
PID-inspired modifications in response threshold models in
swarm intelligent systems

Maryam Kebari
University of Central Florida

Orlando, Florida, USA
m.kebari@knights.ucf.edu

Annie S. Wu
University of Central Florida

Orlando, Florida, USA
aswu@cs.ucf.edu

H. David Mathias
University of Wisconsin - La Crosse

La Crosse, Wisconsin, USA
dmathias@uwlax.edu

ABSTRACT
In this study, we investigate the effectiveness of using the PID
(Proportional - Integral - Derivative) control loop factors for modi-
fying response thresholds in a decentralized, non-communicating,
threshold-based swarm. Each agent in our swarm has a set of four
thresholds, each corresponding to a task the agent is capable of
performing. The agent will act on a particular task if the stimulus
is higher than its corresponding threshold. The ability to modify
their thresholds allows the agents to specialize dynamically in re-
sponse to task demands. Current approaches to dynamic thresholds
typically use a learning and forgetting process to adjust thresholds.
These methods are able to effectively specialize once, but can have
difficulty re-specializing if the task demands change. Our approach,
inspired by the PID control loop, alters the threshold values based
on the current task demand value, the change in task demand, and
the cumulative sum of previous task demands. We show that our
PID-inspired method is scalable and outperforms fixed and current
learning and forgetting response thresholds with non-changing,
constant, and abrupt changes in task demand. This superior perfor-
mance is due to the ability of our method to re-specialize repeatedly
in response to changing task demands.

KEYWORDS
Multi-agent system, Swarm intelligence

ACM Reference Format:
Maryam Kebari, Annie S. Wu, and H. David Mathias. 2023. PID-inspired
modifications in response threshold models in swarm intelligent systems
. In Genetic and Evolutionary Computation Conference (GECCO ’23), July
15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3583131.3590442

1 INTRODUCTION
In this study, we use a PID-inspired method for manipulating agent
response thresholds in a threshold-based swarm. The swarm is fixed-
size, decentralized, and without communication. At any given time,
an agent can perform at most one of the four possible tasks that
may arise in the test problem. Current dynamic threshold methods
can specialize once but can have a hard time respecializing. Our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590442

method helps the swarm to adjust to varying task demands more
effectively by enhancing swarm’s ability to re-specialize.

Decentralized swarms are robust and scalable, but not having
a leader makes it challenging for the swarm to achieve a collec-
tive goal. The response threshold model is a simple method for
addressing this problem. Natural swarms such as social insects
have inspired this method [4, 5, 25]. The simple yet powerful idea
behind this model is that each agent has a set of thresholds, one
for each task present. If the level of a task stimulus or task demand
is below its corresponding threshold, the behavior is less likely
to happen. The behavior is more likely to occur if the stimulus is
above its corresponding threshold [4, 25]. Hence, the thresholds
we assign to each agent determine the system’s collective behavior.
We are looking for a suitable assignment of the threshold values
to the agents for the current task demands. Any system needs to
adapt to changes and new task demand requirements to survive
and thrive. In response-threshold-based systems, this adaptation
relies on each agent’s ability to adjust its threshold as the experi-
ment progresses. If a specific task is currently in demand that was
not before, the swarm needs more agents with low thresholds for
that specific task in order to be able to respond effectively. Current
methods for threshold adaptation can effectively specialize to an
initial set of task demands, but often have difficulty respecializing
if task demands change.

We aim to find a method that allows the agents to specialize
and re-specialize effectively. A control loop can be helpful when
addressing this problem. Control loops try to achieve the desired
output by continuously adjusting the system based on feedback.
PID control (Proportional - Integral - Derivative) is a popular and
straightforward control loop [6]. It is widely used in various ap-
plications, such as particle biomedical applications [9, 24], process
control such as temperature control [35]and, robotics [37].

A PID controller continuously compares the desired behavior of
the system with its actual behavior, then utilizes that error rate to
alter the system’s behavior to get it closer to the desired behavior.
This alteration depends on three components: The proportional
component adjusts the control signal based on the current error
rate. The integral component takes into account the accumulated
error rate over time, which helps eliminate any steady-state error.
The derivative component considers the change in error rate. This
component can help the system’s responsiveness in the face of
sudden changes. By applying the PID controller to our system, we
alter the thresholds of the agents based on these three components.

We test our approach on five types of task demand setups with
three swarm sizes. We demonstrate that our PID-inspired method is
scalable and improves swarm performance compared to the current
dynamic and fixed threshold methods.

