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Abstract
In this paper, we present a novel multi-agent learning paradigm called team-partitioned, opaque-transition rein-

forcement learning (TPOT-RL). TPOT-RL introduces the concept of using action-dependent features to generalize
the state space. In our work, we use a learned action-dependent feature space. TPOT-RL is an effective technique
to allow a team of agents to learn to cooperate towards the achievement of a specific goal. It is an adaptation of
traditional RL methods that is applicable in complex, non-Markovian, multi-agent domains with large state spaces
and limited training opportunities. Multi-agent scenarios are opaque-transition, as team members are not always
in full communication with one another and adversaries may affect the environment. Hence, each learner cannot
rely on having knowledge of future state transitions after acting in the world. TPOT-RL enables teams of agents to
learn effective policies with very few training examples even in the face of a large state space with large amounts
of hidden state. The main responsible features are: dividing the learning task among team members, using a very
coarse, action-dependent feature space, and allowing agents to gather reinforcement directly from observation of the
environment. TPOT-RL is fully implemented and has been tested in the robotic soccer domain, a complex, multi-agent
framework. This paper presents the algorithmic details of TPOT-RL as well as empirical results demonstrating the
effectiveness of the developed multi-agent learning approach with learned features.

1 Introduction

Reinforcement learning (RL) is an effective paradigm for training an artificial agent to act in its environment in pursuit
of a goal. RL techniques rely on the premise that an agent’s action policy affects its overall reward over time. As
surveyed in[Kaelbling, Littman, & Moore, 1996], several popular RL techniques use dynamic programming to enable
a single agent to learn an effective control policy as it traverses a stationary (Markovian) environment.

Dynamic programming requires that agents have or learn at least an approximate model of the state transitions
resulting from its actions. Q-values encode future rewards attainable from neighboring states. A single agent can keep
track of state transitions as its actions move it from state to state.

This paper focusses on teams of agents learning to collaborate towards a common goal in adversarial environments.
While agents can still affect their reward through their actions, they can no longer necessarily track the team’s state
transitions: teammates and opponents affect and experience state transitions that are completely opaque to the agent.
For example, an information agent may broadcast a message without any knowledge of who receives and reacts to it.
In suchopaque-transitionsettings, Q-values cannot relate to neighboring states (which are unknown), but must still
reflect real-world long-term reward resulting from chosen actions.

While opaque-transition settings eliminate the possibility of using dynamic programming, they permit parallel
learning among teammates. Since agents do not track state transitions, they can each explore a separate partition of
the state space without any knowledge of state values in other partitions. Thisteam-partitionedcharacteristic speeds

�This research is sponsored in part by the DARPA/RL Knowledge Based Planning and Scheduling Initiative under grant number F30602-95-
1-0018. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official
policies or endorsements, either expressed or implied, of the U. S. Government.

1



up learning by reducing the learning task of each agent. Nevertheless, the challenge of learning in anon-stationary
(non-Markovian) environment remains.

This general setup builds upon the robotic soccer framework, which has been the substrate of our work. In more
detail in this setup, agents’ actions arechained, i.e., a single agent’s set of actions allows the agent to select which other
agent will be chained after in the pursuit to achieve a goal. A single agent cannot control directly the full achievement
of a goal, but a chain of agents will. In robotic soccer the chaining of actions corresponds to passing a ball between
the different agents. There are a variety of other such examples, such as information agents that may communicate
through message passing. (These domains are for example in contrast with grid world domains in which a single agent
moves from some initial location to some final goal location, domains where agents take actions in parallel though
also possibly in coordination - two robots executing tasks in parallel, and game domains where the rules of the game
enforce an agent and its opponent to alternate actions.) Because of our chaining of agents and the corresponding lack
of control of single agents to fully achieve goals, we call these domains team-partitioned.

In addition, we assume that agents do not know the state that the world will be in after an action is selected, as
another agent willcontinuethe path to the goal. Adversarial agents can also intercept the chain and take control of
the game. The domain becomes therefore opaque-transition. In short, We identify a way to do RL when the learning
cannot even observe what state the team enters next, but the agent can use a reward function that captures a medium-
to long-term result of the whole ensemble’s learning.

