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Abstract.  In this work we provide empirical evidence that shows how a variable-length 
genetic algorithm (GA) can naturally evolve shorter average size populations.  This reduction 
in chromosome length appears to occur in finite population GAs when 1) selection is absent 
from the GA (random) or 2) when selection focuses on some other property not influenced by 
the length of individuals within a population.  

 

1 Introduction 

In (Wu & Stringer, 2002), we investigated the use of a new form of genetic algorithm (GA) to 
develop rule sets for autonomous micro air vehicles (MAVs).  This “Chunking GA” or ChGA 
combines a variable-length GA with a shared communal memory that allows evolution of both 
individual chromosomes and memory simultaneously.  Memory can be accessed by individuals in 
the population to improve their solutions over the course of a GA run.   

The ChGA exhibits a number of unique properties which warrant further investigation.  One 
of these is the way in which a ChGA evolves its memory contents to contain an optimal or near 
optimal solution.  The ChGA appears able to separate good genes from bad (or less good) and 
stores them in the shared memory structure.  In (Stringer & Wu, 2004) we provide a more formal 
investigation of this “winnowing” effect and the relationship between memory capacity and 
solution size. 

A second unique property of the ChGA is its ability to reduce the size of individual base 
chromosomes (e.g., MAV rule sets) over time. This reduction occurs without explicit parsimony 
pressure built into either the ChGA or the fitness function. 

A series of experiments was conducted using a ChGA and various fitness functions to verify 
that reductions in base chromosome lengths were not the result of the MAV simulator or mxn 
MaxSum functions used in previous works.  Although not reported here, the results of those 
experiments show that winnowing and reduction in base chromosome size occurs to varying 
degrees with most of our test functions.   In addition it appears that reduction in base chromosome 
length always occurs after the contents of memory are filled with a near optimal solution. 
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We have come to believe that reduction in base chromosome length is related to reduction in 
selection pressure as the ChGA finds a near optimal solution and stores it in memory.  To put this 
in proper perspective, we must look at what happens during a ChGA’s execution.  

As mentioned previously, the ChGA evolves the contents of its shared memory 
simultaneously with access to that memory by individuals within the population at large.  At 
some point in the ChGA’s execution, memory contains numerous high-value genes.  These genes 
are in turn accessed by more and more individuals within the population.  Over time, the contents 
of memory becomes the primary contributor to these individuals’ fitness.  The contents of their 
base chromosomes becomes less relevant.  As the run continues further, the majority of 
individuals reference the same memory contents (or slots) and we begin to see similar fitness 
values for most of the population – the population converges on references to the same memory 
slots.  As a result, selection among these like individuals within the population becomes 
essentially random in nature. 

In this work we focus specifically on understanding and modeling how the absence of 
selection pressure (random selection) can cause reduction in chromosome sizes for a variable-
length GA given 1) a finite population and 2) a uniform distribution of chromosome lengths 
within a population.   

We begin in Section 2 with a general survey of variable-length genetic algorithms and a 
discussion of size increase (“bloat”) in GA and GP systems.  We test our ideas using a variety of 
experiments and models in Sections 3 and 4.  Empirical data from models in these sections show 
that absent selection pressure related to chromosome size, a variable-length GA can evolve 
populations with shorter average-sized chromosomes. Our conclusions are contained in Section 5 
along with suggestions for future work and investigations. 

2 Variable-Length Genetic Algorithms and Other Related Work 

Many different GAs have been developed over the years which incorporate variable length 
chromosomes.  In this section we consider some of the different variable-length representations 
found in the GA literature. 

2.1 The messyGA 

The earliest and best known variable-length representation is the messyGA (Goldberg, Korb & 
Deb, 1989). This GA was developed to eliminate bit positional dependencies in a standard GA. 
The representation allows the GA to evolve both bit values and bit locations on a chromosome 
during a GA run.  The goal of the messyGA is to find tight linkage between bits as well as good 
bit values simultaneously. 

Each bit value in a messyGA chromosome is tagged with a name (an integer number 
indicating the position of the bit).  An ordered name-value pair is referred to as a messy gene.  
Prior to fitness evaluation, the value bits are extracted from the chromosome and reordered based 
on their corresponding names. Goldberg, et. al. (1989) describe this approach as a “moving-locus 
scheme”.  Bits within a genotypic string are no longer in fixed positions and can move around on 
a chromosome to develop better building blocks. 

The messyGA was implemented using a cut-and-splice operator rather than standard one-
point crossover.  The operator produces variable-length chromosomes.  Reproduction can 
sometimes result in children with multiple bit-values for a given name (overspecification) or with 
an absence of bit values for a given name (underspecification).  Instances of these two errors must 
be dealt with before a complete solution can be forwarded to the fitness function for evaluation. 

Left-to-right precedence is used to eliminate overspecification due to duplicate or competing 
bit values. The bit value from the first messy gene with a given name is used during fitness 
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evaluation. All other messy genes with the same name are then ignored and considered to be non-
coding regions.  

