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Abstract

This paper describes a study of agent bid-
ding strategies, assuming combinatorial val-
uations for complementary and substitutable
goods, in three auction environments: se-
quential auctions, simultaneous auctions, and
the Trading Agent Competition (TAC) Clas-
sic hotel auction design, a hybrid of sequen-
tial and simultaneous auctions. The prob-
lem of bidding in sequential auctions is for-
mulated as an MDP, and it is argued that
expected marginal utility bidding is the opti-
mal bidding policy. The problem of bidding
in simultaneous auctions is formulated as a
stochastic program, and it is shown by ex-
ample that marginal utility bidding is not an
optimal bidding policy, even in determinis-
tic settings. Two alternative methods of ap-
proximating a solution to this stochastic pro-
gram are presented: the first method, which
relies on expected values, is optimal in deter-
ministic environments; the second method,
which samples the nondeterministic environ-
ment, is asymptotically optimal as the num-
ber of samples tends to infinity. Finally, ex-
periments with these various bidding policies
are described in the TAC Classic setting.

1 Introduction

One of the key challenges autonomous bidding agents
face is to determine how to bid on complementary and
substitutable goods—i.e., goods with combinatorial
valuations—in auction environments. Complemen-
tary goods are goods with superadditive valuations:
v(AB̄) + v(ĀB) ≤ v(AB); substitutable goods are
goods with subadditive valuations: v(AB̄) + v(ĀB) ≥
v(AB). In general, it is impossible to assign indepen-
dent valuations to complementary goods, which can be

worthless in isolation, or to substitutable goods, which
can be worthwhile only in isolation. Thus, the simple
bidding strategy “for each good x, bid its valuation”
is inapplicable in this framework. This paper investi-
gates a class of bidding strategies for various auction
environments, assuming combinatorial valuations for
complementary and substitutable goods.

Specifically, we consider three auction environments:
sequential auctions, simultaneous auctions, and the
hybrid of sequential and simultaneous auctions imple-
mented in TAC Classic.1 As the name suggests, in se-
quential auctions, goods are sold sequentially, in some
fixed, known order. Here, agents can reason about
each good in turn, basing future decisions on past out-
comes. But in simultaneous auctions all goods are
sold simultaneously. Here, agents must reason about
all goods simultaneously, with only one opportunity to
make one bidding decision that pertains to all goods.
In the TAC Classic (hotel) auction design [10], auc-
tions close sequentially, but in some random, unknown
order. Here, before each auction closes, agents must
reason about all goods in as yet open auctions simulta-
neously, but after each auction closes, agents can base
future decisions on past outcomes.

Rather than attempt to reason about the valuations
of goods independently, bidding agents that operate in
these auction environments can reason about marginal

valuations, or the valuation of a good x relative to a
set of goods X . In particular, if an agent holds the
goods in X , it can ask questions such as: “what is
the marginal benefit of buying x?” or “what is the
marginal cost of selling x?” In doing so, the agent
reasons about the set of goods X ∪ {x} or X \ {x},
relative to the set X—the valuations of which are well-
defined. In Section 2 of this paper, we prove that the
simple bidding strategy “for each good x, bid its (aver-
age) marginal utility” is optimal in sequential auctions.
But not so in simultaneous auctions, as the following
example shows.

1Visit http://www.sics.se/tac for details.



Example 1.1 Consider a set of N > 1 goods that are
being auctioned off simultaneously. Assume the value
of one or more of these goods is 2, while the auction
price of each good is 1, deterministically.2 In this set-
ting, bidding marginal utilities amounts to bidding 1
on each good. In doing so, this strategy obtains util-
ity 2 − N < 1. In contrast, any strategy that bids 1
on exactly one good obtains utility 2 − 1 = 1. Thus,
bidding marginal utilities is suboptimal.