In this paper we present team-partitioned, opaque-transition reinforcement learning (TPOT-RL). TPOT-RL can
learn a set of effective policies with very few training examples. It relies on action-dependent dynamic features which
coarsely generalize the state space. While feature selection is often a crucial issue in learning systems, our work
uses a previouslylearnedaction-dependent feature. We empirically demonstrate the effectiveness of TPOT-RL in a
multi-agent, adversarial environment, and show that the previously learned action-dependent feature can improve the
performance of TPOT-RL.

The remainder of the paper is organized as follows. Section 2 formally presents the TPOT-RL algorithm. Section 3
details an implementation of TPOT-RL in the simulated robotic soccer domain with extensive empirical results
presented in Section 4. Section 5 relates TPOT-RL to previous work and Section 6 concludes.

2 Team-Partitioned, Opaque-Transition RL

Formally, a policy is a mapping from a state spaceS to an action spaceA such that the agent using that policy executes
actiona whenever in states. At the coarsest level, when in states, an agent compares the expected, long-term rewards
for taking each actiona 2 A, choosing an action based on these expected rewards. These expected rewards are learned
through experience.

Designed to work in real-world domains with far too many states to handle individually, TPOT-RL constructs a
smaller feature spaceV using action-dependent feature functions. The expected rewardQ(v; a) is then computed
based on the state’s corresponding entry in feature space.

In short, the policy’s mapping fromS toA in TPOT-RL can be thought of as a 3-step process:
State generalization: the states is generalized to a feature vectorv using the state generalization function

f : S 7! V .
Value function learning: the feature vectorv is used to estimate the expected reward for taking each possible

action using the changing (learned) value functionQ : (V;A) 7! IR.
Action selection: an actiona is chosen for execution and its real-world reward is used to further updateQ.

While these steps are common in other RL paradigms, each step has unique characteristics in TPOT-RL.

2.1 State Generalization

TPOT-RL’s state generalization functionf : S 7! V relies on a unique approach to constructingV . Rather than
discretizing the various dimensions ofS, it usesaction-dependentfeatures. In particular, each possible actionai is
evaluated locally based on the current state of the world using a fixed functione : (S;A) 7! U . UnlikeQ, e does
not produce the expected long-term reward of taking an action; rather, it classifies the likely short-term effects of
the action. For example, if actions sometimes succeed and sometimes fail to achieve their intended effects,e could
indicate something of the following form: if selected, actiona7 is (or is not) likely to produce its intended effects.
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In the multi-agent scenario, other than one output ofe for each action, the feature spaceV also involves one coarse
component that partitions the state spaceS among the agents. If the size of the team ism, then the partition function
isP : S 7!M with jM j = m. In particular, if the set of possible actionsA = fa0; a1; : : : ; an�1g, then

f(s) = he(s; a0); e(s; a1); : : : ; e(s; an�1); P (s)i; and so

V = U jAj �M:

Thus,jV j = jU jjAj �m. Since TPOT-RL has no control overjAj orm, and since the goal of constructingV is to have
a small feature space over which to learn, TPOT-RL will be more effective for small setsU .

This state generalization process reduces the complexity of the learning task by constructing a small feature space
V which partitionsS intom regions. Each agent need learn how to act only within its own partition. Nevertheless,
for large setsA, the feature space can still be too large for learning, especially with limited training examples. Our
particular action-dependent formulation allows us to reduce the effective size of the feature space in the value-function-
learning step. Choosing features for state generalization is generally a hard problem. While TPOT-RL does not not
specify the functione, our work uses a previously-learned dynamic feature function.

