
and skills learned from a wide variety of previous situa-
tions, called source problems, to the current, previously un-

encountered problems(s), called the target(s) (where signif-
icant differences may exist between these problem types).
To achieve this objective, a transfer learner needs to have
some knowledge about the underlying characteristics of both
source and target problems. Transfer can be especially ef-
fective when such knowledge can be represented suitably
structured, e.g., in a relational fashion as in reinforcement
learning and/or in a hierarchical fashion as in HTNs.

Different levels of knowledge transfer may occur between
the interrelated source and target problems. For example,
education research classifies the transfer as near or far, given
the representational differences between the source and tar-
get problems (Barnett & Ceci 2002). In machine learning
and AI research, on the other hand, knowledge transfer is
usually characterized in broad and detailed dimensions and
in terms of the knowledge-acquisition and problem-solving
capabilities of the learners. In a recent DARPA Program on
transfer learning (Oblinger 2005), a taxonomy has been out-
lined that classifies knowledge-transfer techniques based on
differences in the specific knowledge needed to solve differ-
ent problems, the representation of such knowledge, and the
objectives of planning problems.

In this paper, we considered a particular class of restruc-
turing problems, where new problem instances involve the
same sets of components but in different configurations from
those previously encountered during training. For example,
in an RTS game such as MadRTS, restructuring is exempli-
fied by problems with different city maps, which could re-
quire different instantiation and prioritization of transporta-
tion goals (e.g., delivering a resource to a building address
versus delivering it to a specified public location in the city).

The next section gives an experimental evaluation of
Learn2SHOP in these types of restructuring problems,
demonstrating the importance of the modular design in
knowledge transfer between two situations.

Experimental Evaluation
The objective of the experiments was to learn to apply
knowledge which correctly solves one task to a slightly dif-
ferent task. Namely, we gave our system the knowledge nec-
essary to solve the task of capturing a building in a MadRTS
scenario and the system is expected to learn the knowledge
necessary to capture an area. These tasks are related – if
the area contains a building, capturing the area means cap-
turing the building – but they are not identical. If the area
contains no building, it is sufficient to occupy the area with
a unit. The transfer-learning related question was, if we are
given HTN traces for solving the first task and we learn cer-
tain applicability-conditions for the input HTN traces, can
we use those HTN traces and the applicability conditions to
more quickly and effectively learn to solve the second task?

To provide objectivity, the experiments were performed
by an independent third party, namely the Naval Research
Laboratory. There were two experiment conditions: the first
ran the system without any training on a set of source prob-
lems (without training on source set - NS), and the second
was with training on a set of 5 source problems (with train-
ing on source set - WS). In the WS setup, the system was
trained with all 5 problems in the source set. Under both



Figure 2: TL Level 3 - Average Curves

experiment conditions, the system was iteratively trained on
a target train set of problems of size T, where T was varied
from 1 to 10 (T=1, T=2, ..., T=10). Under these conditions,
the system was tested on a target test set of 15 problems. We
have 5 problems in the source set, 10 problems in the target
training set, and 15 problems in the target testing set.

Four performance measures in the experiments were:

• The Success Rate [0,1]: This indicates the percentage of
time that the target test problems were correctly solved.
A rate of zero means the problem was never solved, and a
value of one means it was perfectly solved.

• The Jump Start (x < 0, x = 0, x > 0): This indicates the
advantage of transferred knowledge in the first trial of the
target testing set (when the size of the target train set is
T=1). A jump start less than zero means that the trans-
ferred knowledge is hurting the performance. A jump
start of zero means the transferred knowledge was nei-
ther helpful nor hurtful. A jump start greater than one
means the transferred knowledge was an advantage. The
value is computed by calculating the difference between
the success rate in the same problem, one with transferred
knowledge, and one without.

• The Transfer Ratio (x < 0, x = 0, x > 0): The over-
all advantage of transfered knowledge across the whole
testing set (average over all T). The range of values are
defined the same as for “Jump Start”.

• The Asymptotic Advantage (x < 0, x = 0, x > 0):
Indicates the advantage of transferred knowledge in the
last trial of the testing set (T=10). The range of values are
defined the same as for “Jump Start”.