Underspecification occurs when no messy gene exists for a given bit required in the pre-test 
solution.  This condition is handled by the use of competitive templates.  Bit values not found in 
the genome are pulled from a template, a string containing locally optimal bits from the previous 
generation.  The use of competitive templates allows the messy GA to build a complete solution 
for testing even when an individual chromosome does not encode a solution in its entirety. 

The primary weakness of the messyGA is its focus on bits.  A complete solution for an n-
variable problem with each variable needing l bits requires n2nl additional bits in the genome to 
identify all its component bits. 

2.2 The Virtual Virus 

Another variable-length representation in the literature is the Virtual Virus or VIV (Burke et al., 
1998).  The goal of this work was to create a genetic algorithm which more closely mirrored 
biology.  The authors describe a number of key features found in biological systems that may be 
absent from a standard GA including: 
 

• Genomes which vary in length during evolution, 
• Gene locations independent of position identified by stop and start codons, 
• Presence of non-coding regions in a genome, 
• Duplicative or competing genes on the same genome, 
• Use of overlapping reading frames when retrieving genetic information, 
• A multi-character alphabet (A, T, C & G representing nucleotides) and 
• Degenerate mapping of nucleotide triplets (codons) to amino acids. 

 
Each of these features was incorporated into VIV to some degree.  Use of a multi-character 

alphabet and degenerative mapping allows for redundant genotype representations in VIV.  More 
than one codon (three alphabet characters) can translate into the same phenotypic trait.  
Incorporation of intergenic regions (non-coding information) and redundant genes (the same 
information can appear more than once) also allow VIV to more closely follow its biological 
inspiration. 

To remove location restrictions, each gene in VIV is marked by a START codon consisting 
of three characters.  This start tag is analogous to a promoter region in DNA.  The end of a gene 
is specified by a corresponding STOP codon.  The use of START and STOP codons allows genes 
in VIV to be of variable length.  In addition, non-coding regions can result if any genetic 
information is contained between a STOP and START codon. 

Processing of a chromosome begins by reading left to right across the genome.  If a START 
codon is found at position p, any subsequent characters are read as genes until a STOP codon is 
reached.  Reading of the genome picks back up at position p+1 looking for the next START 
codon. The processing of chromosomes in this manner allows VIV to contain overlapping genes 
within a chromosome.  Overlap makes possible evolution of solutions in a very compact genome.   
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2.3 SAMUEL System 

The SAMUEL system (Grefenstette, Ramsey & Schultz, 1990) is a type of Learning Classifier 
System or LCS.  SAMUEL uses a variable-length GA at the heart of its learning module to learn 
rules for sequential decision making. Each individual in the population represents a set of rules or 
a “tactical plan” to guide SAMUEL in its tasks. Plans consist of a variable number of rules that 
are loaded into SAMUEL’s performance module for execution.  Rules are expressed in a high-
level if/then representation rather than binary strings.  If a condition is matched, then an action is 
taken. In SAMUEL, rules are analogous to genes within a chromosome.  Crossover occurs 
between rules and serves to combine good rules to form a better solution.  Creation of new rules 
is the function of mutation and a new specialization operator.  

2.4 GAs for MAV Rule Development 

A number of researchers have used variable length GAs in conjunction with micro air vehicle 
simulators (Wu, Schultz & Agah, 1999; Bassett & De Jong, 2000; Wu & Stringer, 2002).  GAs in 
these papers are used to evolve rule sets for control and navigation of MAVs.  Rules are matched 
against sensor inputs from a simulated environment. Best matched rules are executed affecting 
the movement of the MAV. 

An MAV has a total of eight sensors that are in either an “on” or “off” state.  A total of 28  

possible environmental states or conditions can exist. The largest possible solution for this 
problem would contain 256 condition/action rules, assuming we associate one action variable 
with each possible sensor state combination. The results of experiments show instead that a 
compact set of general rules (5-20) was sufficient to provide good results. 

Over- and underspecification were not directly addressed by GAs working with this problem.  
Instead these situations were resolved by matching and rule selection algorithms within the MAV 
simulator.  For underspecification (specific conditions not addressed), the MAV selects the rule 
that most closely matches the current environment. In the case of overspecification (multiple 
actions for the same condition), the MAV randomly chooses between competing rules to 
determine the action to take.  

2.5 The Proportional Genetic Algorithm (PGA) 

The most recent variable-length representation to appear in the literature is the Proportional 
Genetic Algorithm or PGA. This representation evolves solutions of fixed length while taking 
locus-independence to the extreme.  The PGA uses a multi-character alphabet.  Each character is 
associated with a specific variable to be found in the solution.  The number of each character 
appearing in the genome is used to compute a value that is then assigned to its corresponding 
variable. 

The PGA uses alphabet symbols as atomic units in its representation rather than bits or genes.  
To quote from (Wu & Garibay, 2002), “The PGA representation is based on this idea that it is the 
content rather than the order of the encoded information that matters.”  The PGA allows evolution 
of the genome at the atomic character level rather than the gene level. 