2.2 Value Function Learning

As we have seen, TPOT-RL uses action-dependent features. Therefore, we can assume that the expected long-term
reward for taking actionai depends only on the feature value related to actionai. That is,

Q(he(s; a1); : : : ; e(s; an�1); P (s)i; ai) = Q(he(s0; a1); : : :
0 ; e(s0; an�1); P (s0)i; ai)

whenevere(s; ai) = e(s0; ai) andP (s) = P (s0). In other words, iff(s) = v, Q(v; ai) depends entirely upone(s; ai)
and is independent ofe(s; aj) for all j 6= i.

Without this assumption, since there arejAj actions possible for each feature vector, the value functionQ has
jV j � jAj = jU jjAj� jAj �m independent values. Under this assumption, however, the Q-table has at mostjAj � jU j �m
entries: for each action possible from each position, there is only one relevant feature value. Therefore, even with only
a small number of training examples available, we can treat the value functionQ as a lookup-table without the need
for any complex function approximation. To be precise,Q stores one value for every possible combination of action
a, e(s; a), andP (s).

For example, Table 1 shows the entire feature space for one agent’s partition of the state space whenjU j = 3 and
jAj = 2. There arejU jjAj = 32 different entries in feature space with 2 Q-values for each entry: one for each possible
action.jU jjAj �m is much smaller than the original state space for any realistic problem, but it can grow large quickly,
particularly asjAj increases. However, notice in Table 1 that, under the assumption described above, there are only
3� 2 independent Q-values to learn, reducing the number of free variables in the learning problem by 67% in this case.

e(s; a0) e(s; a1) Q(v; a0) Q(v; a1)
u0 u0 q0;0 q1;0
u0 u1 q0;0 q1;1
u0 u2 q0;0 q1;2
u1 u0 q0;1 q1;0
u1 u1 q0;1 q1;1
u1 u2 q0;1 q1;2
u2 u0 q0;2 q1;0
u2 u1 q0;2 q1;1
u2 u2 q0;2 q1;2

=)

e(s; ai) Q(v; a0) Q(v; a1)
u0 q0;0 q1;0
u1 q0;1 q1;1
u2 q0;2 q1;2

Table 1: A sample Q-table for a single agent whenjU j = 3 andjAj = 2: U = fu0; u1; u2g, A = fa0; a1g. qi;j is the estimated
value of taking actionai whene(s; ai) = uj. Since this table is for a single agent,P (s) remains constant.

The Q-values learned depend on the agent’s past experiences in the domain. In particular, after taking an actiona
while in states with f(s) = v, an agent receives rewardr and uses it to updateQ(v; a) as follows:

Q(v; a) = Q(v; a) + �(r � Q(v; a)) (1)

Since the agent is not able to access its teammates’ internal states, future team transitions are completely opaque
from the agent’s perspective. Thus it cannot use dynamic programming to update its Q-table. Instead, the reward
r comes directly from the observable environmental characteristics—those that are captured inS—over a maximum
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number of time stepstlim after the action is taken. The reward functionR : Stlim 7! IR returns a value at some time
no further thantlim in the future. During that time, other teammates or opponents can act in the environment and
affect the action’s outcome, but the agent may not be able to observe these actions. For practical purposes, it is crucial
that the reward function is only a function of the observable worldfrom the acting agent’s perspective. In practice, the
range ofR is [�Qmax; Qmax] whereQmax is the reward for immediate goal achievement .

The reward function, includingtlim andQmax, is domain-dependent. One possible type of reward function is
based entirely upon reaching the ultimate goal. In this case, an agent charts the actual (long-term) results of its policy
in the environment. However, it is often the case that goal achievement is very infrequent. In order to increase the
feedback from actions taken, it is useful to use an internal reinforcement function, which provides feedback based on
intermediate states towards the goal. We use this internal reinforcement approach in our work.

2.3 Action Selection

Informative action-dependent features can be used to reduce the free variables in the learning task still further at the
action-selection stage if the features themselves discriminate situations in which actions should not be used. For
example, if whenevere(s; ai) = u1, ai is not likely to achieve its expected reward, then the agent can decide to ignore
actions withe(s; ai) = u1.