Figure 2 shows the average success rate over all trials
(T=1,...,T=10). The y-axis is the success rate (as a percent-
age), and the x-axis is the trial count. The difference without
training on the target training set (T=0) and with training on
the source problem set is the “Jump Start”, shown in Table 1,
row I. As the size of T increases, around T=6, the advantage
of training on the source problem set is obviated; therefore
there is no asymptotic advantage (row III). However, on av-
erage there is an advantage to training on the source problem
set, as indicated by the transfer ratio (row II).

Table 1: TL Level 3 - Statistics
TL Metrics Success Rate

Name Type Score P Value
I Jump Start 0.19 0.0000

II

Transfer ratio 3.30 0.0206
Ratio (of area under the curves) 1.04 0.0150
Transfer difference 0.33 0.0154
Transfer difference (scaled) 0.33 0.0142

III Asymptotic advantage 0.00 0.0000

Related Work

Several architectures have been proposed to learn HTNs
from a collection of plan traces and from a given action
model. (Reddy & Tadepalli 1997)’s X-Learn, for example,
uses inductive generalization to learn task decomposition
constructs, which relate subgoals and conditions for decom-
posing those goals into their subgoals. By grouping goals
in this way, task models are learned that lead to significant
speed-ups in problem-solving. As another example, (Choi
& Langley 2005) achieves the same objective via problem-
solving techniques similar to explanation-based learning.

A crucial characteristic of Learn2SHOP that differenti-
ates it from the works above is that Learn2SHOP provides
the capability to use a real-time simulation engine in order
to test the acceptability of input plans/planning traces. In
this paper, we used Mad Doc Software’s MadRTS real-time
strategy game as our simulation engine and the HTN planner
SHOP (Nau et al. 1999) as our planning engine. In addition
to MadRTS and SHOP, Learn2SHOP includes a modular
learning component for learning applicability conditions of
the HTN methods used by SHOP.

We now discuss related research on AI and gaming sim-
ulations. Computer games are considered by some to be
the “killer app” for human-level AI, and coordinating be-
havior is one of many research problems they present (Laird
2001). Real-time strategy games are particularly interesting
because they present real-time requirements and provide a
rich, complex environment.

Reinforcement learning has been used with success in
certain classes of computer games. One of the most well-
known examples is Gerry Tesauro’s implementation of a Re-
inforcement learning agent, called TD-Gammon that plays
backgammon at a skill-level equal to the world’s best hu-
man players. In addition to proving the power of the Rein-
forcement learning approach, TD-Gammon revolutionized
backgammon when it discovered strategies previously unex-
plored by grandmasters, yet more effective (Tesauro 1994).

Hierarchical planning has been shown to be a promising
means to build computer opponents. For example, Bridge
Baron 8 won the 1997 world-championship competition for
computer programs using HTN planning techniques to plan
its declarer play (Smith, Nau, & Throop 1998). Another use
of HTN planning in games is HTNBots which applies HTNs
to team strategies in the shooter game Unreal Tournament
(Hoang, Lee-Urban, & Muñoz Avila 2005).



Conclusions
In this paper, we have described a new, modular architecture
for integrating planning and learning of Hierarchical Task
Network methods. Our architecture, called Learn2SHOP,
is able to perform simulations in a game environment in or-
der to gather information about the state of the environment.

We have tested Learn2SHOP in a transfer-learning task,
where the objective was to take knowledge that was acquired
under one model and harness it in the learning within an-
other model (e.g., taking lessons that were learned in one
game scenario and using them in other game scenarios). The
experiments performed by an objective third-party, namely
Naval Research Laboratories, demonstrated the effective-
ness of our integrated system in a suite of performance mea-
sures of knowledge transfer.

We are currently working on more recent and robust tech-
niques from inductive learning and reinforcement learning
research in order learn HTNs in our framework with and
without simulations. Our preliminary ideas include learn-
ing both HTN method skeletons and preconditions (e.g.,
see (Hogg & Munoz-Avila 2007) for a first attempt towards
these objectives).

