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Abstract

We present a collective tracking problem in which the agents in a swarm col-
lectively control a tracker to follow a target moving in two dimensional space.
Tasks are represented by the four cardinal directions and task demand refers to dif-
ferences between the target and tracker locations in each of the directions. In any
given timestep, each agent can choose to address task demand in a single direction.
Tracker movement in a timestep is generated by aggregating the choices of all of
the agents in the swarm in that timestep. Thus, the agents in a swarm collectively
move a tracker in response to a target path.

This problem is representative of a general decentralized task allocation prob-
lem in which one or more tasks exhibit demand that is addressed by allocating an
appropriate number of agents to each task. The tracking problem allows us to de-
fine dynamically changing task demands in a systematic way in the form of target
paths. Because the variety of target paths that can be defined is essentially infinite,
this problem allows us to define task allocation problems over a wide range of char-
acteristics requiring different responses from the swarm. In addition to quantitative
evaluation metrics, the actual two dimensional target and tracker paths provide an
intuitive way to visualize system performance.

1 Introduction

In this paper, we present a testbed for studying decentralized task allocation problems
in swarms and other large scale multi-agent systems (MAS). The decentralized task
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allocation problem (DTAP) is the problem of distributing a decentralized swarm of
agents appropriately among one or more tasks in response to task demands. Task de-
mands may be static, or may change dynamically over time. In the latter case, agents
are expected to dynamically re-distribute in response to changing task demands. While
the focus of our work and, consequently, the terminology in this paper refers to swarms
and swarm robotics [2, 3, 4, 7, 48, 63], we expect many of the concepts discussed here
to also apply to other types of MAS.

Swarms are multi-agent systems consisting of large numbers of decentralized agents
that collectively work towards one or more mutual goals. Agents are independent,
relatively simple, and typically have similar or overlapping capabilities such that the
swarm as a whole is highly redundant. Agents may be physically embodied or virtual.
The redundant and decentralized structure of swarms engender desirable characteris-
tics of robustness, flexibility, and scalability [63]. Studies of computational swarms are
closely intertwined with those of natural swarms, particularly, social insect societies,
and many of the principles of how computational swarms work are based directly on
principles or hypotheses of natural swarms. For example, Bonabeau et al’s [5, 6] exam-
ination of a threshold approach to regulating division of labor in natural swarms has be-
come foundational work for both biological and computational studies on swarm self-
organization, and Dorigo et al.’s Ant Colony Optimization algorithm [19, 20] adapts
concepts relating to stigmergy and path finding [26, 27] into a flexible and successful
optimization algorithm. Our motivation for developing the testbed problem described
in this paper is to build a system on which we can investigate the hypothesized effects
of inter-agent variation that have been identified as relevant in biological swarm coor-
dination [66] in the context of computational swarms'. A better understanding of the
general principles of swarm coordination and self-organization will improve our ability
to build more effective and robust computational swarms.

A key challenge in building decentralized swarms is how to design agents that can
coordinate and self-organize intelligently. Such coordination refers to having enough
agents acting on each task that needs attendance at any given time. Without centralized
control, each agent acts independently. Although each agent can individually attempt
to make the best decision based on its observation of the current state, the fact that
other agents may also be acting means that the “current state” to which agents are
responding is a moving target. In addition, even in problems where task stimuli are
global, agents must have the ability to distribute themselves among different tasks to
address all demands. Thus, agents in a swarm must be able to respond differently to
global stimuli, and not act in lockstep, for a swarm to be practically useful.

There is a significant body of work on the application of swarms and MAS to
DTAPs. Examples of application areas studied include foraging [1, 9, 13, 37, 38, 39,
40, 51, 54, 71], paintshop scheduling [11, 15, 35], mail processing [25, 58], job shop
scheduling [50], logistic resupply [24], and tracking [69]. In addition, studies have also
been conducted on abstract task allocation problems [16, 17, 21, 32, 49]. A potential
limitation of DTAP studies that are focused on a particular domain is that the charac-
teristics of the problem domain may limit the DTAP characteristics that can be studied,

ISpecifically, we examine biological hypotheses discussed in [66] on the effects of variation in response
threshold [43, 69], variation in response probability [45, 70], and variation in response duration [22] on
swarm stability and robustness.



which may in turn limit extent and the generalizability of the knowledge gained. DTAPs
exist in many forms. For example, DTAPs may vary in the number of component tasks,
the number of task demands that can change, the number of task demands that change
at a time, the relative ranges of possible change, the severity of the change over time,
etc. A DTAP may consist of task demands that change gradually over time, tasks de-
mands that change abruptly, or a combination of both. These and other features can
influence the effectiveness of a given coordination strategy. In order to understand how
to design swarms that can address different types of DTAPs, it would be helpful to have
a testbed on which a range of DTAP characteristics may be investigated purposefully
and systematically.