Formally, considerW � U andB(s) � A with B(s) = fa 2 Aje(s; a) 2 Wg. When in states, the agent then
chooses an action fromB(s), either randomly when exploring oraccording to maximum Q-value when exploiting.
Any exploration strategy, such as Boltzman exploration, can be used over the possible actions inB(s). In effect,W
acts in TPOT-RL as an action filter which reduces the number of options under consideration at any given time. Of
course, exploration at the filter level can be achieved by dynamically adjustingW .

e(s; a0) e(s; a1) Q(v; a0) Q(v; a1)
u0 u0 q0;0 q1;0
u0 u1 q0;0 —
u0 u2 q0;0 q1;2
u1 u0 — q1;0
u1 u1 — —
u1 u2 — q1;2
u2 u0 q0;2 q1;0
u2 u1 q0;2 —
u2 u2 q0;2 q1;2

e(s; a0) e(s; a1) Q(v; a0) Q(v; a1)
u0 u0 — —
u0 u1 — —
u0 u2 — q1;2
u1 u0 — —
u1 u1 — —
u1 u2 — q1;2
u2 u0 q0;2 —
u2 u1 q0;2 —
u2 u2 q0;2 q1;2

(a) (b)

Table 2: The resulting Q-tables when(a)W = fu0; u2g, and(b) W = fu2g.

For example, Table 2, illustrates the effect of varyingjW j. In the rare event thatB(s) = ;, i.e. 8ai 2 A; e(s; ai) =2
W , either a random action can be chosen, or rough Q-value estimates can be stored using sparse training data. This
condition becomes rarer asjAj increases. For example, withjU j = 3; jW j = 1; jAj = 2 as in Table 2(b), 4/9 = 44.4%
of feature vectors have no action that passes theW filter. However, withjAj = 8 only 256/6561 = 3.9% of feature
vectors have no action that passes theW filter. If jW j = 2 andjAj = 8, only 1 of 6561 feature vectors fails to pass the
filter. Thus usingW to filter action selection can reduce the number of free variables in the learning problem without
significantly reducing the coverage of the learned Q-table.

By using action-dependent features to create a coarse feature space, and with the help of a reward function based
entirely on individual observation of the environment, TPOT-RL enables team learning in a multi-agent, adversarial
environment even when agents cannot track state transitions.

3 TPOT-RL Applied to a Complex Multi-Agent Learning Task

Our research has been focussed on multi-agent learning in complex, collaborative and adversarial environments. Our
general approach, calledlayered learning, is based on the premise that realistic domains are too complex for learning
mappings directly from sensor inputs to actuator outputs. Instead, intermediate domain-dependent skills should be
learned in a bottom-up hierarchical fashion[Stone & Veloso, 1998a]. We implemented TPOT-RL as the current highest
layer of a layered learning system in the RoboCup soccer server[Noda, Matsubara, & Hiraki, 1996].
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The soccer server used at RoboCup-97[Kitanoet al., 1997] is a much more complex domain than has previously
been used for studying multi-agent policy learning. With 11 players oneach team controlled by separate processes;
noisy, low-level, real-time sensors and actions; limited communication; and a fine-grained world state model including
hidden state, the RoboCup soccer server provides a framework in which machine learning can improve performance.
Newly developed multi-agent learning techniques could well apply in real-world domains.

A key feature of the layered learning approach is that learned skills at lower levels are used to train higher-level
skills. For example, we used a neural network to help players learn how to intercept a moving ball. Then, with all
players using the learned interception behavior, a decision tree (DT) enabled players to estimate the likelihood that a
pass to a given field location would succeed. Based on almost 200 continuous-valued attributes describing teammate
and opponent positions on the field, players learned to classify the pass as a likely success (ball reaches its destination
or a teammate gets it) or likely failure (opponent intercepts the ball). Using the C4.5 DT algorithm[Quinlan, 1993],
the classifications were learned with associated confidence factors. The learned behaviors proved effective both in
controlled testing scenarios[Stone & Veloso, 1998a, Stone & Veloso, 1998c] and against other previously-unseen
opponents in an international tournament setting[Kitanoet al., 1997].

