
Amy Greenwald
Brown University

Peter Stone
AT&T Labs–Research

Autonomous Bidding
Agents in the Trading
Agent Competition

Designing agents that can bid in online simultaneous auctions

is a complex task.The authors describe task-specific details

and strategies of agents in a trading agent competition.

A natural offshoot of the growing
prevalence of online auctions is
the creation of autonomous bid-

ding agents that monitor and participate
in these auctions. It is straightforward to
write a bidding agent to participate in an
online auction for a single good, particu-
larly when the value of that good is fixed
ahead of time: the agent can bid slightly
over the ask price until the auction closes
or the price exceeds the value. In simulta-
neous auctions offering complementary
and substitutable goods, however, agent
deployment is a much more complex
endeavor.

The first trading agent competition
(TAC), held in Boston, Massachusetts, on 8
July 2000, challenged participants to
design a trading agent capable of bidding
in online simultaneous auctions for com-
plimentary and substitutable goods. TAC
was organized by a group of researchers
and developers led by Michael Wellman of
the University of Michigan and Peter Wur-
man of North Carolina State University. In

a companion article, the tournament orga-
nizers present the design and operation of
the competition.1

This article describes the task-specific
details of, and the general motivations
behind, the four top-scoring agents. First,
we discuss general strategies used by most
of the participating agents. We then report
on the strategies of the four top-placing
agents. We conclude with suggestions for
improving the design of future trading
agent competitions.

General Game Strategies
A TAC game instance lasts 15 minutes and
pits eight autonomous bidding agents
against one another. Each TAC agent is a
simulated travel agent with eight clients,
each of whom would like to travel from
TACtown to Boston and home again dur-
ing a five-day period. Each client is char-
acterized by a random set of preferences
for arrival and departure dates, hotel
rooms, and entertainment tickets. A TAC
agent’s objective is to maximize the total

52 MARCH • APRIL 2001 http://computer.org/internet/ 1089-7801/01/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

Vi
rt

ua
l M

ar
ke

tp
la

ce
s

utility (a monetary measure of the value of goods
to clients) minus total expenses.

Agents have two basic activities: bidding and
allocating. An agent bids, or offers payment, for
goods to gain utility; an agent allocates purchased
resources to clients to maximize total utility, both
during and at the end of the game. To obtain util-
ity for a client, a TAC agent constructs a travel
package for that client by placing winning bids in
simultaneous auctions for hotel reservations and
flights. An agent can obtain additional utility by
buying and selling entertainment tickets. After the
auctions close, agents have four minutes to report
their final allocations of goods to clients. A TAC
agent’s score is the difference between its clients’
utilities and the agent’s expenditures; a higher
score indicates better performance. For full details,
see http://tac.eecs.umich.edu.

Bidding Strategies
Figure 1 lists the basic decisions in the agents’
inner bidding loops. Most decisions—what to buy,
how many to buy, and how much to bid—showed
several noteworthy differences. Only the timing of
bids showed common features across agents.

Hotel auctions. In TAC auctions, the supply of
flights is infinite and airline ticket prices are pre-
dictable, but the supply of hotel rooms is finite
and hotel prices are unpredictable. Given the risks
associated with the hotel reservation auctions,
together with their importance in securing feasi-
ble travel packages, hotels were the most hotly
contested items during the TAC competition. The
timing of bidding in hotel auctions is particular-
ly intriguing.

Hotel room prices have no set maximum value.
Instead, TAC hotel auctions are ascending (English),
mth-price, multiunit auctions and are subject to
random closing times given sufficient levels of inac-
tivity. (In a multiunit auction, m units of a good are
available; in an mth price auction, the bidders with
the m highest prices win the m units, all at the mth
highest price.) Most TAC agents refrain from bid-
ding for hotels early in the game unless the ask
price has not changed recently, implying that the
auction might close early, or the ask price is very
low. Ultimately, the most aggressive hotel bidding
takes place at the “witching hour”—in the final
moments of the game—although precisely when is
determined individually by each agent. More often
than not, TAC hotel auctions reduce to mth price
sealed-bid auctions, resulting in unpredictable final
hotel prices that were often out of bounds.