We propose a general, scalable collective control problem, which we cast as a track-
ing problem to allow easy visualization, that can be used to study many aspects of
DTAPs. While there are already multiple platforms available for studying swarm be-
havior, most of the current platforms are agent-centric in that they are designed to pro-
vide flexibility in the design, creation, and study of the agents that make up a swarm.
The testbed that we present here is problem-centric. Our goal is to provide a platform
on which a variety of DTAP problems can easily be defined and studied. The collective
tracking problem is representative of a general DTAP because it consists of multiple
tasks with time-varying demands that can be satisfied by the collective action of one or
more agents from a swarm. The demand of a task at any given instant of time defines
the number of agents that need to act on that task at that time. As task demands change
over time, agents are expected to adapt their actions accordingly. The paths that define
the collective tracking problem allow for systematic variation of problem characteris-
tics as well as an intuitive way to evaluate swarm performance. This problem is based
on the process by which honeybees collectively perform thermoregulation of nest tem-
perature [30, 66], extending the one dimensional temperature regulation problem into
a two dimensional tracking problem.

We begin by reviewing existing testbed platforms for studying swarms. We then
describe our problem testbed, illustrate how this problem can be used to define DTAPS
and vary their characteristics in a systematic way, and discuss analysis resources that
are available in the system.

2 Background

The complexity of swarms has resulted in the development of multiple platforms for
studying swarms and swarm behavior. These platforms are important as they provide
testbeds that allow for proof of concept, repeatability of experiments, and benchmark-
ing of results. They may also allow researchers to isolate particular swarm character-
istics for study. In addition to agent coordination and task allocation, other example
characteristics include specialization and division of labor [10, 38], time dependent co-
ordination (sequential tasks) [9, 53, 54, 55, 56], and stability and minimization of task
switching [68]. Platforms include both hardware systems that allow for experimenta-
tion on swarms of physical agents and simulations that allow for the study of virtual
swarms.



2.1 Hardware Systems

Physical robot systems used and/or developed for swarm research vary significantly in
size, capabilities, and cost. At one end of the spectrum is the Kilobot [62]. The primary
objectives for development of Kilobot are low cost and easy scalability of swarms.
A Kilobot is 3.3 cm in diameter and 3.4 cm tall with three rigid legs. Locomotion
is via two vibrating motors. Communication between Kilobots, within 7 cm of each
other, is via a single LED (send) and a color light sensor (receive). Proximity can be
approximated by evaluating signal strength. No other sensing is included. In addition to
limited communication, Kilobots are capable of moving forward and turning, allowing
for reasonably intricate paths. As the name suggests, researchers have created Kilobot
swarms of as many as 1024 robots. The Kilobot is produced by K-Team.

The Khepera IV [31] is significantly larger, more capable, and more than 20 times
the cost of the Kilobot. It measures 14.0 cm in diameter and 5.8 cm tall. It is equipped
with eight infrared sensors for obstacle detection, four for fall avoidance and line fol-
lowing and a three-axis accelerometer. Five ultrasonic sensors with a range of up to two
meters are used for long-range object detection. Communication is via WiFi, Bluetooth,
a camera, a microphone, and a speaker. A number of extensions are available, including
a sophisticated gripper.

At 7.0 cm in diameter and 5.0 cm tall, the e-Puck [14] is somewhat larger and
significantly more capable than the Kilobot but smaller and less expensive than Khep-
era IV. Developed as an education tool for swarm robotics, and engineering education
more generally, it incorporates infrared sensors for proximity, an array of microphones
allowing triangulation of a sound source, a camera, and an accelerometer. Two pro-
cessors are onboard: one general purpose and one for digital signal processing. Output
is via a number of LEDs and a speaker. The e-Puck is wheeled allowing much higher
movement speed than the Kilobot. Additional modules can be attached to an e-Puck,
perhaps most importantly for swarm research, a radio communication module. The cost
of the e-Puck falls between that of the Kilobot and Khepera I'V.

Two other robot platforms, Swarm-Bot and Swarmanoid, are designed for inter-
robot collaboration, not only in terms of communication but also physical capabilities.
Swarm-Bot is an integrated hardware and simulator package [47]. A Swarm-Bot con-
sists of a homogeneous colony of s-bots, a puck-style robot with a diameter of 11.6 cm.
Locomotion is via treels, a tread and wheel hybrid. The goal of Swarm-Bot is to ex-
plore the ability of self-assembling robot colonies to overcome obstacles such as rough
terrain and gaps that individual robots would be unable to traverse. s-bots achieve this
by physically linking, forming a chain that allows the robots to push and pull each
other as needed. The swarmbot3D simulator provides realistic simulation of several
s-bot variants. We are unable to find commercially available s-bots.