These two previously-learned behaviors were both trained off-line in limited, controlled training situations. They
could be trained in such a manner due to the fact that they only involved a few players: ball interception only depends
on the ball’s and the agent’s motions; passing only involves the passer, the receiver, and the agents in the immediate
vicinity. On the other hand, deciding where to pass the ball during the course of a game requires training in game-
situations since the value of a particular action can only be judged in terms of how well it works when playing with
particular teammates against particular opponents. For example, passing backwards to a defender could be the right
thing to do if the defender has a good action policy, but the wrong thing to do if the defender is likely to lose the ball
to an opponent.

Although the DTaccurately predicts whether a player can execute a pass, it gives no indication of the strategic
value of doing so. But the DT reduces a detailed state description to a single continuous output. It can then be used
to drastically reduce the complex state and provide great generalization. In this work we use the DT as the crucial
action-dependent feature functione in TPOT-RL.

3.1 State Generalization Using a Learned Feature

In the soccer example, we applied TPOT-RL to enable each teammate to simultaneously learn a high-level action
policy. The policy is a function that determines what an agent should dowhen it has possession of the ball.1 The input
of the policy is the agent’s perception of the current world state; the output is a target destination for the ball in terms
of a location on the field, e.g. the opponent’s goal. In our experiment,each agent has 8 possible actions asillustrated
in Figure 1(a). Since a player may not be able to tell the results of other players’ actions, or even when they can act,
the domain is opaque-transition.

A team formation is divided into 11 positions (m = 11), as also shown in Figure 1(a)[Stone & Veloso, 1998c].
Thus, the partition functionP (s) returns the player’s position. Using our layered learning approach, we use the
previously trained DT ase. Each possible pass is classified as either a likely success or a likely failure with a
confidence factor. Outputs of the DT could be clustered based on the confidence factors. In our experiments, we
cluster into only two sets indicating success and failure. ThereforejU j = 2 andV = U 8 � fP layerPositionsg so
jV j = jU jjAj �m = 28 � 11. Even thougheach agent only gets about 10 training examples per 10-minute game and
the reward function shifts as teammate policies improve, the learning task becomes feasible. This feature space is
immensely smaller than the original state space, which has more than 22109

states.2 Sincee indicates the likely success
or failure of each possible action, at action-selection time, we only consider the actions that are likely to succeed
(jW j=1). Therefore, each player learns 8 Q-values, with a total of 88 learned by the team as a whole. Even with sparse
training and shifting concepts, such a learning task is tractable.

1In the soccer server there is no actual perception of having “possession” of the ball. Therefore we consider the agent to have possession when
it is within kicking distance.

2Each of the 22 players can be in any of 680*1050*3600(x; y; �) locations, not to mention the player velocities and the ball position and
velocity.
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3.2 Internal Reinforcement through Observation

As in any RL approach, the reward function plays a large role in determining what policy is learned. One possible
reward function is based entirely upon reaching the ultimate goal. Although goals scored are the true rewards in this
domain, such events are very sparse. In order to increase the feedback from actions taken, it is useful to use an internal
reinforcement function, which provides feedback based on intermediate states towards the goal. Without exploring
the space of possible such functions, we created one reward functionR.

R gives rewards for goals scored. However, players also receive rewards if the ball goes out ofbounds, or else after
a fixed period of timetlim based on the ball’s average lateral position on the field. In particular, when a player takes
actionai in states such thate(s; ai) = u, the player records the timet at which the action was taken as well as the
x coordinate of the ball’s position at time t,xt. The reward functionR takes as input the observed ball position over
time tlim (a subset ofStlim ) and outputs a rewardr. Since the ball position over time depends also on other agents’
actions, the reward is stochastic and non-stationary. Under the following conditions, the player fixes the rewardr:

1. if the ball goes out of bounds (including a goal) at timet+ to (to < tlim);
2. if the ball returns to the player at timet+ tr (tr < tlim);
3. if the ball is still in bounds at timet+ tlim.