Treating all current holdings of flights and
entertainment tickets as sunk costs, the marginal
utility of an as-yet-unsecured hotel room reserva-
tion is precisely the utility of the package itself.
(Note that this observation holds only when the
length of stay is exactly one
night; for longer stays, it
requires the further assumption
that all other hotel rooms in the
package are secured.) Through-
out the preliminary competition,
few agents bid their marginal
utilities on hotel rooms. Those
that did, however, generally
dominated their competitors.
Such agents were high bidders,
bidding approximately $1,000,
always winning the hotels on
which they bid, but paying a
price far below their bid. Most
agents adopted this high-bidding
strategy during the actual com-
petition. The result: many negative scores, since
there were often greater than m high bids on a
hotel room. In the final competition, the top-scor-
ing TAC agents were those that not only bid
aggressively on hotels, but also incorporated risk
and portfolio management into their strategy to
reduce the likelihood of buying highly demanded,
overpriced hotel rooms.

Flight auctions. Unlike hotel prices, prices for
flights are predictable, with a maximum value of
$600. In particular, expected future prices equal
current prices. Since airline prices periodically
increase or decrease by a random amount chosen
from the set {–10, –9, . . . , 9, 10} with equal prob-
ability, the expected change in price for each air-
line auction is 0. (Indeed, it can be shown that if

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 53

Bidding Agents

The top-scoring
agents were
those that not
only bid aggres-
sively,but also
incorporated risk
and portfolio
management
into their
strategy.

(A) REPEAT

1. Get market prices from server

2. Decide on what goods to bid

3. Decide at what prices to bid

4. Decide for how many to bid

5. Decide at what time to bid

UNTIL game over

(B) Allocate goods to clients

Figure 1. High-level overview of a TAC agent’s bidding
decisions.TAC agents run an inner bidding loop, getting
price updates from the server and making bidding deci-
sions. Note that the order in which these decisions are
made varies according to the agent’s strategy.

the airline auctions are considered in isolation,
waiting until the end of the game to purchase tick-
ets is an optimal strategy, except in the rare case
where the price hits the lower bound on its value.)
Thus, the auction design offers no incentive to bid
on airline tickets before the witching hour, since by
waiting there is some chance of obtaining infor-
mation about hotel acquisitions.

There are, however, substantial risks associated
with delaying bid submission. These risks arise
from unpredictable network and server delays, and
can cause bids placed during a game to be received
after the game is over. To cope with these risks,
most agents dynamically computed the length of
their bidding cycles and then placed their flight
bids some calculated amount of time before the end
of a game. For example, a risk-averse agent might
compute the average length of its three longest bid-
ding cycles and then place its flight bids as soon as
game time reaches 900 seconds minus twice that
delay. A more risk-seeking agent might place its
flight bids later, perhaps with game time of 900 sec-
onds minus the minimum length of its five most
recent bidding cycles. In practice, flight bids were
placed anywhere from five minutes to 30 seconds
before the end of the game.

Flight auctions are such that agents who place a
winning bid pay not their bid but the current ask
price. Thus, most agents bid above the current
price—agents often bid the maximum—to ensure
that these bids, which were placed at critical
moments, were not rejected because of information
delays resulting from network asynchrony.

Entertainment auctions. Agents’ bidding strategies
differ most substantially in auctions for entertain-
ment tickets. While some agents focus on obtaining

complete packages, others make bidding decisions
on travel packages alone (that is, flights and hotel
rooms) without regard for entertainment packages,
essentially breaking the TAC problem down into two
subproblems and then solving greedily. The greedy
approach, however, is not optimal. For example, if a
client does not already have a ticket to an event,
then it is preferable to extend the client’s stay when-
ever the utility obtained by assigning that client a
ticket to the event exceeds the cost of the ticket and
an additional night at the hotel plus any travel
penalties incurred. Similarly, it is sometimes prefer-
able to sell entertainment tickets and shorten a
client’s stay accordingly.

Allocation Strategies
When allocating goods to their clients, most of the
agents greedily focus on satisfying each of their
clients in turn. Only the top two teams’ bidding
strategies incorporated global decision-making in
which the interests of all their clients were consid-
ered simultaneously. (The third-scoring agent used
a heuristically based intermediate approach.) This
aspect of an agent’s design also affects its final
allocation algorithm. The percentage of optimal
allocations reported by each agent during the com-
petition is listed in Table 1.

Although simpler, the greedy strategy is not
always optimal. For example, consider two clients,
A and B, with identical travel preferences and the
following entertainment preferences: A values the
symphony at $90, the theater at $80, and baseball
at $70; B values the symphony at $175, the theater
at $150, and baseball at $125. Suppose each client
will be in town on the same night and that one
ticket for each entertainment type is for sale for $50
on that night. An agent using a greedy approach
who considers client A before B will assign A the
ticket to the symphony and B the ticket to the the-
ater, obtaining an overall utility of $140. It would
be optimal, however, to assign A the ticket to the
theater and B the ticket to the symphony, yielding
an overall utility of $155.