39

https://doi.org/10.1145/3583131.3590442
https://doi.org/10.1145/3583131.3590442
https://doi.org/10.1145/3583131.3590442
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590442&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Maryam Kebari, Annie S. Wu, and H. David Mathias

2 BACKGROUND AND RELATED WORK
2.1 Response threshold models
Earlier studies show that fixed response threshold models [4, 10, 13,
33] work relatively well in both static and changing environments
[31]. We contend that such fixed models do not exploit the full
potential of those systems, and allowing thresholds to change over
time in response to environmental or other factors can result in
a more efficient system. Such changes might be non-reactive or
reactive. In non-reactive methods, thresholds are a function of time.
They do not depend on local or global factors of the experiment. An
example method inspired by social insects [21] is age-polyethism,
where agents’ thresholds for tasks or their range change as they age
[15, 26]. Reactive methods, on the other hand, alter thresholds when
the agent reacts to something happening during the experiment.
They could be based on local or global factors. Global factors refer
to factors such as task demand, the number of agents acting on
a particular task. Information about these factors might not be
accessible to the agents, so sometimes, they need to estimate the
global values based on their communication with other agents [14].
An agent’s experience with a particular task [7, 25] in an example
of a local factor. One of the important instances of local factors
is the use of learning/forgetting rates [7, 8, 18, 25]. The agent’s
threshold decreases by a constant value when the agent performs
a task and gains experience and increases when the agent forgets
a task by not performing it for a time step. This creates a positive
feedback loop which can cause agents to become stuck at very
high or low thresholds. Therefore, these approaches can adapt in
the early stages but may become less effective as the experiment
progresses [11, 12]. One example of this problem occurs when all
tasks are not initially introduced. Agents become specialized on
the initial tasks but have difficulty respecializing when new tasks
are introduced. We introduce a new method that lets the agent
specialize and re-specialize without getting stuck with very low or
very high thresholds.

2.2 The PID controller
Closed control loops aremechanisms inwhich the system’s error rate,
defined as the difference between the setpoint (𝑆𝑃) and the process
variable (𝑃𝑉), is continuously calculated. The controller then applies
a correction based on that error rate to improve performance in
each time step. Some examples of closed control loops are the PID
controller [9, 24, 34, 35, 37], fuzzy logic controller [2, 16], model
predictive controller [19, 20], and adaptive controller [1, 22, 23].

The PID controller offers a simple solution to many control
problems [6]. The simplicity of the PID controller makes it a suitable
choice for large-scale swarms, because, as the swarm size increases,
high computational power for each agent might not be feasible
and can be costly. Therefore, a simple controller that does not need
high computational power is preferred. A block diagram of the PID
controller is shown in Figure 1.

Figure 1 shows that the difference between the setpoint and the
process variable, which is the error rate, is fed into the controller.
The controller has three components, proportional, integral, and
derivative. These three factors are summed up by a summing junc-
tion and then are processed by the plant, which is the system we
are trying to control. Then the process variable is recalculated after

Figure 1: Block diagram of a standard PID controller

the correction, and the loop continues. The error rate, 𝑒 (𝑡), given
setpoint, 𝑆𝑃 , and process variable, 𝑃𝑉 , can be written as :

𝑒 (𝑡) = 𝑆𝑃 (𝑡) − 𝑃𝑉 (𝑡) (1)

The output of the PID control function, 𝑢 (𝑡), given error rate, 𝑒 (𝑡),
gain of P, 𝐾𝑃 , gain of I, 𝐾𝐼 , and gain of D, 𝐾𝐷 , is calculated by:

𝑢 (𝑡) = 𝐾𝑃 .𝑒 (𝑡) + 𝐾𝐼 .
∫ 𝑡

0
𝑒 (𝛼)𝑑𝛼 + 𝐾𝐷

𝑑𝑒 (𝑡)
𝑑𝑡

(2)

Gains 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷 change based on the problem settings and
are determined by tuning methods. Gains can be zero, which leads
to the elimination of some terms.

The proportional term correlates the controller’s response with
the system’s current error rate. Although this makes our system
responsive, using the proportional term alone (P controller) can
lead to a long settling time and a high steady-state error.

The integral term operates by looking at accumulated past er-
rors. Using the integral term alone (I controller) can lead to a slow
response time; however, the I controller has less steady-state error
than the P controller. Another problem with the integration factor
is the windup problem. A windup occurs when the accumulated
error from the integration factor keeps pushing the system even
though the current error rate is low. Hence, the windup worsens
the error and works against the benefit of the system; however, this
issue can be addressed by anti-windup methods. By combining the
P and I controllers (PI controller), we improve the responsiveness
compared to the I controller and reduce the steady state compared
to the P controller.