In case 1, the rewardr is based on the valuero as indicated in Figure 1(b):r = ro
1+(��1)�to=tlim

. Thus, the farther in
the future the ball goes out of bounds (i.e. the largerto), the smaller the absolute value ofr. This scaling by time is
akin to the discount factor used in Q-learning. We usetlim = 30sec: and� = 10.

In cases 2 and 3, the rewardr is based on theaverage x-positionof the ball over the timet to the timet+tr or t+tlim.
Over that entire time span, the player samples the x-coordinate of the ball at fixed, periodic intervals and computes the
averagexavg over the times at which the ball position is known. Then ifxavg > xt, r = � � xavg�xt

xog�xt
wherexog is the

x-coordinate of the opponent goal (the right goal in Figure 1(b)). Otherwise, ifxavg � xt, r = �� � xt�xavg
xt�xlg

where

xlg is the x-coordinate of the learner’s goal.3 Thus, the reward is the fraction of the available field by which the ball
was advanced, on average, over the time-period in question. Note that a backwards pass can lead to positive reward if
the ball then moves forward in the near future.
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Figure 1: (a) The black and white dots represent the players attacking the right and left goals respectively. Arrows indicate a single
player’s action options when in possession of the ball. The player kicks the ball towards a fixed set of markers around the field,
including the corner flags and the goals.(b) The componentro of the reward functionR based on the circumstances under which
the ball went out of bounds. For kick-ins, the reward varies linearly with the x position of the ball.

The rewardr is based on direct environmental feedback. It is a domain-dependent internal reinforcement function
based upon heuristic knowledge of progress towards the goal. Notice that it relies solely upon the player’s own
impression of the environment. If it fails to notice the ball’s position for a period of time, the internal reward is
affected. However, players can track the ball much more easily than they can deduce the internal states of other players
as they would have to do were they to determine future team state transitions.

As teammates learn concurrently, the concept to be learned by each individualagent changes over time. We address
this problem by gradually increasing exploitation as opposed to exploration in all teammates and by using a learning
rate� = :02 (see Equation 1). Thus, even though we are averaging several reward values for taking an action in a

3The parameter� insures that intermediate rewards cannot override rewards for attaining the ultimate goal.
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given state, each new example accounts for 2% of the updated Q-value: rewards gained while teammates were acting
more randomly are weighted less heavily.

4 Results

Empirical testing has demonstrated that TPOT-RL can effectively learn multi-agent control policies with very few
training instances in a complex, dynamic domain. Figure 2(a) plots cumulative goals scored by a learning soccer team
playing against an otherwise equally-skilled team that passes to random destinations over the course of a single long
run equivalent in time to 160 10-minute games. In this experiment, and in all the remaining ones, the learning agents
start out acting randomly and with empty Q-tables. Over the course of the games, the probability of acting randomly
as opposed to taking the action with the maximum Q-value decreases linearly over periods of 40 games from 1 to .5
in game 40, to .1 in game 80, to point .01 in game 120 and thereafter. As apparent from the graph, the team using
TPOT-RL learns to vastly outperform the randomly passing team. During this experiment,jU j = 1, thus rendering the
functione irrelevant: the only relevant state feature is the player’s position on the field.

A key characteristic of TPOT-RL is the ability to learn with minimal training examples. During the run graphed
in Figure 2(a), the 11 players got an average of 1490 action-reinforcement pairs over 160 games. Thus, players only
get reinforcement an average of 9.3 times each game, or less than once every minute. Since each player has 8 actions
from which to choose,each is only tried an average of186.3 times over 160 games, or just over once every game.
Under these training circumstances, very efficient learning is clearly needed.

TPOT-RL is effective not only against random teams, but also against goal-directed, hand-coded teams. For testing
purposes, we constructed an opponent team which plays with all of its players on the same side of the field, leaving the
other side open as illustrated by the white team in Figure 1. The agents use a hand-coded policy which directs them
to pass the ball up the side of the field to the forwards who then shoot on goal. The team periodically switches from
one side of the field to the other. We call this team the “switching team.”