Beyond seeking an optimal bidding policy for TAC
Classic hotel auctions, the goal of this research is to
derive optimal solutions to the problems of bidding on
goods with combinatorial valuations in sequential and
simultaneous auctions. The difficulty that an agent
faces in optimizing its behavior in these problems is
due to the uncertainty that arises from its lack of in-
formation about the other agents’ bidding strategies.
In this paper, we make the simplifying assumption that
the price of each good is given by an exogenous prob-
ability distribution, which is determined by the col-
lective behavior of all competing agents, but which
ignores the behavior of the optimizing agent. Conse-
quently, even if the optimizing agent places a winning
bid, the price of the good does not depend on this bid.

The bidding strategies analyzed in this study, which
were inspired by agent strategies in the international
Trading Agent Competition [10] (TAC Classic), are all
based on the notion of marginal utility. Specifically, we
study expected marginal utility bidding, implemented
in ATTac-01 [9], and variants of policy search, im-
plemented in RoxyBot-00 [7] and RoxyBot-02 [6].
Note that these teams were two of the few to exploit
stochastic price information in their agent design, be-
yond computing straightforward expected values [11].
Although marginal utility bidding is not optimal in si-
multaneous auctions, we prove that it is the optimal
bidding policy in sequential auctions, and we show em-
pirically that it is a reasonable heuristic for bidding in
TAC Classic hotel auctions.

2 Sequential Auctions

In this section, we formulate the bidding problem in
sequential auctions—a sequential decision problem—
as a Markov decision process (MDP), and we compute
the optimal policy. As an example, consider the MDP
depicted in Figure 1, which represents an agent’s bid-
ding problem in two sequential auctions for two goods
A and B. There are seven states in this MDP, drawn
in three stages. In the first stage, a bidding decision
is made regarding good A, and in the second stage,

2Think of the Buy It Now option at eBay.com, which
serves as an example of deterministic auction prices.
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Figure 1: The sequential auction problem as an MDP:
An example with two goods A and B.

a bidding decision is made regarding good B. Along
the way, the agent earns negative rewards equal to the
price of each good for which it places a winning bid.
A winning bid for the jth good is a bid for an amount
that is greater than or equal to the (uncertain) price of
that good. Transitions are stochastic: e.g., given bid
b′, the system transitions from state ({A}, 1) to state
({A, B}, 2) with probability equal to the probability
that b′ is a winning bid; otherwise the system transi-
tions to state ({A}, 2). In the final stage, the agent
earns rewards equal to the valuation of the subset of
the set {A, B} it successfully acquires.

In general, a finite set of n goods N = {x1, . . . , xn} is
given. Let J ⊆ N = {x1, . . . , xj}. Now a state at stage
j is denoted (X, j), where X ⊆ J is the set of current
holdings and good xj+1 is up for auction. The actions
available at each state are real-valued bids. (Note that
the action space is continuous.) A bid b for good xj at
state (X, j − 1) is declared to be a winning bid if the
good’s randomly sampled price pj ≤ b. All other bids
are losing bids. Transitions, which depend on state-
action pairs, are stochastic. Given bid b, a transition
is made from state (X, j−1) to state (X∪{xj}, j) with
probability equal to the probability that b is a winning
bid; otherwise a transition is made from (X, j − 1)
to (X, j). Rewards are associated with state-action-
state triples at all stages 0 ≤ j ≤ n − 1 as follows: a
winning bid at stage j earns reward −pj , where pj is
the price of the jth good; a losing bid earns no rewards.
In addition, a valuation function v : 2N → R, which
assigns a valuation to each subset of N , defines the
rewards at stage n, at which point the auction ends.



Definition 2.1 The bidding problem in sequential
auctions is defined by the following MDP:

• States: each state at stage j, for 0 ≤ j ≤ n, is
denoted (X, j), where X ⊆ J .

• Actions: the actions available at all states (X, j−
1) at stage j − 1 are bids bj ∈ R

+ on good xj .

• Transitions: P ((X∪{xj}, j)|(X, j−1), b) = Fj(b),
and P ((X, j)|(X, j − 1), b) = 1 − Fj(b), where
Fj(x) = Pr[pj ≤ x] for good j: i.e., Fj is the
cdf over prices pj .