The PGA can be used to look for solutions of varying sizes.  The number of characters in the 
PGA alphabet is determined at the start based on the number of variables in a complete solution.  
The downside of this representation is the need for large alphabets if problems have large 
numbers of variables.  

A major benefit of the PGA is that over- and underspecification are no longer issues.  All 
assigned characters in the genome are used to calculate proportions for each variable.  
Underspecification (absence of a character) is handled simply by setting that value associated 
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with a missing character to “0”.  Another major benefit of this representation is the lack of any 
“overhead” information in the genome – no identifying tags or start/end tags are required 

2.6 Bloat and Bloat Control in GA/GP 

This paper looks at reductions in genome length under random selection for variable length 
genetic algorithms.  As one can imagine, the quantity of literature directly addressing this issue is 
extremely limited.  What we have found is a wealth of information describing the problem of 
uncontrolled genome growth.  As a matter of fact, most variable-length representations, 
regardless of the evolutionary computation (EC) paradigm suffer from “bloat” to one degree or 
another.  In general, bloat is an increase in genome length from one generation to the next, 
primarily due to growth in extraneous genotypic information.  This information is extraneous 
since it is not necessary to form a valid and/or optimal solution. 

For GAs, bloat may include bits which make up non-coding regions, duplicate genes or 
competing genes.  Suggested causes of bloat within a GA include, but are not limited to 1) high 
mutation rates (Ramsey et al., 1998) and 2) the idea that additional genetic material is “free” 
(does not directly impact fitness) and provides more space to explore for better genes (Burke et 
al., 1998).  GA researchers have taken a variety of approaches to handling bloat in their works. 
The following control methods are taken from papers previously cited in this Section: 
 

• SAMUEL: The crossover operator removes any duplicate rules from being passed to the 
same child. 

• PGA and Chunking GA: Simple right truncation is applied after crossover to any child 
longer than a pre-specified limit.  All characters/genes beyond that limit are deleted from 
the chromosome. 

• VIV: A linear length penalty is added to the fitness function. This penalty alters the initial 
raw fitness of each chromosome so that shorter individuals are favored assuming all raw 
fitness values are equal. 

• messyGA: No explicit bloat control mechanism. However the authors suggest that use of 
competitive templates discourages duplicate genes. 

 
A final approach to bloat control is one advocated by Harvey (Harvey, 1992).  He 

recommends use of a reproductive operator which carefully chooses a crossover point on the 
second parent that is complimentary to the crossover point chosen on the first parent. The SAGA 
cross causes a gradual increase in average genome size within a population from one generation 
to the next, yet allows small variations in individual length within the same generation. 

Within EC, variable-length representations are most prominent in genetic programming or 
GP. This EC paradigm evolves parse trees represented by LISP programs which in turn are 
encoded as individual chromosomes.  GP has been observed to evolve trees or programs that are 
much larger than necessary, containing one or more sections of unused code (Koza, 1992; Blickle 
& Thiele, 1994; Soule, Foster & Dickinson, 1996). Of all EC paradigms, GP has produced the 
largest quantity of bloat-related literature due to its  abundant use of variable-length genomes. 

Various causes have been espoused to account for increases in the size of GP chromosomes.  
Among these are theories based on the hitchhiking of non-coding regions (Tackett, 1994), 
defense against crossover (Blickle & Thiele, 1994; Nordin & Banzhaf, 1995), removal bias 
(Soule & Foster, 1998), and the idea that fitness causes bloat  (Langdon & Poli, 1997).  These 
theories are summarized in (Luke, 2003) along with the introduction of a new theory which 
correlates GP bloat to the depth of modification points within a GP parse tree. 

Methods for controlling bloat are equally numerous in the GP literature.  Most methods fall 
into two categories: 1) parsimony pressure methods which incorporate some size penalty into the 
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fitness function and 2) reproduction restrictions which eliminate or prevent children which exceed 
a given parse tree depth limit.  Recent additions to the arsenal of anti-bloat methods include use 
of size fair and homologous crossovers (Langdon, 2000), double and proportional tournaments 
(Luke & Panait, 2002), and the treatment of size and raw fitness as separate objectives in a multi-
objective optimization scheme (Panait & Luke, 2004).  Panait and Luke offer two additional 
methods (the Waiting Room, Death by Size) for use with steady-state GP systems. 

Parsimony pressure appears to be the bloat control method common to both GAs and GP.  
Several of the newer GP methods just mentioned could easily be applied to variable-length GAs 
but to our knowledge have not yet been tried. Bloat control methods which take into account 
maximal tree depth are specific to GP and are not directly applicable to variable-length GAs. 