Were the opponent team to always stay on the same side of the field, the learning team could always advance the
ball up the other side of the field without any regard for current player positions. Thus, TPOT-RL could be run with
jU j = 1, which renderse inconsequential. Indeed, we verified empirically that TPOT-RL is able to learn an effective
policy against such an opponent usingjU j = 1.

Against the switching team, a player’s best action depends on the current state. Thus a feature that discriminates
among possible actions dynamically can help TPOT-RL. Figure 2(b) compares TPOT-RL with different functionse
and different setsW when learning against the switching team.
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Figure 2: (a) Cumulative goals scored by a learning team playing against a randomly passing team. The independent variable is
the number of 10-minute game intervals that have elapsed.(b) The results after training of 5 different TPOT-RL runs against the
switching team.

With jU j = 1 (Figure 2(b.1)), the learning team is unable to capture different opponent states sinceeach player
has only one Q-value associated with each possible action, losing139-127 (cumulative score over 40 games after 160
games of training). Recall that ifjU j = 1 the functione cannot discriminate between different classes of states: we
end up with a poor state generalization.
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In contrast, with the previously trained DT classifying passes as likely successes or failures (e = DT) and TPOT-RL
filtering out the failures, the learning team wins 172-113 (Figure 2(b.2)). Therefore the learned pass-evaluation feature
is able to usefully distinguish among possible actions and help TPOT-RL to learn a successful action policy. The DT
also helps learning whenW = U (Figure 2(b.3)), but whenjW j = 1 performance is better.

Figure 2(b.4) demonstrates the value of using an informative action-dependent feature functione. When a random
functione = rand is used, TPOT-RL performs noticeably worse than when using the DT. For the randome we show
jW j = 2 because it only makes sense to filter out actions whene contains useful information. Indeed, whene =
rand andjW j = 1, the learning team performs even worse than whenjW j = 2 (it loses 167-60). The DT even helps
TPOT-RL more than a hand-coded heuristic pass-evaluation function (e = heur) based on one that we successfully
used on our real robot team[Velosoet al., 1998] (Figure 2(b.5)).

Final score is the ultimate performance measure. However, we examined learning more closely in the best case
experiment (e = DT, jW j = 1 — Figure 2(b.2)). Recall that the learned feature provides no information about which
actions arestrategicallygood. TPOT-RL must learn that on its own. To test that it is indeed learning to advance the ball
towards the opponent’s goal (other than by final score), we calculated the number of timeseach action was predicted to
succeed bye and the number of times it was actually selected by TPOT-RL after training. Throughout the entire team,
the 3 of 8 actions towards the opponent’s goal were selected 6437/9967 = 64.6% of the times that they were available
after filtering. Thus TPOT-RL learns that it is, in general, better to advance the ball towards the opponent’s goal.

To test that the filter was eliminating action choices based on likelihood of failure we found that 39.6% of action
options were filtered out whene = DT andjW j = 1. Out of 10,400 actions, it was never the case that all 8 actions
were filtered out.

5 Discussion and Related Work

TPOT-RL brings together several techniques that have been proposed theoretically or tested in simple domains. This
section highlights the components of TPOT-RL and relates them to previous work.

Typical RL paradigms update the value of a state-action pair based upon the value of the subsequent state (or
state distribution). As presented in[Kaelbling, Littman, & Moore, 1996], the typical update function in Q-learning
isQ(s; a) = Q(s; a) + �(r + maxaQ(s0; a)� Q(s; a)) wheres0 is the state next reached after executing actiona
in states and is the discount factor. While characterized as “model-free” in the sense that the agent need not know
the transition functionT : (S;A) 7! S, these paradigms assume that the agent can observe the subsequent state that it
enters.