The derivative term functions by considering the current trend
of the system’s error rate. The derivative term is not typically used
alone because it makes the system highly unstable. It is combined
with the proportional term (PD controller) or both proportional
and integral terms (PID controller). The derivative term is used to
increase the system’s responsiveness. The PD and PID controllers
have higher responsiveness than P and PI controllers, which can
be helpful in systems with abrupt changes, although it amplifies
noise and cannot eliminate steady-state error.

To gain more intuition, consider an example: a drone wants to
hover at an altitude 𝐿 from the earth. If we use the proportional
term alone, once the drone reaches altitude 𝐿, it stops pushing
and falls. There is a certain point where the push of the drone is
equal to the drone’s weight, which is the steady-state error. The
integral term can eliminate this. Steady-state error accumulates
over time and causes the drone to push more: As long as there is
an error, it accumulates and forces the drone to push; however, the
accumulated error may cause the drone to pass the desired point.
We need a term to determine whether we are closing in on our goal,
which is the derivative term.

40

PID-inspired modifications in response threshold models in swarm intelligent systems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Given the limitations described above, a controller that can man-
age most circumstances should have all three terms.

3 EXPERIMENTAL METHODS
3.1 Testbed setup
The testbed we use is a task allocation problem visualized as a
collective tracking problem, frequently used in response threshold
studies [29, 32, 33].

Our testbed is inspired by the thermoregulation of bees. A colony
of bees can collectively control the temperature of a hive over time
without a centralized controller. The temperature of a hive (a one-
dimensional vector) rises when bees shiver and declines when they
flap their wings [27]; each bee has a choice between the two tasks
(flapping or shivering), which are in opposition. We extend this to
two dimensions and frame it as a collective control 2D tracking
problem. This extends our model so it can model a more complex
system and also makes visualization easier [32].

We consider a moving target and a tracker in a 2D vector space.
In each time step, the tracker should follow the target as closely as
possible. The performance of the system is measured as the average
distance between the target and the tracker over all time steps.
The error rate in our system is defined as the distance between the
target and the tracker. The target moves in a prescribed path in
the 2D space for a fixed distance in each time step. The tracker
is controlled collectively by the swarm of agents, meaning each
agent can choose one of the following; it can either push north,
push south, push west, push east, or remain idle. The actions of
all agents are aggregated to produce the target movement in each
time step. The swarm of agents is decentralized and agents are
non-communicating. Agents make the decision of what task to
choose based on their thresholds and the current corresponding
task demand. Task demand is defined as the difference between the
target and the tracker in each direction at each time step. Each agent
𝑖 has a set of four thresholds 𝑇𝑖,𝑛𝑜𝑟𝑡ℎ , 𝑇𝑖,𝑠𝑜𝑢𝑡ℎ , 𝑇𝑖,𝑒𝑎𝑠𝑡 , 𝑇𝑖,𝑤𝑒𝑠𝑡 . If the
task demand for a certain direction exceeds the agent’s threshold
for that direction, the agent will perform that task unless there
exists more than one task with thresholds lower than the stimulus.
In the latter case, the agent will choose one of them randomly. We
run our experiments for 500 time steps to give our methods time to
settle.

Although the visualization of our problem looks like a tracking
problem and we realize there are very efficient algorithms that
solve tracking problems. The goal of our study is not to find a
more efficient method for the tracking problem, but rather is to find
a method to change thresholds in a decentralized task allocation
problem so that the system performs effectively in changing and
non-changing environments. For this purpose, we need a testbed
in which task demand changes could be made easily and visualized
clearly. In this testbed, we can drastically change the task demand
at each time step by changing the target path defined. Changes
can happen gradually or suddenly, in multiple or just one direction,
or everything can remain constant. This makes this testbed an
excellent fit for our purpose. For example, in a zigzag path, demand
to the east is constant, and demands to the north and south alternate
abruptly. On the other hand, we have the s-curve path, a periodic
pathwith constant east demand and continuously changing demand

between north and south. Using these paths, we can test if our
method is effective in both continuously and abruptly changing
environments. We perform experiments on five paths.

• west: In each timestep, there is only a constant demand for
the west. This path is chosen to show how our system reacts
to non-changing task demands.

• random: In each time step, a random angle from the Gauss-
ian distribution N (0.0, 1.0) gets added to the current target
direction. In almost all instances, random paths will involve
demands in all directions.

• sharp: Involves travel in a straight line with a probability of
turning in a random direction in each time step

• s-curve: A periodic path that has a constant demand for
the east task, the demand for north and south continuously
change, similar to a sine path. Requires all tasks, but the
demand for the west direction is very small.