As shown here, bloat control methods in GP are more numerous, varied, and often more 
complex than those described in the GA literature. This could be due to GP’s popularity and 
larger body of work relative to that of variable-length GAs.  Or this could be a result of the more 
complex nature of GP problem representations.  Taken from the perspective of a GA practitioner, 
why use complicated control methods when a GA’s locus-independent linear structure allows one 
to simply truncate genomes greater than a pre-determined size? 

3 Simulating a Variable-Length GA 

How do we verify our hypothesis that a GA without selection pressure causes the average size of 
a population to shrink.  Since our motivation for this work is in part a desire to explain the 
shrinking genomes in (Wu & Stringer, 2002), we must first verify that this behavior is not 
problem specific.  To do so we perform a series of empirical tests on a simple model of a 
variable-length GA with selection and crossover operators. 

Our model starts with an integer array of 100 elements, each element representing a single 
individual in a 100-member GA population.  The value of each array element represents the 
number of genes contained within an individual’s chromosome (its length).   Lengths can vary in 
the model from 0 to c where c is some size cap which invokes a truncation operator.  For most of 
the experiments in this section, elements of an array are initialized to 20 to match the initial 
length used in prior ChGA works. 

Before proceeding we should address the issue of “0” length chromosomes.  In (Wu & 
Stringer, 2002; Stringer & Wu, 2004) our GA allowed for individuals of with base chromosomes 
of zero length.  This type of “null” chromosome was possible since individuals could still access 
genes stored in the ChGA’s communal memory structure.  Without a memory structure, crossover 
is still possible between two parents, one being of 0 length.  This scenario could be thought of as 
a form of asexual reproduction where the genetic material in one parent is divided between two 
children.  Finally, for the experiments in this section the use of 0-valued array elements is a non-
issue.  If length is re-defined as the number of crossover points within a chromosome, then a 0-
length individual is really a 1-gene chromosome, that gene being indivisible. Alternatively our 
experiments could also have been run using elements of size 1 to c+1 and achieved the same 
results. 

Within our model, a for_loop contains code which simulates random selection, crossover, 
and reproduction.  No fitness function exists in our initial model since we want to test the 
performance of a GA absent any selection pressure.  We have also excluded mutation from our 
model as this operator normally affects the contents of a chromosome rather than its length. 

The loop is executed 500 times to simulate 500 generations. During each “generation”, a new 
child array of 100 elements representing the next generation is created. 

A simulated 1-point crossover populates elements in a child array.  Two parent elements are 
chosen (selected) from the first array at random.  Two random integers between 0 and each 
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parental element’s value are chosen as the crossover points.  Two children are produced and 
copied into the child array as follows:  Child1 equals the first crossover point plus the value of 
Parent2 less the second crossover point; Child2 equals the second crossover point and the 
difference between Parent1 and the first crossover point.  The following example illustrates our 
simulated crossover: 
 
  Parent1 = 25  Crossover Point 1 = 6  Child1 = 6 + (7-5) or  8 
  Parent2 = 7   Crossover Point 2 = 5  Child2 = 5 + (25–6) or  24 
 

The above calculation serves to model the effect of crossover on the length of chromosomes 
from one generation to the next.  Remember our concern here is size, not fitness of the individual 
or its genetic composition. 

3.1 Results Using 1-Point Crossover and Random Selection 

A number of experiments of 1000 runs each were performed.  At the end of each run, the 
average length of the final population (average of 100 array elements) was computed and 
classified according to size ranges in Table 1.  The experiments themselves varied by the size cap 
(c) applied to larger chromosomes.  In past works, we have used a size cap of 100 genes with 
right truncation similar to Table 1(b). 

As Table 1 shows, the vast majority of populations ended with an average length below the 
starting average of 20 genes per individual.  This occurred even when a size cap of 1 billion (in 
effect no cap) was implemented.  A smaller size cap (in this case below 250) may act as a 
dampening force causing more “shorter” populations.  But a cap itself does not seem to be the 
force driving the reduction. 
 

Number of Runs Within Given Ranges  
Ranges for Avg Population 

Size at End of Run 
(a) 

Cap = 50 
(b) 

Cap = 100 
(c) 

Cap = 250 
(d) 

Cap = 1B 
<10 895 740 673 665 

(10 – 20] 98 163 140 133 
(20 – 30] 7 63 73 67 
(30 – 40] 0 28 36 30 
(40 – 50] 0 6 25 22 
(50 – 60] n/a 0 15 22 
(60 – 70] n/a 0 17 13 
(70 – 80] n/a 0 12 10 
(80 – 90] n/a 0 4 5 

(90 – 100] n/a 0 4 3 
>100 n/a 0 1 30 

Avg. Size for All Runs 3 6 11 16 

Table 1:  Number of runs with avg. size of final population within various ranges for GA 
simulations using random selection, 1-pt crossover, and initial gene size of 20 

Could our short populations be due to the initial array values (20)?  To find out we conducted 
the same experiment with array elements initialized to 200 thus simulating longer genes per 
chromosome.  Results are shown in Table 2.  The distribution of population averages across 
ranges is similar to that in Table 1 (assuming larger ranges) and the average size for all runs 
varies approximately by a factor of 10. 
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Number of Runs Within Given Ranges  