• Rewards:

– For all states (X, n) with X ⊆ 2N at stage n,
R((X, n)) = v(X).

– For all other states (X, j) with X ⊆ J at
stage j, if b is a winning bid for good j, then
reward −pj is incurred; otherwise, no cost is
incurred. Define the following:

r((X, j − 1), b, p) =

{

−p if p ≤ b

0 otherwise
(1)

Now

R((X, j−1), b) =

∫ ∞

−∞

r((X, j−1), b, p)fj(p) dp

(2)

where fj = F ′
j is the pdf over prices pj .

The optimal policy in this MDP is described by Bell-
man’s equations [1]:

π((X, j)) ∈ arg max
b

Q((X, j), b) (3)

Q((X, j), b) = R((X, j), b)+

Fj(b)V ((X ∪{xj+1}), j +1)+ (1−Fj(b))V ((X, j +1))
(4)

V ((X, j)) = max
b

Q((X, j), b) (5)

Theorem 2.2 The following bidding policy is opti-

mal in this MDP: at state ((X, j − 1)), place bid

b∗j = V ((X ∪ {xj}), j) − V ((X, j)).

Proof 2.2 For arbitrary pj , two cases arise: Case
b∗j ≥ pj : If b ≥ pj , then Q((X, j − 1), b) = V (((X ∪
{xj}), j)) − pj = Q((X, j − 1), b∗j ). If, however,
b < pj , then Q((X, j − 1), b) = V ((X, j)) ≤ V (((X ∪
{xj}), j))−pj = Q((X, j−1), b∗j ), since b∗j ≥ pj , by as-
sumption. The case in which b∗j < pj is symmetric.

This MDP formulation is related to that of Boutilier,
et al. [4]. The most notable difference is in the two
state representations. In their model, states consist of

current holdings together with an endowment, which
decreases as goods are acquired. In our model, rather
than decrease an endowment, expenses are modeled
as negative rewards. Our representation leads to a no-
table savings in the size of the state space, but cannot
model an agent with a finite budget. Note that Theo-
rem 2.2 is not applicable in their model.

2.1 Marginal Utility

In this section, we present an interpretation of the op-
timal bidding policy in sequential auctions in terms
of marginal utilities. Computing marginal utilities de-
pends on solving the so-called acquisition problem [5]:
“Given the set of goods that I already own, and given
market prices and supply, on what set of additional
goods should I place bids so as to maximize my util-
ity: i.e., valuation less costs?”

Definition 2.3 Given a set of goods X that an agent
already owns, a set of goods Y supplied by the market
s.t. X ∩ Y = {}, a vector of prices ~p with pk ∈ R+

for all k ∈ Y , and a combinatorial valuation function
v : 2X∪Y → R satisfying free disposal (i.e., if Y ⊆ X ,
v(Y ) ≤ v(X)),

• the acquisition function α(X, Y, ~p) is defined as
follows:

α(X, Y, ~p) = max
Z⊆X∪Y

(

v(Z) −
∑

k∈Z∩Y

pk

)

(6)

• the marginal utility of good x 6∈ X ∪ Y is de-
fined as follows: µ(x, X, Y, ~p) = α(X∪{x}, Y, ~p)−
α(X, Y, ~p).

In words, the marginal utility of good x 6∈ X∪Y is the
difference between the utility of X∪{x}∪Y , assuming
x costs 0, and the utility of X ∪ Y (equivalently, the
utility of X ∪ {x} ∪ Y , assuming x costs ∞).

Definition 2.4 Given a set of goods X that an agent
already owns, a set of goods Y supplied by the market
s.t. X ∩ Y = {}, a joint probability density function f

describing the prices of the goods in Y , and a combi-
natorial valuation function v : 2X∪Y → R,

• the expected acquisition function α(X, Y ) is de-
fined as follows:

α(X, Y ) = E~p[α(X, Y, ~p)] =

∫

~p

α(X, Y, ~p)f(~p)d~p

(7)

• the expected marginal utility of good x 6∈ X ∪Y is
given by: µ(x, X, Y ) = α(X ∪ {x}, Y ) − α(X, Y ).