Swarmanoid is a heterogenous swarm of robots with task-specific physical char-
acteristics [18]. As originally presented in 2013, Swarmanoid consists of three robot
types: footbot, handbot, and eyebot, all based on the ASEBA modular design architec-
ture [42]. Footbot, a treel-based puck with integrated gripper, includes infrared sensors
for ground and obstacle detection and a force sensor to measure pressure when pushing.
Handbot includes grippers that are larger than that on footbot. In addition, it includes
a magnetic “gripper” to aid in climbing, as well as a suction cup and rope launcher. It



includes a camera for sensing. Handbot has no locomotion capability. Instead, it de-
pends on footbots to push it as needed. Eyebot is an autonomous quadcopter robot that
provides “eyes in the sky” for the other robot types. To maintain a fixed position de-
spite the positional drift that is common for quadcopters, eyebots rely on an additional
eyebot mounted at a fixed location on the ceiling. All three robot types share infrared
and radio capabilities for communication. The Swarmanoid system uses the ARGoS
simulator [52].

2.2 Software Systems

Although experimentation with physical robots is desirable because it more closely
models actual swarm applications, simulators offer a number of advantages. Perhaps
the most significant of these is cost. A simulation with hundreds of robots incurs little,
if any, additional cost over a simulation with just a few. Clearly, the same is not true
for experiments performed with physical robots. In addition, the ease and speed with
which experiments can be performed is greatly improved with simulators. For example,
resetting tens or hundreds of physical robots to begin a new run may take substantial
time whereas reseting a simulator is likely to be trivial.

In the following discussion of swarm simulation platforms, we partition simulators
into three categories: general robot simulators, specialized robot simulators, and gen-
eral agent simulators. We highlight only a selection of examples in each category as
there are too many to allow an exhaustive discussion.

General robot simulators can model a variety of robots and problems. The Stage
simulator is capable of representing hundreds of robots that are accessed via the Player
device server [23]. Player can also control physical robots, providing a uniform inter-
face whether working in a simulated or real environment. One drawback of Stage is that
the physics simulation is limited. For example, acceleration is not modeled. Gazebo,
based on Player/Stage, adds a high-fidelity 3D environment; however, the computa-
tional resources required for the physics severely limits the number of robots that can
be simulated [36]. Webots provides accurate models of popular robots such as Khepera
and e-Puck, as well as some RoboCup models [46]. Originally a commercial prod-
uct, it is now open source. USARSim is a 3D simulator based on the Unreal Engine
game development platform [12]. Originally developed to simulate urban search and
rescue, it is capable of modeling large worlds. It includes models of many robots and
allows users to create their own models. CopelliaSim (formerly V-REP) simulates mul-
tiple heterogeneous robots, however, its focus is on simulation and control rather than
swarms [61].

A number of simulators are specialized in some way, typically for a particular robot
or problem. Kilombo is an easy to use simulator capable of simulating swarms consist-
ing of thousands of Kilobots [29]. Due to the very slow movement of physical Kilobots,
Kilombo simulations can improve the speed of runs by a factor of up to 100. ARK,
Augmented Reality for Kilobots, is a hybrid system that allows physical Kilobots to
operate in a virtual environment [59]. It provides location and state information to
Kilobots through virtual sensors that are beyond the capabilities of the physical robots.
Through virtual actuators, robots can change the state of the environment and these
changes can be sensed by other Kilobots in the system. Roborobo is a lightweight, fast,



open source simulator for large-scale experiments. It presents a 2D world for Khepera
and e-Puck robots. It has been used extensively to explore environment-driven evo-
lutionary adaptation in swarms [8]. In an example of a highly specialized simulator,
Deepbots extends Webots for deep reinforcement learning through incorporation of the
OpenAl Gym interface [33]. swarmbot3D and ARGoS are simulators that are part of
large projects that incorporate development of physical robots with implementation of
a simulator. swarmbot3D, part of the Swarm-Bot project, was developed to work with
s-bot, an innovative puck robot created for cooperative behaviors at the hardware level.
ARGoS provides real-time simulation of large heterogeneous swarms and is capable
of simulating thousands of robots. It is part of the ambitious Swarmanoid project but
works with e-Puck robots in addition to footbot, handbot, and eyebot. ARGoS allows
use of multiple physics engines which improves speed.

Several simulators have been developed to explore complex adaptive systems, such
as large swarms, independent of robotics. StarLogo [60] and NetLogo [65] provide in-
terfaces that extend the Logo programming language, best known as a visual aid for
teaching children to program. They allow the user to describe agent actions and repli-
cate them to create a swarm. The agents act in a user-defined environment. The use
of Logo somewhat limits the capabilities of these systems. MASON is a widely-used
open source, very general, agent-centric simulator developed in Java [41]. Develop-
ing models requires programming in Java as well. Because it is agent-centric rather
than robot-centric, it allows researchers to focus on general agent and swarm behaviors
rather than solely on robot behaviors. Development of MASON continues and now
includes a distributed version known as Distributed MASON.

2.3 Problem-centric platforms

The platforms described above are largely swarm-centric, focusing on agents and swarm
composition. Our testbed is problem-centric, using a single problem to explore the ef-
fects that the different task demands, created by a variety of problem instances, have
on decentralized task allocation. Several other problem-centric testbeds exist. In some
cases they include some degree of simulation, while in others they simply define a
problem.