Ranges for Avg Population 
Size at End of Run 

(a) 
Cap = 500 

(b) 
Cap = 1000 

(c) 
Cap = 2500 

(d) 
Cap = 1B 

<100 879 725 667 661 
(100 – 200] 115 170 143 138 
(200 – 300] 6 68 75 67 
(300 – 400] 0 31 37 32 
(400 – 500] 0 6 26 22 
(500 – 600] n/a 0 13 19 
(600 – 700] n/a 0 16 11 
(700 – 800] n/a 0 13 16 
(800 – 900] n/a 0 6 2 

(900 – 1000] n/a 0 3 3 
>1000 n/a 0 1 29 

Avg. Size for all Runs 44 77 122 167 

Table 2:  Number of runs with avg. size of final population within various ranges for GA 
simulations using random selection, 1-pt crossover, and initial gene size of 200 

3.2 Adding Fitness Back Into the Simulation 

The previous experiments indicate that, absent selection pressure, a GA can shorten the average 
size of a population over time.  What if selection pressure is incorporated into our model?  
Experiments were conducted similar to those shown in Tables 1 & 2 using tournament selection 
with fitness maximization in lieu of random selection.  A cap of 1 billion was set for all 
experiments in this group to allow near unlimited growth in chromosome size 

In the first experiment (Table 3 column (a)), each parent and child element in the array is 
assigned a “fitness” equal to its size thus favoring longer individuals.  Not surprisingly, the 
average sizes (and fitnesses) of the final populations are enormously large.  All final populations 
are well over 100 genes in terms of average length.  This experiment shows how fitness, tied in 
some way to length, increases the average size of the population dramatically – another 
illustration of Langdon and Poli’s assertion that fitness causes bloat. 

In the second experiment, fitness is equal to 100 minus the size of the individual (favoring 
smaller individuals).  In every case, all individuals evolve to a size of 0 (no genes) hence all 1000 
final populations average in the 0-10 range (see Table 3, column (b)).   

The third experiment starts by assigning a random fitness value to each array element.  
During execution, the children of each mating are assigned fitness values equal to the sum of their 
parents’ values divided by two.  The result is a fitness assignment that does not depend on the 
length of the parents.  Our simulated GA in this scenario evolves many populations with 
individuals of short average size (see Table 3, column (c)). 
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Number of Runs Within Given Ranges  

Ranges for Avg Population 
Size at End of Run 

(a) 
Longer is 

Fitter 

(b) 
Shorter is 

Fitter 

(c) 
Fitness = 

(Fp1+Fp2)/2 

(d) 
Random 
Fitness 

<10 0 1000 611 709 
(10 – 20] 0 0 149 107 
(20 – 30] 0 0 77 52 
(30 – 40] 0 0 42 25 
(40 – 50] 0 0 23 21 
(50 – 60] 0 0 22 11 
(60 – 70] 0 0 14 10 
(70 – 80] 0 0 10 9 
(80 – 90] 0 0 8 7 

(90 – 100] 0 0 4 7 
>100 1000 0 40 42 

Avg. Size All Runs 799,722,254 0 21 17 
Avg. Fitness All Runs 799,722,254 100 83.49 49.34 

Table 3:  Number of runs with avg. size of final population within various ranges for GA 
simulations using tournament selection, 1-pt crossover, and initial gene size of 20 

In our last experiment, fitness values for all array elements (parents and children) are 
assigned randomly.  Fitness is in no way tied to the size of the individual.  Nor does fitness from 
prior generations have any bearing on selection in the next generation.  Like the results in column 
(c) we see that populations are by far, smaller than the initial starting size.  The fact that fitness is 
randomly assigned causes a complete absence of selection pressure associated with length and we 
see that our GA simulation naturally evolves shorter populations.  Note that this column is very 
similar to Table 1, column (c) which used purely random selection without any fitness function. 

3.3 Other Crossover Types 

The three prior sets of experiments (Tables 1, 2 and 3) modeled a GA using 1-point crossover.  
Two more sets of experiments were conducted to see if reduction in average size across 
populations occurs using 2-point crossover.  The results of these experiments are contained in 
Tables 4 and 5. 