• zigzag: A periodic path with constant east demand. the
demand for north and south are constant for a period of time
and then abruptly change, creating a zigzag pattern

We perform each experiment with 500 time steps to give time to
the PID to settle and converge.

3.2 PID-inspired method
3.2.1 Model setup. In our method, inspired by the PID control
loop, thresholds change based on the swarm’s error rate, derivative,
and integral.

In our test bed, the error rate 𝑒𝑖,𝑡 in each direction, 𝑖 ∈ {𝑁, 𝐸, 𝑆,𝑊 }
at time step 𝑡 , given target and tracker locations,𝑇𝑎𝑟𝑔𝑒𝑡𝑥,𝑡 ,𝑇𝑎𝑟𝑔𝑒𝑡𝑦,𝑡
and 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑥,𝑡 , 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑦,𝑡 is defined as:

𝑒𝑁,𝑡 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑦,𝑡 −𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑦,𝑡 if 𝑇𝑎𝑟𝑔𝑒𝑡𝑦,𝑡 > 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑦,𝑡 (3)

𝑒𝑆,𝑡 = 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑦,𝑡 −𝑇𝑎𝑟𝑔𝑒𝑡𝑦,𝑡 if 𝑇𝑎𝑟𝑔𝑒𝑡𝑦,𝑡 < 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑦,𝑡 (4)
𝑒𝐸,𝑡 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑥,𝑡 −𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑥,𝑡 if 𝑇𝑎𝑟𝑔𝑒𝑡𝑥,𝑡 > 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑥,𝑡 (5)
𝑒𝑊,𝑡 = 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑥,𝑡 −𝑇𝑎𝑟𝑔𝑒𝑡𝑥,𝑡 if 𝑇𝑎𝑟𝑔𝑒𝑡𝑥,𝑡 < 𝑇𝑟𝑎𝑐𝑘𝑒𝑟𝑥,𝑡 (6)

and otherwise they are zero.
In each time step, 𝑡 , given the proportional factor, 𝐹𝑃 , integral

factor, 𝐹𝐼 , derivative factor, 𝐹𝐷 , gain of P, 𝐾𝑃 , gain of I, 𝐾𝐼 and gain
of D, 𝐾𝐷 , agent 𝑖’s threshold for task 𝑛, 𝑇𝑡,𝑖,𝑛 , can be calculated by:

𝑇𝑡,𝑖,𝑛 = 𝑇𝑡−1,𝑖,𝑛 − 𝐾𝑃 × 𝐹𝑃 − 𝐾𝐼 × 𝐹𝐼 − 𝐾𝐷 × 𝐹𝐷 (7)

We define the proportional factor, 𝐹𝑃,𝑖,𝑡 for 𝑖 ∈ {𝑁, 𝐸, 𝑆,𝑊 }, at
time step 𝑡 , to be:

𝐹𝑃,𝑁 ,𝑡 = 𝑒𝑁,𝑡 − 𝑒𝑆,𝑡 (8)
𝐹𝑃,𝐸,𝑡 = 𝑒𝐸,𝑡 − 𝑒𝑊,𝑡 (9)
𝐹𝑃,𝑆,𝑡 = 𝑒𝑆,𝑡 − 𝑒𝑁,𝑡 (10)
𝐹𝑃,𝑊 ,𝑡 = 𝑒𝑊,𝑡 − 𝑒𝐸,𝑡 (11)

which is the error rate in each direction. Based on the error rate, 𝑒𝑖,𝑡
definition, in each time step, either the north or south and either
east or west direction error rates must be equal to zero.

We define the integral factor, 𝐹𝐼 ,𝑖 given 𝑖 ∈ {𝑁, 𝐸, 𝑆,𝑊 } , at time
step 𝑡 , to be:

𝐹𝐼 ,𝑖,𝑡 =

𝑡−1∑︁
𝑠=0

𝐹𝑃,𝑖,𝑠 (12)

which is the integral component written in discrete form by a
summation because of the discrete time steps of our problem.

41

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Maryam Kebari, Annie S. Wu, and H. David Mathias

We calculate the derivative factor, 𝐹𝐷,𝑖,𝑡 , for 𝑖 ∈ {𝑁, 𝐸, 𝑆,𝑊 }
using :

𝐹𝐷,𝑖,𝑡 = 𝑒𝑖,𝑡 − 𝑒𝑖,𝑡−1 (13)

𝐹𝐷,𝑖,𝑡 is the difference between the two recent error rates in each
direction.