Top-Scoring Agents’ Strategies
In the remaining sections of this article, we describe
the bidding, allocation, and completion strategies;
team motivations; and any unique approaches of
the four top-scoring agents.

ATTac:Adaptability and Principled Bidding
ATTac placed first by using a principled bidding
strategy. Several elements of strategic adaptivity
gave ATTac the flexibility to cope with a wide vari-

54 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

Table 1.The agents’ effectiveness in
optimizing final allocations during the

competition.

Agent Strategy Aggregate Minimum Number
ATTac Optimal 100.0% 100.0% 13/13
RoxyBot Optimal 100.0% 100.0% 13/13
Aster Heuristic 99.6% 98.0% 9/13
UmbcTac Greedy 99.4% 94.5% 7/13

Note:Aggregate is the percentage of the optimal utility (ignoring expenditures) achieved

with the reported allocation, aggregated over the 13 games each of the top four agents

played. Minimum is the minimum among these aggregated values. Number is the

number of times the agent reported an optimal allocation.This information was

provided by the TAC organizing team.

ety of possible scenarios during the competition.
ATTac’s design was motivated by its developers’
interest in multiagent learning.

Bidding. At every bidding opportunity, ATTac
begins by computing the most profitable alloca-
tion of goods to clients (denoted G*), given the
currently owned goods and the current prices of
hotels and flights. (For hotels, ATTac actually uses
predicted closing prices based on the results of
previous game instances.) For this computation,
ATTac allocates, but does not consider buying or
selling, entertainment tickets. In most cases, G* is
computed optimally through mixed-integer lin-
ear programming.

ATTac bids in either passive or active mode. In
passive mode, ATTac computes the average time it
takes to place a bid, keeping its bidding options
open until the witching hour. When the time left in
the game equals twice the time of an average trans-
action, ATTac switches to active mode, during
which it buys the airline tickets required by G* and
places high bids for the required hotel rooms.
ATTac expects to run at most two bidding iterations
in active mode.

Based on the current G*, its current mode, and
the average time of its transactions, ATTac bids for
flights, hotel rooms, and entertainment tickets.
Stone et al. detail ATTac’s strategy2; we focus on
bidding strategies for entertainment tickets.

On every bidding iteration, ATTac places a buy
bid for each type of entertainment ticket and a sell
bid for each type of entertainment ticket it cur-
rently owns. In all cases, prices depend on the
amount of time left in the game, and become less
aggressive as time goes on.

For each owned entertainment ticket E, if E is
assigned in G*, let V(E) be the value of E to the
client to whom it is assigned in G*. Since $200 is
E’s maximum possible value to any client under
the TAC parameters, ATTac offers to sell E for min
(200; V(E) + δ) where δ decreases linearly from 100
to 20 based on the time left in the game. ATTac
uses a similar “sliding price” strategy for enter-
tainment tickets that it owns but did not assign in
G* (because all clients are either unavailable that
night or are already scheduled for that type of
entertainment in G*).

Finally, ATTac bids on each type of entertain-
ment ticket (including those it is also offering to
sell) based on the increased value of G* that would
be derived by owning it (that is, G* is entirely
recomputed with a hypothetical additional
resource). Again, a sliding price strategy is used,

this time with the buy price increasing as the game
proceeds. The sliding price strategy allows the
agent to take advantage of large value inconsis-
tencies at the beginning of the game, while capi-
talizing on small potential utility gains at the end.

Allocation. ATTac relies heavily on computing the
current G*. Since G* changes as prices change,
ATTac needs to recompute it at every bidding
opportunity. ATTac used a mixed-integer linear pro-
gramming approach to compute optimal final allo-
cations in every game of the tournament finals—one
of only two entrants to do so (see Table 1).

Using a mixed-integer linear programming
approach, ATTac specifies the desired output: a
list of new goods to purchase and an allocation
of new and owned goods to clients to maximize
utility minus cost. ATTac searches for optimal
solutions to the defined linear program using
“branch and bound” search. This approach will
find the optimal allocation, usually in under one
second on a 600-MHz Pentium
computer.