Thus, the expected marginal utility at state (X, j −
1) is the difference between the expected value of the
solution to acquisition assuming xj costs 0, and the
expected value of this solution assuming xj costs ∞.

The proof of the following (key) lemma is omitted.

Lemma 2.5 For all states (X, j) in the MDP,

V ((X, j)) = α(X, Yj), where Yj = {xj+1, . . . , xn}.

Corollary 2.6 For all states (X, j) in the MDP, and

for all goods xj , µ(xj , X, Yj) = V ((X ∪ {xj}, j)) −
V ((X, j)), where Yj = {xj+1, . . . , xn}.

Proof 2.7 The proof follows immediately from
Lemma 2.5:

µ(xj , X, Yj) = α(X ∪ {xj}, Yj) − α(X, Yj)

= V (((X ∪ {xj}), j)) − V ((X, j))

Corollary 2.8 Expected marginal utility bidding is

the optimal bidding policy in sequential auctions.

Proof 2.8 The proof follows from Theorem 2.2 to-
gether with Corollary 2.6.

Returning to the example in Figure 1, the optimal
policy at state ({}, 0) is simply to bid the expected
marginal utility of good A, which is the difference be-
tween the value of state ({A}, 1) and state ({}, 1). Sim-
ilarly, the optimal policy at state ({A}, 1) is to bid the
expected marginal utility of good B given that the
agent already owns good A, which is the difference
between the value of states ({A, B}, 2) and ({A}, 2);
and, the optimal policy at state ({}, 1) is to bid the ex-
pected marginal utility of good B given that the agent
owns nothing as of yet, which is the difference between
the values of states ({B}, 2) and ({}, 2). In what fol-
lows, we abbreviate expected marginal utility bidding
by MU, and we abbreviate marginal utility bidding
(assuming deterministic prices) by MU.

3 Simultaneous Auctions

In simultaneous auctions, an agent must make all
its bidding decisions a priori, with only probabilistic
knowledge of what it may or may not win.

For example, suppose that a camera and a flash are
being auctioned off simultaneously, and that an agent
assigns valuation $750 to these two goods together,
but assigns valuation $0 to either good alone. In ad-
dition, suppose that the price of the flash is known
with certainty: it is $50; but the price of camera will
be $500 with probability 1

2
and $1000 with probabil-

ity 1

2
. Given these assumptions, what is an optimal

bidding policy? If it happens that the camera sells

for $500, then it is optimal to bid $500 for the cam-
era and $50 for the flash. But, if it happens that the
camera sells for $1000, then it is optimal to bid $0 for
both the camera and the flash. Evaluating these two
policies, bidding ($0,$0) yields $0 utility, while bid-
ding ($500,$50) yields $200 utility half the time, and
−$50 utility half the time. Thus, the expected value of
bidding ($500,$50) is $75, and this is the best possible.

In this section, we formulate the problem of bidding in
simultaneous auctions as a stochastic program whose
solution is an optimal bidding policy in the expected
sense. Here, the expectation is computed over all
possible stochastic outcomes (a.k.a. scenarios): e.g.,
if there are two goods, this set of scenarios includes
win good 1, win good 2, win both goods, win neither
good. Since the number of scenarios is exponential
in the number of goods, computing an optimal solu-
tion to this stochastic program is intractable for large
numbers of goods. We discuss three methods for ap-
proximating an optimal bidding policy in this environ-
ment: one heuristic approach (expected MU bidding),
and two approximation schemes (the so-called expected

value method with MU bidding and a stochastic sam-
pling technique). In the next section, we describe ex-
periments with all three of these strategies in the TAC
Classic auction framework.