These tables show that reduction in average chromosome size for a population can occur with 
at least one other form of crossover.  A comparison of results from Table 1 & 4 to those in Tables 
3 & 5 shows however that the size reduction under 2-point does not appear to be as great (or fast) 
as that occurring with 1-point. 
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Number of Runs Within Given Ranges  

Avg Population Size 
at end of Run 

(a) 
Cap = 50 

(b) 
Cap = 100 

(c) 
Cap = 250 

(d) 
Cap = 1B 

<10 761 598 563 561 
(10 – 20] 212 228 189 188 
(20 – 30] 27 100 89 80 
(30 – 40] 0 51 44 45 
(40 – 50] 0 21 27 26 
(50 – 60] n/a 2 23 17 
(60 – 70] n/a 0 20 14 
(70 – 80] n/a 0 15 14 
(80 – 90] n/a 0 11 6 

(90 – 100] n/a 0 9 13 
>100 n/a 0 10 36 

Avg. Size for All Runs 5 10 16 19 

Table 4:  Number of runs with avg. size of final population within various ranges for GA 
simulations using random selection, 2-pt crossover, and initial gene size of 20 

 
Number of Runs Within Given Ranges  

Ranges for Avg Population 
Size at End of Run 

(a) 
Longer is 

Fitter 

(b) 
Shorter is 

Fitter 

(c) 
Fitness = 

(Fp1+Fp2)/2 

(d) 
Random 
Fitness 

<10 0 1000 555 605 
(10 – 20] 0 0 179 153 
(20 – 30] 0 0 77 61 
(30 – 40] 0 0 53 46 
(40 – 50] 0 0 38 35 
(50 – 60] 0 0 22 20 
(60 – 70] 0 0 20 15 
(70 – 80] 0 0 10 13 
(80 – 90] 0 0 8 9 

(90 – 100] 0 0 8 3 
>100 1000 0 30 40 

Avg. Size All Runs 838,601,988 0 20 18 
Avg. Fitness All Runs 838,601,988 100 83.66 49.60 

Table 5:  Number of runs with avg. size of final population within various ranges for GA 
simulations using tournament selection, 2-pt crossover, and initial gene size of 20 

3.4 Effect of Population Size and Length of Run 

We have recently become aware of work coming out of the GP community which may impact our 
own investigations (personal conversations with W. Langdon and N. F. McPhee at GECCO 
2004).  An initial review of their papers (McPhee & Poli, 2001; Poli & McPhee, 2001) shows 
that, given an infinite population and a flat fitness landscape, there should be no change in the 
average length of individuals within a population over time. The model we have constructed in 
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this section uses a finite population of 100 elements.  Do our results change if larger populations 
are used? 

To answer that question we conducted a series of additional experiments using our GA model 
but varied both the size of the population (from 100 to 1000 elements) and the number of 
generations (500-5000) per run.  For each size/generation combination, a total of 500 runs were 
made.  In each run, all members of the population began with a length of 50. The number of runs 
ending with a population of average length less than 50 (the average starting length) were 
counted, converted to a percentile, then plotted in Figure 2. 
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Figure 1:  Graph showing effect of population size and run length on percentage of runs with 
ending average population sizes below the starting size. 

Figure 1 shows that as population size increases, the reduction in mean size within a 
population slows.  In other words, the phenomenon we have seen with our ChGA experiments 
and those conducted earlier in this section becomes less apparent with larger populations. 

Also shown in Figure 1 is the effect of time on this reduction.  The longer the GA runs, the 
greater the reduction in mean length. For example, when using an array of 100 elements and run 
length of 5000 generations, over 99% of all runs ended with a mean length less than 50 (the mean 
length for the starting population).  At the opposite end of the time spectrum (100 elements, 500 
generations) only 79% of runs ended in populations with mean lengths of less than 50.   

The results in Figure 1 do not necessarily disagree with the conclusions in (Poli & McPhee, 
2001).  If we extended Figure 1 out indefinitely in terms of population size we would most likely 
never see a reduction in mean length within that population, even given an infinite number of 
generations.   

3.5 Discussion 

The simulations performed in this section yield several important bits of information. First, absent 
selection pressure our GA model prefers to evolve finite populations of shorter average size given 
sufficient time (generations). Without a size cap, roughly 75%-80% of all final populations have 
an average chromosome size less than the starting length regardless of initial starting size.  
Second, a size cap does exert downward pressure on chromosome size but does not appear to be 
the primary cause of reductions in average size.  Last but not least, time is a factor in this 
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reduction – the more individuals in a population, the more time required for reduction to take 
place.  

Results clearly show that a finite population GA without any selection pressure tends to 
evolve populations with shorter average chromosome sizes.  But as shown in Table 3 & 5, 
absence of selection is not the complete story. The GA evolves larger-size populations only when 
longer individuals are considered more fit.  Shorter populations can evolve in the presence of 
selection as long as 1) fitness and size are not related to one another or 2) fitness favors more 
compact solutions. 

These simulations seem to confirm at least that fitness can be the cause of bloat if longer 
individuals in a population are considered more fit. The reason for longer individuals being more 
fit is itself a subject for future investigation. 

4 Inside, Outside and Equal Crossovers  

This section explores the idea that a GA, absent selection pressure creates a diverse population in 
terms of size and does not inherently over-produce longer children.  We conduct our study using 
empirical evidence from enumerative experiments that track the types of crossover events 
possible in a variable-length GA.  Our experiments requires that we first define the different 
possible types of crossover events that can take place during a GA’s reproduction cycle. 