Online adaptation. TAC appealed
to ATTac’s developers because it
appeared to be a good application
for machine-learning techniques,
one of the developers’ main
research interests.3 However, TAC
was conducted in such a way that
it was impossible to determine
competitors’ bids; only the cur-
rent ask prices were accessible.
This precluded learning detailed
models of opponent strategies. ATTac instead adapts
its behavior online in three ways:

� ATTac decides when to switch from passive to
active bidding mode based on the observed serv-
er latency during the current game instance.

� ATTac adapts its allocation strategy based on
the amount of time the linear program takes to
determine optimal allocations in the current
game instance.

� Perhaps most significantly, ATTac adapts its
risk-management strategy to account for
potentially skyrocketing hotel prices.

For flights, ATTac computed G* based on current
prices. For hotels, however, it predicted current
game closing prices based on closing prices in pre-
vious games. ATTac divided the eight hotel rooms
into four equivalence classes, exploiting symme-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 55

Bidding Agents

ATTac’s “branch
and bound”
search usually
found the
optimal
allocation in
under one
second.

tries in the game (hotel rooms on days one and
four should be equally in demand as rooms on
days two and three), assigned priors to the expect-
ed closing prices of these rooms, and then adjust-
ed these priors based on closing prices observed
during the tournament.

Whenever the actual price for a hotel was less
than the predicted closing price, ATTac used the
predicted hotel closing price for computing its allo-
cation values. This strategy works well both when
hotel prices escalate and when they do not.2 Indeed,
ATTac performed as well as the other top-finishing
teams in the early TAC games when hotel prices
stayed low, and then outperformed its competitors
in the tournament’s final games when hotel prices
rose to high levels.

RoxyBot:An Approximately Optimal Agent
RoxyBot’s algorithmic core, based on AI heuristic
search techniques, incorporates an approximately
optimal solver for completion and an optimal solver
for allocation. The formulation of the completion
problem involves a novel data structure called a
priceline, which is designed to handle future clos-
ing prices, future supply and demand, sunk costs,
hedging, and arbitrage in a unified way. RoxyBot’s
high-level strategy is outlined in Figure 2; full
details are available in Boyan and Greenwald.4

Allocation. RoxyBot’s allocator, which runs at the
end of a game, helps motivate the completer algo-
rithm used during each bidding cycle. The alloca-
tor solves the following problem: Given a set of
travel resources purchased at auction, and given
the clients’ utility functions defined over subsets of
travel resources, how can the resources be allocat-
ed to the clients so as to maximize the sum of their
respective utilities? Although this problem is NP-
complete,5 an optimal solution based on A* search
is tractable for the dimensions of TAC. Indeed,
using an intricate series of admissible heuristics,

RoxyBot pruned the search tree of possible optimal
allocations from roughly 1020 to 103 possibilities. As
a result, it typically discovered provably optimal
allocations in one half of a second in all of the
competition games.

The A* search traverses a tree of depth 16. Search
begins at the top of the tree with the given collec-
tion of resources. At each level of the tree, a sub-
set of the remaining resources is allocated to a
client, and those resources are subtracted from the
pool. Levels 1 through 8 correspond to the choice
of feasible travel package (that is, combination of
flights and hotel rooms) to assign to clients 1
through 8, respectively. There are 21 such travel
packages, including the null package. Levels 9
through 16 of the tree correspond to the choice of
entertainment package (that is, sets of entertain-
ment tickets of different types on different days) to
assign to clients 1 through 8.

There are 73 entertainment packages, though
many are infeasible due to earlier assignments of
travel packages. The heuristics compute an upper
bound on a quantity (for example, the maximum
possible number of feasible packages using good
hotels, or arriving on day three). Then, subject to
these upper bounds, all as-yet-unassigned clients
are assigned their preferred package among those
remaining, ignoring conflicts. Caching tricks
employed at the start of each game enable these
heuristics to be computed very quickly.

Completion. The completer that runs during each
bidding cycle is the heart of RoxyBot’s strategy. It
aims to determine the optimal quantity of each
resource to buy and sell, given current holdings and
forecasted closing prices. Like the allocator, it con-
siders all travel resources from a global perspective
and makes integrated decisions about hotel, flight,
and entertainment bids. Unlike the allocator, the
completer faces the added complexity that the
resources being assigned may not yet be in hand,
but may still need to be purchased at auction. Fur-
thermore, it might be more profitable to sell in-
hand entertainment tickets than allocate them to
its own clients.