3.1 Problem Statement

Given valuation function v : 2X → R, let ~v denote
the vector of valuations, with vi as the valuation of
the ith subset of X . As in Section 2.1, good prices
are described by the joint probability function f . We
seek a set of bids that maximizes total expected util-
ity: i.e., expected valuation less expected cost. That
is, we seek a set of bids today, before any uncertainty is
resolved, that maximizes our expected utility tomor-

row, after all uncertainty is resolved. Before tackling
the bidding problem, we first describe the allocation

problem, which arises after all uncertainty is resolved,
since it is at this point that all winnings are allocated
to bundles.

Let ~p denote the vector of prices with pjk ∈ R+ as the
price of the kth copy of good j. Let the continuous
decision variables bjk ∈ R+ denote the bid placed on
the kth copy of good j; let the binary decision variables
aijk ∈ {0, 1} indicate whether or not the kth copy of
good j is allocated to bundle i. Define the following:

π(~a,~b, ~p, ~v) = −
∑

jk

pjk(1[pjk ≤ bjk ])

+
∑

i

vi





∏

j∈i

1

[

nij ≤
∑

k

aijk1[pjk ≤ bjk]

]



 (8)

where nij denotes the number of copies of good j that



are essential to bundle i, and 1[x ≤ y] is an indicator
function that evaluates to 1 if x ≤ y and otherwise
evaluates to 0. According to π, goods for which win-
ning bids are placed incur costs, but are also allocated
to bundles that secure valuations, as long as enough
copies of all goods that are essential to a bundle are in-
deed allocated to that bundle. The allocation problem
can be described by the following integer program:

max
~a

π(~a,~b, ~p, ~v) (9)

subject to:
∑

i

aijk ≤ 1, ∀j, k (10)

aijk ∈ {0, 1}, ∀i, j, k (11)

The first set of constraints states that each copy k of
each good j can be allocated to at most one bundle.

The following stochastic program [3] solves the bidding
problem in simultaneous auctions:

max
~b

∫

~p

max
~a

π(~a,~b, ~p, ~v)f(~p)d~p (12)

subject to: bjk ∈ R+, ∀j, k (13)

Notice that the allocation problem is nested inside the
bidding problem.

Later, we refer to the deterministic version of the bid-
ding problem as completion: given prices ~p,

max
~a,~b′

π′(~a,~b′, ~p, ~v) (14)

subject to: b′jk ∈ {0, 1}, ∀j, k (15)

where
π′(~a,~b′, ~p, ~v) =

∑

i

vi





∏

j∈i

1

[

nij ≤
∑

k

aijkb′jk

]



−
∑

jk

pjkb′jk (16)

3.2 Heuristics & Approximation Algorithms

In this section, we discuss three methods for approx-
imating an optimal solution to this stochastic pro-
gram: one heuristic approach inspired by ATTac-
01 (expected MU bidding), and two approximation
schemes inspired by RoxyBot (the so-called expected

value method with MU bidding and a stochastic sam-
pling technique). First, we show that the heuristic
of bidding expected marginal utilities, while optimal
in sequential auctions, is suboptimal in simultaneous
auctions. Second, we show that the expected value
method with MU bidding is also suboptimal, although
this approach is optimal when prices are determinis-
tic. Third, we discuss an asymptotically optimal sam-
pling method: i.e., as the number of samples grows,
the value of the approximate solution approaches the
value of the stochastic programming solution.

3.2.1 ATTac-01: Expected MU Bidding

In Example 1.1, in the introduction, we argued that
marginal utility bidding is suboptimal in simultaneous
auctions with deterministic prices. We present a sec-
ond example here in which prices are nondeterministic
and expected marginal utility bidding is suboptimal.