However, the vast amount of hidden state coupled with the multi-agent nature of this domain make such a paradigm
impossible for the following reasons. Having only local world-views, agents cannot reliably discern when a teammate
is able to take an action. Furthermore, even when able to notice that a teammate is within kicking distance of the ball,
the agent certainly cannot tell the feature values for the teammate’s possible actions. Worse than being model-free,
multi-agent RL must deal with the inability to even track the team’s state trajectory. Thus we use Equation 1, which
doesn’t rely on knowings0.

Notice that the opaque-transition characteristic also does not fit into the partially observable Markov decision
process (POMDP) framework[Kaelbling, Cassandra, & Littman, 1994]. While POMDPs deal with hidden state, they
do assume that the agent at least knows when it has transitioned to a new state and may act again.

The construction of feature spaceV can have a huge effect on the nature ofQ. For example, in[Salustowicz,
Wiering, & Schmidhuber, 1998], a grid-likediscretization is used forV . Since too many states result for a lookup-table,
a neural network is used as the value function approximator. This approach is shown not to work very well, and the
authors conclude that a more complex function approximator might work better. In contrast, we take the approach of
using a smaller feature space and the simplest possible evaluation function: a lookup-table. We can do so by relying
on our layered learning approach to learn the state generalization function.

The use of machine learning in multi-agent systems has recently been receiving agood deal of attention. For an
extensive survey, see[Stone & Veloso, 1997]. This section highlights the work most related to TPOT-RL.

The internal reinforcement in the reward functionR is similar to Mataric’s progress estimators[Mataric, 1994].
There, the short-term real-world effects of actions are used as an intermediate reward to help robots reach the ultimate
goal location. Mataric’sconditionsalso play a similar role to the features used here, reducing the size of the evaluation
function domain. This work was in a completely collaborative, as opposed to our adversarial, setting.
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Previous multi-agent reinforcement learning systems have typically dealt with much simpler tasks than the one
presented here. Littman uses Markov games to learn stochastic policies in a very abstract version of 1-on-1 robotic
soccer[Littman, 1994]. There have also been a number of studies of multi-agent reinforcement learning in the pursuit
domain[Arai, Miyazaki, & Kobayashi,1997, Tan, 1993]. In this domain, four predators chase a single prey in a small
grid-like world.

Also in a predator-like task,[Zhao & Schmidhuber, 1996] uses a single run to deal with the opponents’ shifting
policies and ignore the opponents’ policies just as we do. The effects of opponent actions are captured in the reward
function.

Another team-partitioned, opaque transition domain is network routing as considered in[Boyan & Littman, 1994].
Each network node is considered as a separate agent which cannot see a packet’s route beyond its own action. A major
difference between that work and our own is that neighboring nodes send back their own value estimates whereas we
assume that agents do not even know their neighboring states. Thus unlike TPOT-RL agents, the nodes are able to use
dynamic programming.

In other soccer systems, there have been a number of learning techniques that have been explored. However,
most have learned low-level, individual skills as opposed to team-based policies[Asadaet al., 1996, Stone & Veloso,
1998b]. Interestingly,[Lukeet al., 1998] uses genetic programming to evolve team behaviors from scratch as opposed
to our layered learning approach.

6 Conclusion

TPOT-RL is an adaptation of RL to non-Markovian multi-agent domains with opaque transitions, large state spaces,
hidden state and limited training opportunities. The fully implemented algorithm has been successfully tested in
simulated robotic soccer, such a complex multi-agent domain with opaque transitions. TPOT-RL facilitates learning
by partitioning the learning task among teammates, using coarse, action-dependent features, and gathering rewards
directly from environmental observations. Our work uses a learned feature within TPOT-RL.

TPOT-RL represents the third and currently highest layer within our ongoing research effort to construct a complete
learning team using the layered learning paradigm. As advocated by layered learning, it uses the previous learned
layer—an action-dependent feature—to improve learning. TPOT-RL can learn against any opponent since the learned
values capture opponent characteristics. The next learned layer could learn to choose among learned team policies
based on characteristics of the current opponent. TPOT-RL represents a crucial step towards completely learned
collaborative and adversarial strategic reasoning within a team of agents.
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