RoxyBot’s completer relies on its pricelines to
reason about the trade-offs involved with each
resource. The priceline transparently handles either
one-sided or double-sided auctions, short-selling
of resources, hedging, and both limited and unlim-
ited supply and demand. This construction greatly
simplifies the completer’s task because the cost of
a package equals the totals of the corresponding
pricelines, and the value of a package to a client

56 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

(A) REPEAT

1. Update current prices and holdings

2. Estimate clearing prices and build

pricelines

3. Run completer to find optimal buy/sell

quantities

4. Set bid/ask prices strategically

UNTIL game over

(B) Run optimal allocator

Figure 2. RoxyBot’s high-level strategy. Roxybot’s inner
bidding loop refines the generic loop shown in Figure 1.

equals the client’s utility for that package minus its
cost. Given the pricelines and the corresponding
client valuations of packages, A* search can be
used to find the optimal set of buying and selling
decisions. Unfortunately, most of the A* heuristics
used in RoxyBot’s optimal allocator were not
applicable in the completer scenario, and running
times for an optimal completer occasionally took
as long as 10 seconds. Nonetheless, using a greedy,
nonadmissible heuristic and a variable-width beam
search over the same search space, in practice Rox-
yBot usually found an optimal completion within
about three seconds. Therefore, during the compe-
tition, RoxyBot used beam search rather than prov-
ably optimal A* search.

Estimation. RoxyBot’s priceline data structures
describe the costs of market resources. However,
in auctions such as those fundamental to the TAC
setup, costs are not known in advance. Therefore,
the actual input to RoxyBot’s pricelines are but
estimates of auction closing prices and estimates
of market supply and demand (current holdings
are known), which RoxyBot produces using
machine-learning techniques. However, the final
round of the TAC competition was too short and
the agent strategies too different from the prelim-
inary rounds for Roxybot to effectively use most
of the learning algorithms that were developed.
Only entertainment ticket price estimates were
adaptively set, using an adjustment process based
on Widrow-Hoff updating.6 In future competi-
tions, RoxyBot’s creators hope that TAC will be
more suited to the use of learning algorithms for
price-estimation based on bidding patterns
observed during a game instance and an agent’s
own clients’ preferences.

Aster: Flexible Cost Estimation
Aster, the third-placing agent, was designed by
members of the Strategic Technologies and Archi-
tectural Research Laboratory at InterTrust Tech-
nologies. Aster’s cost estimation framework is flex-
ible and can respond to strategic behavior of
competing agents. Aster’s allocation heuristics are
relatively simple and fast, and they produce high-
quality solutions.

Like RoxyBot, Aster runs a loop. During each
iteration, Aster gets the status of all auctions, esti-
mates the costs of resources, computes a tentative
allocation based on estimated costs, and bids for
some desired resources. After all auctions close,
Aster runs a sophisticated algorithm to compute the
final allocation.

Bidding. Aster bids using one of two strategies that
correspond to game stages before and after the
witching hour. Like ATTac, Aster initiates its pre-
commit bidding stage as late as feasible, based on
previous delay in accessing the AuctionBot, with
the hope that it will be able to complete at least one
iteration during the active stage. During the pre-
commit stage, Aster does not bid on flights. In
committed stage, Aster places all necessary flight
bids to achieve the current allocation.

In the precommit stage, Aster places limited
bids on hotel rooms, trying to capture early clos-
ings. At the same time, it tries to avoid engaging
in price hikes by placing bids at the minimum
allowable increment (that is, the ask price plus $1).
Aster limits its bids for each client to at most two
consecutive nights, even if the allocator has
scheduled the client for a longer stay. (With at
most two nights, if the hotel price on one night
shoots up, Aster can drop the expensive night
without loss. If it bid for more
than two nights and the price on
a middle night were to shoot up,
it could get stuck with a room or
two for the outer nights.) During
the committed stage, Aster bids
for every night of each client’s
allocated stay. The amount of
these bids equals the utility due
to that client.

Aster’s strategy for buying
and selling entertainment tickets
is independent of game stage. It
sets the bid and ask prices for
tickets by using their utility in
the current allocation as well as
precomputed expected utilities for other trading
agents. Notably, Aster’s goal is to obtain greater
utility than the other agents, not to maximize its
own utility. In some games, Aster profited by buy-
ing and selling the same entertainment ticket.

Allocation. On each iteration, Aster computes a ten-
tative allocation of resources by using a local search
algorithm that considers pairs of clients in turn,
given estimated costs and current holdings. It starts
with all clients having no resources and then iter-
ates over all pairs of clients, deallocating their cur-
rent resources and allocating new resources to max-
imize utility. This procedure uses the cost vectors as
stacks: Deallocating a resource frees up the cost of
the last allocated copy, and allocating a resource
incurs the cost of an additional copy. Repeated iter-
ations are conducted until utility does not improve.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 57

Bidding Agents

Aster’s cost
estimation
framework is
flexible and can
respond to
strategic
behavior of
competing
agents.