Example 3.1 Let v(x) = v(y) = v(xy) = 1. As-
sume the prices of goods x and y are described by the
following bipolar distribution: p(a) = 1, with proba-
bility 1

2
, and p(a) = 101, with probability 1

2
, for all

a ∈ {x, y}. Now expected marginal utility bidding
gives rise to the policy “Bid 1 on both goods” in this
example, since µ(x, ∅, {y}, ~p) = µ(y, ∅, {x}, ~p) = 1 un-
der all price samples ~p. But then expected marginal
utility bidding earns expected utility − 1

4
. The policy

“Bid 0 on both goods” (which earns expected utility
0) dominates expected marginal utility bidding in this
example.

x y µ(x) µ(y) Evaluation
1 1 1 1 -1
1 101 1 1 0

101 1 1 1 0
101 101 1 1 0

Average 1 1 − 1

4

3.2.2 RoxyBot-00: Expected Value Method

with MU Bidding

In this section, we show (i) the expected value method
with MU bidding (EVMU) is optimal when prices are
deterministic; but, (ii) in general, the expected value
method, and therefore EVMU, is suboptimal.

It is common to approximate the solution to stochas-
tic programs using the so-called expected value method

(see, for example, [3]). This method solves the deter-
ministic version of the problem, assuming all stochas-
tic inputs have deterministic values equal to their ex-
pected values. Applying this method to our stochastic
program yields a solution to Equation 14: i.e., an opti-
mal set of goods on which to bid. As in the determinis-
tic setting, it is straightforward to transform a solution
to this problem into an optimal bidding policy: bid
$∞, whenever bj = 1; bid $0, whenever bj = 0. But,
in general the expected value method is suboptimal.

Recall the discussion of the camera and the flash intro-
duced at the beginning of this section. One attempt
to approximate the optimal solution (in the expected
sense) is obtained by solving the deterministic vari-
ant of the problem: assume the price of the camera is
$750 (its expected price), while the price of the flash
is $50. Under these assumptions, the cost exceeds the
valuation of the camera and the flash; thus, the op-
timal policy is to bid ($0,$0), which yields $0 utility.



In this example, the so-called value of stochastic in-

formation (i.e., the difference between the solutions to
Equation 12 and Equation 14) is $75.

The following example shows that there is value to
stochastic information not only in simultaneous auc-
tions, but even in an auction for only one good (which
is both a sequential and a simultaneous auction).

Example 3.2 Consider only one good a of value $100.
Suppose a’s price is $1 with probability .9, but that
a’s price is $1 million with probability .1. Thus, the
expected price of good a is roughly $100,0010. The
optimal policy using the expected value method is to
bid $0, which scores $0. But now consider the bid-
ding policy “bid $100.” This policy scores $99 with
probability .9, and $0 with probability .1. Thus, on
average, this policy scores roughly $89. “Bid $100”
dominates the expected value method in this example.
Indeed, “bid $100,” which corresponds to bidding ex-
pected marginal utility, is optimal, since this auction
is sequential.

In the introduction, we made an important simplify-
ing assumption, namely, the price of each good is given
by an exogenous probability distribution, which is de-
termined by the collective behavior of all competing
agents, but which ignores the behavior of the optimiz-
ing agent. In TAC Classic hotel auctions, for example,
this assumption is violated: an agent’s bid can impact
the prices of goods—a winning agent could even pay
what it bids. As a heuristic that is applicable in this
more general setting, we propose the following bidding
policy: bid marginal utilities on all goods in an optimal
set A∗ computed using the expected value method. If
it is possible that an agent could pay what it bids,
then marginal utility seems to be a reasonable upper
bound on what it should bid, since bidding marginal
utility on some good x ∈ A∗ is indeed optimal if the
prices of all other goods y 6= x ∈ A∗ are determin-
istic. In summary, we propose the following bidding
policy: (i) set pj equal to the mean of Pj , (ii) solve the
completion problem (i.e., Equation 14), and (iii) bid
marginal utilities on all goods in the optimal comple-
tion: i.e., all goods for which bj = 1. We call this strat-
egy EVMU. It was implemented in RoxyBot-00 [7],
and it was shown that EVMU bidding is optimal in si-

multaneous auctions when prices are deterministic in
Greenwald [6].