Among the earliest systems in this category is Tileworld [57]. This single-agent
environment consists of a 2-D grid in which there exist obstacles, tiles, and holes. The
agent must attempt to fill holes by pushing tiles into them. Packet-World is a multi-
agent 2-D grid problem in which agents must deliver colored packets, which are scat-
tered throughout the environment, to destinations of the same color [67]. Agent actions
include picking up packets and putting them down, carrying a packet, or doing noth-
ing. Communication allows agents to request information or establish collaborations.
The implementers have used Packet-World to investigate perception, synchronization,
forms of collaboration, and adaptability.

Used as a testbed to demonstrate the capabilities of ARGoS, the area coverage
problem is a deployment problem in which agents must self-deploy to cover an un-
known, partitioned space [28]. The problem is framed as deployment of a mobile sen-
sor network by a swarm with distributed sensing capability. The approach uses virtual
potential fields to repel agents from each other and from obstacles.



One popular system combines a specific problem, a purpose-built simulator, and
support for physical robots all overlaid with an annual competition. RoboCup is a
robotic soccer competition with a name derived from the quadrennial World Cup [34].
While the humanoid robot version of the competition garners much of the attention,
the RoboCup Soccer Simulator provides a low cost of entry platform for swarm re-
searchers. The problem is sufficiently complex to allow exploration of a number of
swarm characteristics, including task allocation, task decomposition, specialization, se-
quential tasks and dynamic adaptation. Built using the RoboCup simulator, RoboCup
Rescue is a disaster rescue simulation developed with the goal of creating a real-world
capable system [64].

3 Collective tracking problem

The collective tracking problem consists of two main elements: a target that moves in
a two-dimensional plane along a user-specified path and a tracker that is collectively
controlled by a swarm. The target moves at a fixed velocity for a specified number
of timesteps. The agents in the swarm collectively control the tracker’s movement,
with a goal of minimizing the distance between the target and tracker at any given
time. Though the system is currently implemented for two dimensions, extending to
higher dimensions is straightforward. We note that dimensionality greater than three
highlights that, while this testbed can model a physical system, it can also model more
abstract DTAPs.

In each timestep, the target location is given by z4(t), y,(t) and the tracker location
is given by z(t), yx(t). The difference between the target and tracker locations along
the = and y axes are given by Ax(t) = x4(t) — xx(t) and Ay(t) = y,(t) — yr(t),
respectively. Ax(t) represents task demand to push east in timestep ¢; —Az(t) rep-
resents task demand to push west; Ay(¢) represents task demand to push north; and
—Ay(t) represents task demand to push south. Negative demand is considered to be
zero demand. Note that for this problem, there will be at most two tasks with non-zero
demand at any given time. This restriction is due to the fact that movement in a 2D
plane is defined by a vector composed of at most two directional components.

In each timestep, ¢, the target moves a distance of L along a specified path. Each
agent selects one of five possible tasks: push_north, push_east, push_south, push_west,
or remain idle. All of the agents that select to push in a given direction contribute to
addressing the task demand in that direction. Let NV be the total number of agents in the
swarm and n;(¢) be the number of agents pushing in direction 7 : ¢ € {N, E,S, W}
in timestep t. Let R be the step ratio, which specifies the maximum distance that the
tracker can move in one timestep relative to the target’s step length; that is, if R = 2.0,
the tracker can move twice as far as the target in one timestep if all agents push in the
same direction. The distance, D;(t), that the tracker will move in direction ¢ in time ¢
is

Di(t):niT(t)xRxL

This movement is executed in each of the four directions to complete the tracker’s
movement in timestep ¢.



As with any other DTAP, performance may be measured by directly comparing the
task demands and agent responses in each timestep. This problem provides an addi-
tional, more intuitive, evaluation metric in the two dimensional traces of the target and
tracker paths. Two quantities define a swarm’s success for the tracking problem:

Goal 1 Minimize the average positional difference, per time step, between the target
location and the tracker location.

Goal 2 Minimize the difference between the total distance traveled by the target and
the total distance traveled by the tracker.

To understand the need for both of these goals, we present the following scenarios. We
first motivate the need for average positional difference. Consider a target that moves
500 distance units east while the swarm moves 500 distance units west. The path length
difference is O though the tracking is not at all successful. To motivate the need for path
length difference, suppose again that the target moves 500 units east but that the tracker
is moved in a zigzag pattern crossing the target path in each timestep. The average
positional difference is low but the path traveled by the tracker is much longer than that
of the target.

4 Target paths define task demands

The key contribution of this testbed is the use of farget paths to define task demands.
Because the goal of the swarm is to minimize the distance between the target and
tracker, the task demand 7;(¢) in each direction ¢ € {N, E, S, W} in a given timestep
t is defined as:

[ Ay(t) ifAy(t)>0 | Az(t) ifAz(t)>0
() = { 0 otherwise 7(t) = 0 otherwise

| —Ay(t) ifAy(t) <0 | —Az(t) ifAz(t) <0
Ts(t) = { 0 otherwise w(t) = 0 otherwise

The shape or trajectory of a path determines the Az(¢) and Ay(¢) at any timestep t.
As a result, defining target paths as shapes allows for the definition of both static and
dynamic task demands over a period of time. This approach allows us to systematically
define DTAPs with gradually or abruptly changing task demands across a spectrum of
characteristics.