Acknowledgments. We thank our anonymous reviewers
for their thoughtful and helpful comments that improved the
quality of this paper. This work was supported in part by
ISLE (#0508268818) and Naval Research Laboratory sub-
contracts to DARPA’s Transfer Learning program, and in
part by NSF grants IIS0412812 and IIS0642882.

References
Aha, D.; Molineaux, M.; and Ponsen, M. 2005. Learning
to win: Case-based plan selection in a real-time strategy
game. In ICCBR, 5–20.
Allen, J. F.; Hendler, J.; and Tate, A., eds. 1990. Readings
in Planning. Morgan Kaufmann.
Barnett, S. M., and Ceci, S. J. 2002. When and where
do we apply what we learn?: A taxonomy for far transfer.
Psychological Bulletin 128(4):612–637.
Bergmann, R., and Wilke, W. 1996. On the role of abstrac-
tion in case-based reasoning. In EWCBR, 28–43.
Botea, A.; Müller, M.; and Schaeffer, J. 2005. Learning
partial-order macros from solutions. In ICAPS, 231–240.
Choi, D., and Langley, P. 2005. Learning teleoreactive
logic programs from problem solving. In International
Conf. Inductive Logic Programming, 51–68.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complex-
ity results for hierarchical task-network planning. AMAI
18:69–93.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In ICAPS.
Hirsh, H.; Mishra, N.; and Pitt, L. 2004. Version
spaces and the consistency problem. Artificial Intelligence
156(2):115–138.
Hirsh, H. 1994. Generalizing version spaces. Machine
Learning 17(1):5–45.

Hoang, H.; Lee-Urban, S.; and Muñoz Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
ai. In Proc. Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE-05). AAAI Press.
Hogg, C., and Munoz-Avila, H. 2007. Learning Hierarchi-
cal Task Networks from Plan Traces. In Proceedings of the
ICAPS-07 Workshop on AI Planning and Learning.
Ilghami, O.; Nau, D. S.; Muñoz-Avila, H.; and Aha, D. W.
2005. Learning preconditions for planning from plan traces
and HTN structure. Computational Intelligence 21(4):388–
413.
Knoblock, C. A. 1993. Generating Abstraction Hier-
archies: An Automated Approach to Reducing Search in
Planning. Kluwer.
Laird, J. 2001. Using a computer game to develop ad-
vanced AI. Computer 34(7):70–75.
Minton, S. 1988. Learning effective search control knowl-
edge: An explanation-based approach. Technical Re-
port TR CMU-CS-88-133, School of Computer Science,
Carnegie Mellon University.
Mitchell, T. M. 1977. Version spaces: A candidate elimi-
nation approach to rule learning. In IJCAI, 305–310. Cam-
bridge, MA: AAAI Press.
Mitchell, S. 1997a. A hybrid architecture for real-time
mixed-initiative planning and control. In AAAI/IAAI Pro-
ceedings, 1032–1037.
Mitchell, T. M. 1997b. Machine Learning. McGraw-Hill.
Mooney, R. J. 1988. Generalizing the order of operators in
macro-operators. In ML, 270–283.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Dean, T.,
ed., IJCAI, 968–973. Morgan Kaufmann Publishers.
Oblinger, D. 2005. Darpa transfer learn-
ing program: Proposer information pamphlet.
http://www.darpa.mil/ipto/solicitations/closed/05-
29 PIP.htm.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In ICML.
Ruby, D., and Kibler, D. F. 1991. SteppingStone: An em-
pirical and analytic evaluation. In AAAI, 527–531. Morgan
Kaufmann.
Sacerdoti, E. 1975. The nonlinear nature of plans. In IJ-
CAI, 206–214. Reprinted in (Allen, Hendler, & Tate 1990),
pp. 162–170.
Smith, S. J. J.; Nau, D. S.; and Throop, T. 1998. Computer
bridge: A big win for AI planning. AI Magazine 19(2):93–
105.
Tate, A. 1977. Generating project networks. In IJCAI,
888–893.
Tesauro, G. 1994. Td-gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural Compu-
tation 6(2):215219.
Zimmerman, T., and Kambhampati, S. 2003. Using avail-
able memory to transform graphplan’s search. In IJCAI.