3.2.3 RoxyBot-02: MU Bidding Policy

Search

As a third means of approximating an optimal solution
to the problem of bidding in simultaneous auctions,
one possible technique called Sample Average Approx-

imation (SAA) method solves the stochastic program

using only a subset of the scenarios, randomly sam-
pled according to the scenario distribution. An impor-
tant theoretical justification for this method is that as
the sample size increases, the solution converges to an
optimal solution in the expected sense. Indeed, the
convergence rate is exponentially fast [8]. In Benisch,
et al. [2], we apply this technique to the TAC SCM
scheduling problem.3

Here we explore an alternative means of approximat-
ing an optimal solution to the stochastic program,
namely policy search, which in the absence of any
clever heuristics, is simply brute-force, generate-and-
test. This solution technique generates a set of candi-
date policies, evaluates them, and selects the best one.
Candidates are evaluated over multiple samples: for
each sample, the candidate’s score is computed, and
scores are averaged over all samples (as in the pol-
icy evaluation process in Example 3.1). If it were to
evaluate all possible candidate policies under infinitely
many samples, this method would tend towards out-
putting an optimal bidding policy.

A variant of this approach is at the heart of RoxyBot-
02, which generates candidate policies via the follow-
ing heuristic: (i) determine pj by sampling from the
price distributions; (ii) solve the completion problem
(i.e., Equation 14), and (iii) bid marginal utilities on
all goods in the optimal completion: i.e., all goods for
which bj = 1. More generally, RoxyBot-02 can gen-
erate policies according to any of the aforementioned
algorithms: EVMU, MU, or expected MU. By includ-
ing in the space of candidate policies those generated
by these alternative strategies, we can ensure (proba-
bilistically) that RoxyBot-02 dominates the others.

In TAC-02, RoxyBot-02 generated its candidate poli-
cies using RoxyBot-00’s internals. In Example 3.2,
this instantiation of RoxyBot-02 generates two poli-
cies: if the sample price is $1, its bidding policy is “bid
$100;” if the sample price is $1 million, its bidding
policy is “bid $0.” “Bid $100” scores $89, on aver-
age, whereas “bid $0” scores $0. Thus, RoxyBot-02
employs the policy “bid $100”, and scores $89, on av-
erage. This form of policy search outperforms EVMU
in this example. Indeed, there is value in exploiting
stochastic information beyond expected values. In the
next section, we demonstrate this effect in TAC Clas-
sic.

4 Experiments

Our analysis of agent bidding strategies in the previ-
ous two sections was based on the assumption that
prices are determined exogenously. In particular, MU

3See www.sics.se/tac for a description of TAC SCM.



is optimal in sequential auctions if prices are determin-
istic and exogenous; EVMU is optimal in simultane-
ous auctions if prices are deterministic and exogenous;
and, policy search is approximately optimal in simul-
taneous auctions, even if prices are uncertain, but still
exogenous. In this section, we discuss experiments de-
signed to ascertain the power of these strategies in the
TAC Classic hotel auctions, a hybrid of sequential and
simultaneous auctions, in which prices are endogenous,
rather than exogenous.

In TAC Classic hotel auctions, the TAC seller auctions
off 16 hotel rooms in ascending, multi-unit, sixteenth
price auctions. These auctions close sequentially. The
order of the auction closings is unknown to the agents.
In fact, MU bidding is optimal even in sequential auc-
tions which close in some random, unknown order if

bids can be withdrawn. The difficulty in TAC classic
hotel auctions is that bids cannot be retracted. More-
over, when agents submit bids, they must “beat the
quote,” according to the following rules:

Let a be the the sixteenth highest price. Any
new bid b must satisfy the following conditions
to be admitted to the auction: (i) b must offer
to buy at least one unit at a price of a + 1 or
greater; (ii) if the agent’s current bid c would
have resulted in a purchase of q units, then the
new bid b must offer to buy at least q units, again
at a price of a + 1 or greater.

4.1 Setup

In our experiments, we pitted 4 TAC agents bidding
according to one strategy against 4 TAC agents bid-
ding according to another strategy (e.g., 4 RoxyBot-
02 agents vs. 4 RoxyBot-00 agents). We refer to each
set of 4 TAC agents in one game as a team. We played
numerous games between pairs of teams—exact num-
bers depended on which teams were participating. In
RoxyBot-02, we arbitrarily fixed the number of sam-
ples n = 50. No attempt was made to optimize this
parameter. None of the other algorithms used in this
study—RoxyBot-00, MU, and MU–have any tunable
parameters.