Assuming one-point crossover, there are three possibilities where the size of offspring is 
concerned.  A crossover event can produce 1) children of size equal to the parents (equal event); 
2) one child longer than both parents and one child shorter than the shortest parent (outside 
event); or 3) both children shorter than the longest parent and longer than the shortest parent 
(inside event).  Figure 2 illustrates these three distinct events. 

 

Parent 2 (Shortest)
Parent 1 (Longest)

Child 2
Child 1

Child 2
Child 1

Child 1
Child 2

Equal
Crossover

Outside
Crossover

Inside
Crossover

 

Figure 2:  Illustration of crossover event categories for reproduction in variable-length GAs. 

4.1 A Theoretical Population 

To set up our experiments we define a theoretical population as one occurring at some generation 
t consisting of 2n individuals.  The individuals which make up this population consist of two of 
every size from 1 to n crossover points.  We use the notation Li to indicate the size of an 
individual where i is the number of crossover units (bits or genes) within the genome. The 
population in total makes up an nxn matrix with each row and column corresponding to one of 
the population members (see Figure 3). 

The number of possible crossover events for any given mating is the multiplication of the 
number of crossover points in each of the parents.  For example, a total of 8 unique crossover 
events is possible between a single mating of two parents, one with four crossover points and the 
other with two.  We can fill each cell in our population matrix with the number of possible 
crossover events that can take place for any two chromosomes of size j and k where j,k ≤ n by 
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simply multiplying the row and column indexes. Each element of the matrix in Figure 3 shows 
the number of possible crossover events between parents with crossover point lengths of j and k 
up to n. 

 
 L1 L2 L3 L4 ... Ln 

L1 1 2 3 4 ... n 
L2 2 4 6 8 ... 2n
L3 3 6 9 12 ... 3n
L4 4 8 12 16 ... ... 
... ... ... ... ... ... ... 
Ln n 2n 3n ...  nn
       

Figure 3:  Number of possible crossover events in nxn population matrix 

Let us now extend our illustration from Figure 3 by expanding a single cell to contain an 
inner matrix representing each of the unique crossover events possible for a given mating. We use 
the notation Xi to indicate the different crossover points for both individuals where i is the 
location of the crossover point along the genome.  In Figure 4 we see this expansion.  Children 
produced by each possible crossover event are shown as Cl where l is the number of crossover 
points (length) in each child.  For the mating of any L2 and L4 chromosome there are eight 
possible mating events which produce children of various sizes. 

 
 

 L1 L2 L3 L4 ... Ln       
L1 1 2 3 4 ... n       
L2 2 4 6 8 ... 2n       
L3 3 6 9 12 ... 3n       
L4 4 8 12 16 ... ...       
... ... ... ... ... ... ...       
Ln n 2n 3n ...  nn   X1 X2 X3 X4 
        X1 C2, C4 

(E) 
C3, C3 

(I) 
C4, C2 

(E) 
C5, C1 

(O) 
        X2 C5, C1 

(O) 
C4, C2 

(E) 
C3, C3 

(I) 
C2, C4 

(E) 

Figure 4:  Expansion of nxn population matrix cell to show length of children created by each 
possible crossover event.  The number of rows and columns in the expanded matrix is determined 
by the number of crossover points in the parent genomes. 

By comparing the size of the children with that of the two parents we can determine if the 
crossover event is of type inside (I), outside (O) or equal (E).  As Figure 4 shows, the mating of 
an L2 and L4 parent can result in one of eight crossover events – four of which are equal events, 
two are inside and two are outside events. 
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4.2 Experiments and Results 

Our first experiment consists of a number of nested loops which look at all possible crossover 
events for all possible matings for a series of nxn population matrices varying in size from 1 to 
200.  The events are categorized for each matrix and counted by type.  The results of this 
enumerative counting are then converted into percentages of total crossover events and are shown 
in Figure 5. 

It should be noted that our experiment is based on n being equal to a number of crossover 
points.  Therefore our results should apply to any variable-length GA regardless of representation 
form (e.g., integers, floating point numbers, multi-character alphabets). 

As n increase (the size of the population grows) the number of Equal crossover events 
diminishes rapidly.  Equal events are dominated by growing numbers of Inside and Outside 
events which approach 33% and 67% of all possible crossovers respectively. Mathematical proof 
of these numbers are left for future work. 
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Figure 5:  Percentage of crossover events by type for nxn population matrices varying in size 
from n=1 to 200 population matrix.  

To understand these results more fully we must go back Figure 2.  As that figure shows, only 
an outside crossover event can produce a child longer than both parents.  In addition, only one of 
the two children is actually longer than the longest parent.  As a result, we see that one half of the 
possible children produced by all outside crossovers will be longer than both parents.  This leads 
to the conclusion that the probability of producing a child which is longer than both parents via 
outside crossover is .67 / 2 or 33.3%.  Equally there is a 33.3% probability that a child will be 
shorter than the shortest parent and produced through an outside crossover event 

4.3 Weighting Results for Reality 

The empirical results discussed in Section 4.2 have one flaw.  Our experiment assumes that all 
crossover events are weighted equally (or equally likely to occur).  During actual execution of a 
GA, the probability of a given type of crossover is lessened or increased by the probability of a 
mating between two parents. 