Aster uses heuristic search to complete its final
allocation. To compute the globally optimal allo-
cation of its travel goods to its clients, it searches
a tree consisting of all possible travel packages
(that is, arrival dates, departure dates, and hotel
types) for all clients. Then, at each leaf of this tree,
Aster computes an entertainment assignment by
iterating over all pairs of clients, deallocating and
reallocating entertainment tickets optimally, until
the entertainment allocation cannot be improved.

The above search algorithm is not optimal
because the entertainment ticket assignment
process is only locally optimal, but is not optimal
over all clients viewed from the global perspective.
Thus, after this first search, Aster searches again, in
an attempt to compute an optimal entertainment
allocation over all clients while keeping their trav-
el packages fixed. The allocation heuristic performs
well, usually finding an optimal or a near-optimal
solution (see Table 1).

Aster uses pruning in both
searches to cut execution time.
Although not provably optimal,
Aster’s designers believe that
such approximate approaches
will scale better to larger games
than exact approaches, since the
size of the search tree can be
explicitly controlled.

Estimation. Just as RoxyBot
computes a priceline for each
resource, Aster computes a cost
vector, whose ith entry gives the
cost of holding or acquiring the

ith copy of that resource. Also like RoxyBot, when
estimating costs, Aster treats sunk costs as no costs.
For example, the estimated cost for flights is zero
for currently held tickets and the current ask price
for additional tickets.

For hotels, estimating costs is tricky because both
price and holdings are unknown until an auction
closes. Aster predicts the closing price for a hotel
room by linearly extrapolating previous ask prices
on the basis of current time. This extrapolated price
is then adjusted as follows: For rooms Aster has
hypothetically won, the cost is reduced; the amount
of this reduction depends on the probability that
these winnings would be ultimately realized (the
higher the bid, the higher the probability, and the
lower the estimated cost). For additional rooms, the
cost is increased exponentially to model potential
increases in closing prices due to Aster’s own bids.

Since the AuctionBot provides only one bid and

ask quote per entertainment ticket, Aster assumes
that the cost of buying an additional ticket is the
current ask price and that the cost of further tickets
is infinite. For all tickets that Aster currently holds,
the opportunity cost of one ticket is set to the cur-
rent bid price, while the opportunity cost of all the
remaining tickets is set to zero.

UmbcTAC:
Network Sensitivity and Adaptability
UmbcTAC, created at University of Maryland Balti-
more County, placed fourth. UmbcTac was particu-
larly sensitive to network load: It adapted to net-
work performance more frequently than competing
agents and received more frequent updates.

Bidding. UmbcTAC maintains the most profitable
itinerary for each client individually, based on the
latest price quotes (as opposed to solving the full
eight-client optimization problem). UmbcTAC bal-
ances several strategies to avoid switching travel
plans too frequently against some strategies to
encourage switching travel plans early on:

� When a client’s itinerary is changed, the value
of the goods that will no longer be needed is
subtracted from the value of the new itinerary
as a penalty for changing plans. Therefore, the
client’s travel plans will not change unless the
new plan’s profit overrides the value of wasted
goods. Wasted goods that are already won, or
would be won if an auction closed immediately,
are marked as free goods, their prices are set to
0, and they are treated as sunk costs. Free goods
may then be used in other clients’ itineraries.

� UmbcTAC changes a client’s travel plan only if
the profit difference between the new and the
old plans exceeds a threshold value (typically
between $10 and $100).

� It is important to change a client’s itinerary as
early in the game as possible because the earli-
er the plan changes, the more likely it is that
the obsolete bids either will not win or will win
at a low price. To ensure that at least one client
changes to a better plan, UmbcTAC risks wast-
ing one good in each round by setting the
penalty for the first wasted good to 0.

Once the desired goods have been determined,
UmbcTAC sets its bid prices as follows:

� Flights. The agent bids a price significantly
higher than the current price to ensure that the
client gets the ticket.

58 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

UmbcTAC bases
its bidding
strategy on the
computed
network delay
between the
agent and the
TAC server.

� Hotels. The agent computes the price incre-
ment, defined as the difference between the
current price quote and the previous price
quote. It sets the bid price to be the current
price plus the price increment. During the
witching hour, UmbcTAC bids for hotels at a
price such that if it wins a hotel at that price,
the client’s utility would be 0.