We note that, in this section, the term “task demand” refers only to the raw task
demands generated by the movement of the target in a single timestep, and assumes
that the tracker is able to follow the target movement perfectly in each timestep. If
tracker movement does not perfectly mimic target movement in each timestep, then the
actual observed task demand will be the sum of the raw task demand plus any deviation
between the tracker and target locations from the previous timestep.

For example, consider a square path in which the target starts at the bottom left
corner of a square and moves north, east, south, and west for an equal distance in
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Figure 1: A square path and corresponding task demands. The target travels along the
square path approximately four times around. L is the maximum possible demand.

each direction to form a square. Figure 1 shows an example of such a path and its
corresponding task demands. For this path, there is only a single task demand active
at any given time. The amount of demand for any task is either the maximum possible
demand?, L, or zero, and changes in demand switch abruptly between these two values.

Figure 2 shows an example of a circle path and its corresponding task demands. In
this example, the target starts at 12 o’clock and travels clockwise around the circle just
over four times. At the beginning of the path, task demand is focused to the east. As
the target travels from 12 o’clock to 3 o’clock, demand to the east gradually decreases
and demand to the south increases. Demand to the south peaks at L when the target
is at the 3 o’clock position, then gradually decreases down to zero as the target travels
from 3 o’clock to 6 o’clock. At the same time, demand to the west gradually increases
from zero to the maximum amount, L. In the quadrant from 6 o’clock to 9 o’clock,
demand to the west decreases from L to zero and demand to the north increases from
0 to L. In the quadrant from 9 o’clock to 12 o’clock, demand to the north decreases
from L to zero and demand to the east increases from 0 to L. The task demands in
the circle path change in a more gradual fashion than what is seen in the square path.
In addition, up to two different tasks may be active at any given time so agents must
distribute themselves appropriately among multiple active tasks.

Figures 3 and 4 show two example paths that are less regular and more random in

2The maximum demand, L, is defined by the maximum distance that the target can travel in a single
direction in one timestep.
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Figure 2: A circle path and corresponding task demands. The target travels along the
circular path for approximately four rotations. L is the maximum possible demand.

their behavior. In the random path in Figure 3, task demands randomly change gradu-
ally over time. The magnitude of the maximum change in heading in each timestep is
an adjustable parameter of the random path. In the sharp path in Figure 4, task demands
are constant between random abrupt changes. Figure 5 shows a zigzag path which con-
sists of constant task demand to the east, varying task demands to the north and south,
and no task demand to the west. Finally, a straight path in any direction represents
constant static task demands for one (if due N, E, S, or W) or two tasks.

These examples illustrate how this testbed paradigm can be used to define a variety
of time-varying task demands in a systematic way. Task demands may be regular or
irregular. They may change gradually or abruptly. The number of tasks that are active
or that change at any given time can vary. In addition to examining swarm response
to the task demands for a single path, this system allows the ability to investigate a
spectrum of task demands. For example, Figure 6 shows how task demands change
on a zigzag path with fixed amplitude and increasingly larger periods. Moving from
smaller to larger periods increases the relative amount of task demand to the east and
decreases the relative amount of task demand to the north and south. Figure 7 shows
that circle paths with increasing radii produce task demands with decreasing rate of
change.

10
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Figure 3: Random path and corresponding task demands. L is the maximum possible
demand.
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Abrupt or Regular Maximum

gradual or non-zero Adjustable
Path name change irregular task demands parameters
Move west Static N.A. 1 N.A.
Move northeast Static N.A. 2 N.A.
Circle Gradual Regular 2 Radius
Random Gradual Irregular 2 Change magnitude
S-curve Gradual Regular 2 Amplitude, period
Square Abrupt Regular 1 Edge length
Diamond Abrupt Regular 2 Edge length
Sharp Abrupt Irregular 2 Change probability
Zigzag Abrupt Regular 2 Amplitude, period

Table 1: Paths currently available in the collective control testbed.

Table 1 lists some of the paths that are currently available in the testbed and their
corresponding characteristics. The adjustable parameters describe features that may be
varied and studied across a range of values. For all paths, the target moves at constant
velocity of L units per timestep. Three classes of paths are available in the system:
static paths, gradually changing dynamic paths, and abruptly changing dynamic paths.

Constant target movement in a single direction generates static task demands. The
task demand in each direction remains constant for all timesteps.

* The move west path moves due west, generating constant static task demand to
the west.

* The move northeast path moves to the northeast generating constant task de-
mand to the north and to the east.

Target movement along curved paths generates gradually changing task demands. Such
changes require a small number of agents to change their tasks at any given time.
Examples of target paths with gradually changing task demands include:

* The circle path starts at 12 o’clock and travels clockwise around the circle.

* The random path makes a small random change in heading in each timestep. The
magnitude of the change in heading in each timestep is derived from a Gaussian
distribution centered on zero and can be adjusted by varying standard deviation.