Before running any experiments, we played 500 train-
ing games between RoxyBot-00 and MU, initializing
price estimates to the competitive equilibrium prices
derived in Wellman, et al. [11]. Using data collected
from these training games, we generated distributions
over clearing prices for each good. The distributions
were represented by a lookup table over five salient
features of the domain, the details of which are be-
yond the scope of this paper. In each cell of the
table, 10 numbers were stored, corresponding to the
predictions at percentiles 5, 10, 15, . . . , 95. This rep-
resentation was chosen for its simplicity and its weak
assumptions about the shape of the underlying price

distributions. We sought to capture the highly skewed
and multimodal distributions that arise in practice in
TAC games.

A sample output after the run of one game instance is
shown in the table below.

Agent Score Rank
RoxyBot-02 3802 1
RoxyBot-02 3116 6
RoxyBot-02 3166 5
RoxyBot-02 3447 4
RoxyBot-00 2521 8
RoxyBot-00 3696 2
RoxyBot-00 2788 7
RoxyBot-00 3600 3

Generally speaking, scores in our experiments are not
as high as scores in actual competitions, because bid-
ding marginal utilities, as do all eight agents in our
experiments, tends to lead to high prices.

4.2 Evaluation

To evaluate our results, we use two statistical tests:
the z-test, which we use to compare scores, and the
Wilcoxon test, which we use to compare rankings. In
our context, the inputs to the z-test are two sample
datasets of scores, one per team, over many game in-
stances. The z-test outputs the probability that the
difference between the means of these datasets is pos-
itive: i.e., the probability that the mean of the second
is greater than the mean of the first. Our input to the
Wilcoxon test4 is a list of pairs of average rankings,
one per game. The test measures the significance of
the difference between these rankings.

4.3 Results

Our experimental results are depicted numerically in
Table 1 and graphically in Figure 2. MU outperforms
expected MU; RoxyBot-00 outperforms MU; and,
RoxyBot-02 outperforms RoxyBot-00. Moreover,
these results are transitive: RoxyBot-00 outperforms
expected MU bidding; RoxyBot-02 outperforms MU
bidding; and RoxyBot-02 outperforms expected MU
bidding.

The numbers in Table 1 reveal that with high confi-
dence, RoxyBot-02 is expected to score higher than
RoxyBot-00 and MU. On the other hand, although
RoxyBot-00 is expected to score higher than MU,
the lower confidence level supporting this conclusion
makes this result less credible. The outcome of all

4For a description of the Wilcoxon test, visit
http://fonsg3.let.uva.nl/Service/Statistics/
Signed_Rank_Test.html.



Teams Means z-test Wilcoxon Games

MU < MU 964 1908 .999 .999 25
MU < RoxyBot-00 1508 1612 .793 .803 75
RoxyBot-00 < RoxyBot-02 1837 2031 .977 .996 50

MU < RoxyBot-00 1334 2034 .999 .999 25
MU < RoxyBot-02 1705 1987 .976 .993 50

MU < RoxyBot-02 915 1920 .999 .999 25

Table 1: Numerical Results: Means, z-test, Wilcoxon test, and Sample Size.
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Figure 2: Graphical Results: 95% Confidence Intervals on the Means. All agent strategies clearly outperform
expected MU bidding. Other graphs reveal narrower performance distinctions.

Wilcoxon tests, and the graphs depicted in Figure 2,
reinforce the outcome of the z-tests.

Notably, with high confidence in the z-tests and
Wilcoxon tests, all strategies are expected to score
higher than expected MU, and with 95% confidence,
all strategies outperform expected MU. Since expected
MU bidding is the optimal policy in sequential auc-
tions, we conclude that TAC classic hotel auctions are
more similar in spirit to simultaneous auctions than to
sequential auctions.
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