� Entertainment. The agent buys entertainment
tickets for a client if the client is available (that
is, in town and without an entertainment tick-
et for that night or of that type). It buys the
ticket that the client most prefers at the market
value. Any extra tickets are sold at auction at
an ask price equal to the average of the prefer-
ence values of all UmbcTAC’s clients.

UmbcTAC continually bids for hotels to guard
against the possibility of hotel auctions closing early.
It bids for airline tickets and raises hotel bids to their
limit only in the last few seconds of the game.

Allocation. At the end of the game, UmbcTAC allo-
cates the purchased flights and hotel rooms greed-
ily to the clients according to the most recent trav-
el plans used during the game. If a client cannot be
satisfied, its goods are taken back and marked as
free goods, which other clients can then try to use
to improve utility. Entertainment tickets are also
allocated greedily. This strategy is simple and near-
ly optimal. UmbcTAC begins by allocating an
entertainment ticket to the available client with the
largest preference value for that ticket.

Bandwidth management. In TAC, prices change
every second, and hotel auctions may close at any
time. Therefore, keeping bidding data up to date is
very important. UmbcTAC bases its bidding strat-
egy on the computed network delay between the
agent and the TAC server. When the network delays
are longer than usual, UmbcTAC is more aggres-
sive, offering higher prices and bidding for flights
earlier. To save network bandwidth, the agent never
bids for any entertainment tickets during the last
three minutes of the game. To save time, the agent
does not change travel plans during its last two or
three bidding opportunities. On average, UmbcTAC
updates its bidding data every four to six seconds,
providing a significant advantage over the 8- to
20-second delays reported by others.

Suggestions for Future Competitions
The first trading agent competition drew 22
entrants from around the world. Although partici-

pants’ experiences were overwhelmingly positive,
we propose a few modifications to the structure of
future tournaments.

� There is no incentive to buy airline tickets
until the end of the game. If the price of flights
tended to increase, or if availability was limit-
ed, agents would have to balance the advan-
tage of keeping their options open against the
savings of committing to itineraries earlier.

� The hotel auctions were effectively reduced to
sealed-bid auctions. In particular, there was
no incentive for agents to reveal their prefer-
ences before the very end of the game. As a
result, it was impossible for agents to model
market supply and demand and thereby esti-
mate prices.

The phenomenon of English auctions with
set closing times reducing to sealed-bid auc-
tions has been observed in other online auction
houses such as eBay. Roth
and Ockenfels argue that in
such auctions, it is in fact an
equilibrium strategy to place
multiple bids (with increasing
valuations) and to bid at the
last possible moment.7 This
observation contradicts the
usual intuition pertaining to
second-price sealed-bid auc-
tions, namely that a single
bid at one’s true valuation is
a dominant strategy.

Amazon runs online auc-
tions in which the length of
the auction is extended beyond its original clos-
ing time, say T, by 10 minutes each time a new
(winning) bid is received. In this case, equilib-
rium behavior dictates that all bidders bid their
true valuations before time T. If the TAC hotel
auctions were implemented in the style of Ama-
zon, rather than eBay, agents would likely bid
earlier. In this way, TAC agents would obtain
more information pertaining to the specific
market supply and demand induced by the ran-
dom client preferences realized in each game
instance, and could use this information to esti-
mate hotel prices. Unfortunately, Amazon-style
auctions have the downside that they might
never end!

� Activity in the entertainment auctions was lim-
ited. This outcome, however, is not obviously
correlated with the design of the entertainment
auction mechanism. On the contrary, if more

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2001 59

Bidding Agents

The information
structure of the
TAC setup made
it impossible to
observe the
bidding patterns
of individual
agents.

structure were added to the flight auctions, and
if the hotel auctions were modified, interest in
entertainment ticket auctions might increase.

� The information structure of the TAC setup
made it impossible to observe the bidding pat-
terns of individual agents. Nonetheless, the
strategic behavior of individual agents often
profoundly affected market dynamics, particu-
larly in the hotel auctions. It seems that either
the dimensions of the game should be extended
such that the impact of any individual agent’s
bidding patterns is truly negligible; or, to avoid
issues of scalability, it should be possible to
directly model the effect of the behavior of each
individual agent. If information were available
about the bidding behavior of the agents (such
that other agents could induce clients’ prefer-
ences, and therefore market supply, demand,
and prices), TAC agents might learn to predict
market behavior as a game proceeds.