* The s-curve path travels in a serpentine path from west to east.

Target movement along paths that make sharp turns generates abruptly changing task
demands. Such changes require a large number of agents to change their tasks at a
given time. Example paths with abruptly changing task demands include:

* The square path starts at the bottom left corner of the path and moves north,
east, south, then west for a specified distance in each direction.
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* The diamond path starts at the leftmost point of the path and moves NE, SE,
SW, then NW for a specified distance in each direction. This path differs from
the square path in that it creates demand for two tasks in every timestep.

¢ The sharp path moves in straight lines with occasional random changes in di-
rection. The frequency of the random direction changes is defined by a proba-
bility value that gives the probability that a direction change will occur in each
timestep.

 The zigzag path travels in a sawtooth path from west to east. It consists of a mix
of static and dynamic task demands.

In summary, the collective tracking problem provides a systematic way to define
DTAPs over a wide range of charateristics. These problems may be used to test and
stress a swarm in every conceivable way.

5 Resources for analysis

In addition to providing mechanisms for specifying a variety of task allocation prob-
lems, this testbed also allows for detailed monitoring of agent actions which can aid
in analyses of how a given swarm addresses task demands over time. This monitor-
ing includes collecting data over the course of a simulation run as well as aggregating
summary statistics after a run has ended. Because we are using this testbed to study
coordination in threshold-based swarms,> the discussion below is given in that context.
Nevertheless, the agents’ decision making mechanisms can be replaced by other swarm
coordination methods to study other approaches. This testbed is an equally challeng-
ing and equally informative testbed for studying other approaches to decentralized task
allocation.

5.1 Data collected over the course of a simulation run

Observations of a swarm’s actions over the course of a run allow users to evaluate how
effectively and how promptly a swarm responds to dynamic task demands. The testbed
allows for the collection and visualization of a variety of data over each timestep of a
simulation run. The following are examples of the types of data that can be examined.

The collective control problem generates both clearly defined task demands and
clearly defined swarm responses. This allows a user to observe how the agents in a
swarm respond to changes in task demand, including both the quality and timeliness
of the response. In addition, the target and tracker paths provide an intuitive way to
visualize the performance of a swarm on this problem. Figure 8 shows an example
of target and tracker paths (top plot) and the corresponding task demands and swarm
responses (bottom four plots). Target data is indicated by solid purple and red lines and
tracker data is indicated by the dashed green lines. We can see that, in this example,
there is a slight delay between the timing of the task demands and the swarm response.

3Threshold-based swarms are systems in which each agent has a threshold for each task that it can perform
and these thresholds determine when agents will act and what task they choose.
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Figure 8: S-curve path and corresponding task demands. L is the maximum possible
demand. The dashed lines indicate the swarm’s performance in tracking the target’s
movement.

This delay manifests in the resulting tracker path as “cutting corners” relative to the
target path.

Figure 9 shows a visualization of the actions of all agents in every timestep of a
simulation run. Agent actions for three paths are shown: zigzag, s-curve, and circle.
The x-axis of each plot indicates the agent; the y-axis of each plot counts timesteps.
The color of each cell indicates the action of a given agent in a given timestep: blue
= push_north, yellow = push_east, red = push_south, green = push_west, and white =
remain idle. Each column represents the sequence of actions of a single agent over
the course of a run. The agents in these example runs have static, uniformly random
thresholds for each task. Such visualizations allow us not only to observe the distri-
bution of agent actions over time, but also examine metrics such as how often agents
switch tasks, whether agents specialize (only act of a few tasks) or generalize (act on all
tasks), and the percent of a swarm that remains idle. The plots in Figure 9 show that a
swarm consisting of agents with static uniformly random thresholds respond differently
and appropriately for different paths (different types of dynamic task demands).

Data on the number of agents that switch tasks in each timestep can also examined.
Figure 10 shows such data for example runs of the zigzag and s-curve target paths.
These results indicate that, for a zigzag path, task switches are more frequent around
the sharp turns of the zigzag path and occur with significantly less frequency along
the straightaways. By comparison, an s-curve path results in a relatively constant and
moderate amount of task switching throughout the course of a run.

For systems in which agent characteristics can adapt over time, visualization of
how such data changes over time can provide feedback on the effectiveness and utility
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Figure 9: Agent actions in each timestep of a simulation run for the zigzag, s-curve,
and circle target paths. Blue = push_north, yellow = push_east, red = push_south, green
= push_west, and white = idle. The swarms in these runs are threshold based swarms in
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Figure 11: Agent threshold values for the push_north task on the s-curve target path.

of dynamic adaptations. For example, we are investigating swarms in which agents dy-
namically adapt task thresholds over time. Figure 11 shows how agent threshold values
for the push_north task vary over an example simulation run on the s-curve target path.
In each plot the x-axis indicates agents and the y-axis indicates timesteps. Each column
of color shows the evolution of the push_north threshold for a single agent over time.
Threshold values range from zero to ten, indicated by the colors ranging from green to
yellow to red, respectively. The two plots shown in Figure 11 illustrate threshold adap-
tation in two different types of dynamic threshold methods. These plots show that the
system on the left is less adaptive, converging over time to extreme threshold values.
The system on the right maintains a more diverse collection of threshold values across
the agent population that continue to evolve throughout the run.