Going back to Figure 3 and assuming a 4x4 matrix we have a total of 100 separate possible 
crossover events.  The graph in Figure 5 assumes that each of these events is equally weighted 
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and equally likely to occur.  But any single mating has only a 1 in 16 chance of occurring.  
Crossover event probabilities within each mating must be weighted differently since they result 
from a single mating event.  The result is that crossover events between larger individuals (more 
events) are individually less likely than those that can occur between smaller parents.  

Our previous experiment was re-run but with mating probability factored in to the program.  
The results of this weighted version are shown in Figure 6.  They indicate that the probability of 
both inside and outside crossovers approaches 50% while equal crossover types drops to 0%.  
This leads us to the conclusion that the probability of producing a child longer than both parents 
is only 25% for our theoretical population.  This is balanced by a 25% probability that any 
children produced by our theoretical population will also be shorter than both parents.  
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Figure 6:  Percentage of crossover events by type for nxn population matrices varying in size 
from n=1 to 200 population matrix.  Event probabilities weighted based on mating occurrences. 

4.4 Discussion 

Assuming the weighting of crossover events, we can summarize our results in the following way: 
Given a) two randomly selected individuals from an infinite population of variable-length 
chromosomes, uniformly1 distributed in terms of size and b) two randomly chosen crossover 
points on those individuals, the probability of an inside or outside crossover event approaches 
approximately 50% each and the probability that the two resulting children will be equal to the 
parents in length approaches 0%. 

These probabilities help us understand more about how the GA processes variable-length 
strings and creates size diversity within a population.  As the maximum size of individuals within 
a uniformly distributed population increases, the probability of an inside and outside crossover 
approaches 50%.  The equality of these percentages shows that the GA does not inherently favor 
one type of event over another.  By extension, the GA does not inherently favor crossover types 
which might lead to bloat. 

                                                      
1 The use of a nxn population matrix in our experiments gives us a perfect and uniform size distribution to work with.  

The true distribution of size within a GA population appears to be more Gaussian in nature.  We do not believe this 
will change our results significantly, particularly those relating to populations with tightly packed or split 
distributions. In future work, we hope to investigate crossover types given non-uniform size distributions.  
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Another result found during these experiments relates to the probability of crossover types for 
populations with tightly packed or highly split sizes.  When size variation between individuals is 
small (e.g., initial population set to same size), the probability of outside crossover is near 100%. 
This high probability causes the GA to increase the variance in the next generation dramatically.  
The opposite is true for populations with split distributions (many short and many long 
individuals with little in between).  In these populations, the probability of inside crossover is 
greater, thus filling in the gaps between smaller and larger chromosomes. 

5 Conclusions 

In this work we have provided a general survey of variable-length genetic algorithms.  Our 
experiments in Section 3 provide strong evidence that such GAs can naturally evolve populations 
of shorter mean length over time if selection is random or not associated with length in some way.  
We also show how a GA can maintain diversity through inside and outside crossover events.  
Assuming a population of uniform size distribution, the probability of an inside vs. outside 
crossover event is 50/50.  By extension, the probability of producing a child longer or shorter than 
both parents in that same population is 25% each.   

In terms of the ChGA, our results in this work are mixed.  We hoped at the start to find the 
cause for reduction in base chromosomes.  What we have seen from experiments and models in 
Section 3 is that reductions in chromosome length do occur.  They are not the result of our ChGA 
implementation or prior fitness functions.  Section 4 has not however, provided us with a specific 
reason for the reductions but does indicate that a variable length GA is neutral with respect to 
crossover event type.  There does not appear to be any bias towards crossover events which 
would over-produce longer children.   

The information presented in this Technical Report begins our investigation into the causes of 
reduction in chromosome length absent selection pressure.  Much work needs to be done.  Some 
of the question this work has raised include: 

 
• Section 3 showed that reductions in average chromosome size for a population can 

happen but it doesn’t occur 100% of the time.  This indicates that the process which 
causes reduction is not deterministic.  Why do our models show a preference for shorter 
populations rather than a consistent reduction in all runs? 

• Can the empirical probabilities for event types found in Section 4 be proven 
mathematically?  Can we also mathematically model the behavior when size distribution 
is non-uniform?  What about tight or split variations in sizes? 

• What effect does distribution in size caused by inside and outside crossovers have on 
reduction – more precisely, where does it fit in the process. 

• Since the proportion of inside and outside crossover events appears equal is there 
something about the length distribution within these crossover types which drives 
reduction. Works by Poli and McPhee previously cited appear to be relevant here. 

 
Future efforts to answer these questions may help us better understand how the reduction 

behavior in the chunking GA and provide insights into how variable-length GAs in general 
perform. 
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