The agents developed for TAC are a first step toward
creating autonomous bidding agents for real, simul-
taneous interacting auctions. One such auction is
the Federal Communications Commission’s auction
of radio spectrum.8,9 For companies that are trying
to achieve national radio coverage, the values of
the different licenses interact in complex ways. Per-
haps autonomous bidding agents will impact bid-
ding strategies in future auctions of this type.
Indeed, the ATTac developers created straightfor-
ward bidding agents in a realistic FCC Auction Sim-
ulator.10 In a more obvious application, an extend-
ed version of TAC agents could become a useful tool
to travel agents, or to end users who wish to create
their own travel packages.

Acknowledgments
This article is the result of the efforts of many people, includ-

ing all of the TAC finalists. The authors are particularly indebt-

ed to Justin Boyan (RoxyBot), Umesh Maheshwari (Aster), and

Youyong Zou (UmbcTAC) for their contributions to their

respective sections.

References

1. TAC Team, “A Trading Agent Competition,” IEEE Internet

Computing, vol. 5, no. 2, Mar./Apr. 2001, pp. 43-51.

2. P. Stone et al., “Attac-2000: An Adaptive Autonomous Bid-

ding Agent,” to be published in Proc. Fifth Int’l Conf.

Autonomous Agents, 2001.

3. P. Stone, Layered Learning in Multiagent Systems: A Win-

ning Approach to Robotic Soccer, MIT Press, Cambridge,

Mass., 2000.

4. J. Boyan and A.. Greenwald, “RoxyBot: A Dynamic Bid-

ding Agent for Simultaneous Auctions,” available at http://

www.cs.brown.edu/people/amygreen/ (current Mar. 2001).

5. A. Roth and A. Ockenfels, “Late Minute Bidding and the

Rules for Ending Second-Price Auctions: Theory and Evi-

dence from a Natural Experiment on the Internet,” work-

ing paper, Harvard University, Cambridge, Mass., 2000.

6. D. Cliff and J. Bruten, Zero is Not Enough: On the Lower

Limit of Agent Intelligence for Continuous Double Auction

Markets, tech. report HPL-97-141, Hewlett-Packard, Bris-

tol, UK, 1997.

7. M.H. Rothkopf, A. Pekefic, and R.M. Harstad, “Computa-

tionally Manageable Combinatorial Auctions,” Manage-

ment Science, vol. 44, no. 8, 1998, pp. 1131-1147.

8. R.J. Weber, “Making More from Less: Strategic Demand

Reduction in the FCC Spectrum Auctions,” 1996, available

online at http://www.kellogg.nwu.edu/faculty/weber/

PAPERS/pcs_auc.htm (current Mar. 2001).

9. P.C. Cramton, “The FCC Spectrum Auctions: An Early

Assessment,” J. Economics and Management Strategy, vol.

6, no. 3, 1997, pp. 431-495.

10. J.A. Csirik et al., “FAucS: An FCC Spectrum Auction Sim-

ulator for Autonomous Bidding Agents,” submitted to Proc.

17th Int’l Conf. Artificial Intelligence, 2001; available at

http://www.research.att.com/~pstone/papers.html.

Amy Greenwald is an assistant professor of computer science

at Brown University in Providence, Rhode Island. Her pri-

mary area of interest is multiagent learning on the Internet,

which she approaches using game-theoretic models of com-

putational interactions. She completed her PhD at the

Courant Institute of Mathematical Sciences of New York

University, where she received the Janet Fabri Memorial

Prize for a doctoral dissertation of exceptional quality.

Peter Stone is a senior technical staff member in the Artificial

Intelligence Principles Research Department at AT&T Labs

Research where he investigates multiagent learning. He

received a PhD in 1998 and an MS in 1995 from Carnegie

Mellon University, both in computer science. He received his

BS in mathematics from the University of Chicago in 1993.

Stone’s research interests include planning and machine learn-

ing, particularly in multiagent systems. Stone is the author of

Layered Learning in Multiagent Systems: A Winning Approach

to Robotic Soccer (MIT Press, 2000) and was awarded the Allen

Newell Medal for Excellence in Research in 1997.

Readers can contact Greenwald at the Department of Comput-

er Science, Brown University, Box 1910, Providence, RI 02912,

amygreen@cs.brown.edu; or Stone at AT&T Labs–Research,

180 Park Ave., Room A273, Florham Park, NJ 07932,

pstone@research.att.com.

60 MARCH • APRIL 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Virtual Marketplaces