5.2 Data summarized over a complete run

The clearly defined task demands and swarm response means that we are also able to
collect and aggregate detailed statistics about swarm behavior and performance once a
simulation run is complete. Beyond the overall swarm performance metrics, the system
allows us to examine differences such as how work is distributed among swarm mem-
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Figure 12: A comparison of agent threshold values and the number of times agents
act on a task in example simulation runs lasting 3000 timesteps. The left plot shows
results from a example run of the zigzag path which contains abruptly changing task
demands. The right plot shows results from a example run of the s-curve path which
contains gradually changing task demands.

bers and the stability of the division of labor in a swarm. The following data illustrate
examples where aggregated data from this collective contol problem can reveal insights
on how swarm dynamics differ for different types of problems.

Figure 12 shows the correlation between agent threshold values and the number of
times agents act on a task in an example simulation run. The left plot shows results
from an example run of the zigzag path; the right plot, the s-curve path. On both plots,
the x-axis indicates threshold values and the y-axis indicates the number of timesteps
in which the agent with a given threshold acted on that task. Note that each agent has a
separate threshold for all four tasks (push_north, push_east, push_south, and push_west)
so the number of data points on each graph is 4 x N where N is the total number of
agents in the swarm. In both runs, agent task thresholds are static and are drawn from
a uniform random distribution.

These two examples show that swarm dynamics differ between problems with
abruptly changing (zigzag path) and gradually changing (s-curve path) task demands.
In the left plot (zigzag path with abruptly changing task demands), there are clearly
agents that specialize on the push_east task, including six agents that select to push_east
in all 3000 timesteps of the simulation. There are also agents that specialize on the
push_north and push_south tasks. There appear to be groups of agents that act on a
given task approximately the same number of times: two groups of agents select the
push_east task approximately 3000 and 2300 times, two groups of agents select the
push_south task approximately 1400 and 700 times, and two groups of agents select
the push_north task approximately 1400 and 700 times. The two levels differentiate
agents that specialize on a single task and agents that switch back and forth between
two tasks. In the right plot (s-curve path with gradually changing task demands), the
distribution of action counts is much more gradual. There is not a clear distinction of
groups of agents that are acting similarly in concert. Instead there is a gradual decline
in action count as threshold value increases. Significantly more high threshold agents
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Figure 13: The number of task switches experienced by each agent in a swarm over a
simulation run consisting of 3000 timesteps. The left plot shows results from a exam-
ple run of the zigzag path which contains abruptly changing task demands. The right
plot shows results from a example run of the s-curve path which contains gradually
changing task demands.

act on the s-curve path than on the zigzag path (in the zigzag plot, only five thresholds
above 4 have non-zero action counts; in the s-curve plot, significantly more have non-
zero action counts). For both plots, the fact that the maximum count for the push_north
and push_south tasks are approximately half of the maximum count for the push_east
task correlates with the fact that the s-curve path exhibits movement to the east in every
timestep while alternating between periods of demand to the north and south.

Figure 13 shows the number of task switches experienced by each agent in a swarm
over two example simulation runs consisting of 3000 timesteps. The left plot shows re-
sults from an example run of the zigzag path; the right plot, the s-curve path. On both
plots, the x-axis indicates agents and the y-axis indicates the number of task switches.
In the left plot (zigzag path with abruptly changing task demands), agents appear to
either switch tasks frequently or rarely. Task switching appears to be concentrated in a
subset of agents with the remaining agents experiencing significantly less task switch-
ing. In the right plot (s-curve path with gradually changing task demands), there ap-
pears to be a greater variety of frequencies of task switching.

For agent characteristics that change over time, in addition to examining changes
per timestep, we can also summarize the effective agent characteristics by visualizing,
for example, the range and average values over the course of a run. Figure 14 shows
example results from our investigations of agents with dynamic response intensities*.
Specifically, it illustrates the aggregate push_east intensity data for all agents in a sin-
gle simulation run of the s-curve (top plot) and zigzag (bottom plot) paths. The x-axis
shows each of the 50 agents in the run. The left y-axis depicts intensity values and
the right y-axis shows activation counts. Each agent’s defined intensity range (range of
possible intensity values) for pushing east is shown by the orange lines. Each agent’s
effective intensity range (range of actual executed intensity values) is shown as a blue
line. Note that each effective intensity range is subsumed by the defined range. All

4Response intensity defines the magnitude of an agent’s effort relative to others. It can model increased
effectiveness due to experience on a task or characteristics such as strength or stamina [44, 45].

22



Intensity Ranges and Average Intensity

500

2.21.¢ I €  Path:s-curve

18 T 400 3 Task: east
Pl o o o
w14 Tt [ { 300 < *  Activations
S 1. 1 T 1 o - Avg intensity
€1.0 trt., T + 200 © Defined range
= 0 .. T 100% —— Actual range

tee <
o2+——+— o L ®eeseccegecsesecssrecccssane 0
0 5 10 15 20 25 30 35 40 45 50
Agents (sorted by activation count)
Intensity Ranges and Average Intensity 500

2.2 c Path: zigzag

18 [ [ 400 3 Task: east
2 o -
w14 T F300 «  Activations
qCJ . T{ T o - Avg intensity
€10 + r200 © Defined range
- 06 100 _8 —— Actual range

. <<
02— ‘eseccoetccecreceoagresersecoteoesrtcsnsenss L0

0 5 10 15 20 25 30 35 40 45 50
Agents (sorted by activation count)

Figure 14: Average intensity values by agent for task push_east for paths s-curve (top)
and zigzag (bottom). Orange lines show the defined intensity range. Blue lines show
the range of intensities during the run for each agent. Red dashes mark the average
intensity per agent. Green dots show the push_east activation count for each agent.

intensities are initialized to the midpoint of the defined range. An agent’s average in-
tensity value for a task, marked by a red dash, is calculated only for timesteps for
which the agent activated for that task. The activation count for each agent appears as
a green dot. Comparison of these two plots reveals swarm dynamics that concur with
that shown in Figures 12 and 13. Activation for a given task (in this case push_east) is
limited to a smaller group of agents for the zigzag task than for the s-curve task. That
smaller group activates more frequently which pushes almost all of these agents to
their maximum intensities. Activation is distributed among more agents in the s-curve
path which results in greater diversity in the average intensity values relative to their
corresponding ranges.

6 Discussion

If we are studying how swarms coordinate and adapt, being able to evaluate any pro-
posed agent decision making strategies on a range of DTAPs with different characteris-
tics will strengthen results and make them more likely to be generalizable. Applications
do not always allow for a range of DTAP characteristics to be tested. The collective
control problem described here, though abstract, has a number of features that make it
a good testbed for studying DTAPS. First, the target paths provide a systematic way of
defining a variety of DTAPS on which swarm dynamics may be studied. Second, the
clearly defined task demands and agent responses allows for detailed examination and
analyses of the dynamics of how different swarms respond to different types of DTAPs.
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Finally, the tracking problem allows for a very intuitive way to visualize swarm perfor-
mance: in the form of the actual paths taken by the target and tracker.

The key contribution of this testbed is the ability to systematically define a vari-
ety of DTAPs. Because task demand is represented by differences between target and
tracker position in each of the four cardinal directions, target paths are a structured
way to define how task demands change over time. Varying the parameters of a tar-
get path creates classes of DTAPs that have some features in common but vary along
one or more specific axes. Thus, this test problem provides a non-arbitrary method for
defining problems with task demands that change in a variety of ways, as well as the
ability to define problems that vary across one or more spectrums of DTAP characteris-
tics. This testbed can represent physical problems, as in the tracking manifestation we
present here, or problems where task demands do not have a physical analog and the
work of the swarm simply represents a response to the demand.

A secondary benefit of this testbed is its ability to monitor both problem demands
and agent responses very precisely. The ability to accurately measure target and tracker
movements and locations in each timestep allows us to precisely monitor both the mag-
nitude and speed of a swarm’s response during a simulation. In addition, the system
also allows for aggregation of performance statistics over an entire simulation run. Al-
though some of the data that may be desired will undoubtedly be system specific and
depend on the agents’ control algorithm or swarm composition, the system provides
the capability to collect and visualize general data such as performance on the tracking
problem, which agents act when, and frequency of task switching. Finally, the target
and tracker paths provide a very natural way for users to visualize the progress and
performance of a swarm on a dynamic task allocation problem.

We note that an unanticipated side effect of the fact that pairs of tasks in the track-
ing problem oppose each other, e.g. positive task demand to the north is essentially
negative task demand to the south, means that target movement in a given direction can
reduce unaddressed task demand in the opposite direction. Thus, task demands may
be addressed by a combination of agent actions and the target’s own movement. This
effect is particularly evident in examples where the tracker cuts corners resulting in a
tracker path whose length is shorter than the target path, but can be detected by the
Goal 2 evaluation metric.

Future work on the development of this testbed is focused, at this time, on increas-
ing the number of tasks in the problem and the number of tasks that may simultane-
ously have demand in a given timestep. This increase may be achieved in one of two
ways. First, we can add additional active tasks by increasing the dimensionality of the
tracking problem from two to three or more. Moving to a three dimensional space will
result in six possible tasks and a maximum of three tasks that can have demand at the
same time. Adding dimensions beyond three creates more abstract DTAPs that are not
limited by modeling a physical space. Another way to increase the number of tasks is
to define the task demands for each direction using a separate target path or function.
Such an approach will allow all tasks to have demand in a given timestep even if the
actual path travelled by the target aggregates the north and south demands and the east
and west demands. In this case, the visualization will be less directly illustrative of the
individual task demands but will still intuitively illustrate how well the tracker motion
follows the aggregate target path.
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