Figure 2 shows the block diagram of our method. Each agent 𝑖
has a separate controller. The difference between the target and
tracker is calculated and fed to all controllers. After modifying the
thresholds based on our method, the agents decide whether to act
on that specific task. Their decision could be 1 or 0. One means the
agent performs the task and zero means the agent refuses. The sum
of the agent’s decisions updates the tracker location, and the loop
continues.

3.2.2 PID tuning. Determining the gains of a PID controller’s pro-
portional, integral, and derivative factors plays a vital role in how
well the system performs [6]. Multiple methods are used for tun-
ing, including the Ziegler-Nichols method [38]. The Ziegler-Nichols
method is one of the simplest methods for tuning the PID controller.
First, we set 𝐾𝐷 and 𝐾𝐼 to zero, then increase 𝐾𝑃 until our output
has consistent oscillation, note this gain as 𝐾𝑈 and its oscillation
period as 𝑃𝑈 . Then based on the Ziegler-Nichols’s method, 𝐾𝑝 , 𝐾𝐼
and 𝐾𝐷 can be written as [38]:

𝐾𝑃 = 0.6𝐾𝑈 𝐾𝐼 = 1.2𝐾𝑈 /𝑃𝑈 𝐾𝐷 = 0.075𝑠𝐾𝑈 × 𝑃𝑈 (14)

Since we might not always have prior knowledge about the path
and task demands we are going to encounter, we choose to tune
our parameters based on a basic straight path, and use the same
parameters for other paths as well.

3.2.3 Integral windup. The integral component and the accumu-
lated error rate can reduce the steady state error, but this also has a
downside. If the error, in the beginning, is too large, even though
the current error rate is low, the error rate windups from the be-
ginning of the experiment can make the integral component too
large and make the performance worse. Accumulated errors from
the previous time steps can cause the swarm to put in too much
effort when it is unnecessary. Several methods have been proposed
to solve this problem [17]. All of them try to put some limit on
the integral component. We put two conditions on our integral
component for direction 𝑖 . First, error rate 𝑒 (𝑟) in the direction 𝑖
should be larger than 0. Second, we put a saturation point for how
large the integral component can be. These two conditions can help
to reduce the integral windup effects.

3.3 Other methods
To analyze the performance of our PID-inspired method, we com-
pare it to four different threshold modification methods: one static
(no threshold modification) and three dynamic threshold models.

All four initial thresholds for each agent are drawn from a uni-
form distribution. We chose this initial distribution because it was
shown in previous studies [30] that swarms with initial thresholds
drawn from the uniform distribution perform better than those
with gaussian, possion, and constant distributions.

The first method we compare our results to is TD0. With TD0,
thresholds remain constant throughout the experiment. Thismethod
serves as a benchmark for other methods.

The second method, TD1, is inspired by one of the most fre-
quently used methods in response threshold studies: the learn-
ing/forgetting method [25]. The idea behind this method is that
as agents gain experience in a certain task, they should become
more likely to perform it in the future and less likely to perform
the other tasks. In time step 𝑡 , if agent 𝑖 performs task 𝑘 , \𝑡,𝑖,𝑘 can
be calculated by :

\𝑡,𝑖,𝑘 = \𝑡−1,𝑖,𝑘 − 𝜖 𝑘 ∈ {𝑁, 𝐸, 𝑆,𝑊 } (15)

All of the other task thresholds, \𝑡,𝑖, 𝑗 , 𝑗 ≠ 𝑘 , for agent 𝑖 , at time step
𝑡 , can be written as:

\𝑡,𝑖, 𝑗 = \𝑡−1,𝑖, 𝑗 +𝜓 𝑗 ∈ {𝑁, 𝐸, 𝑆,𝑊 }𝑎𝑛𝑑 𝑗 ≠ 𝑘 (16)

Using this method, the agent can specialize on specific tasks that
are in line with the current task demands, but once the thresholds
converge, agents have a hard time re-specializing to new sets of
task demands [11, 12]. Agents tend to get stuck with very high or
very low thresholds, which we call sink-states.

The third method, TD2, is similar to TD1 since it utilizes the
same learning/forgetting method previously explained. The only
difference is that it tries to avoid the sink state problem of the TD1
method by introducing heterogeneous threshold ranges. Previous
studies have suggested that using heterogeneous threshold ranges
can help us avoid sink states [31]. In TD1, all agents have the
same threshold range, but in TD2, the minimum threshold value
is generated randomly from [0, 0.5], and the maximum value is
generated randomly from [0.5, 1] [31].

The fourth method, TD3, is very similar to TD2, with the differ-
ence being that threshold ranges are randomly drawn from [0,1].
The larger value is assigned to the maximum value of the range, and
the smaller value is assigned to the minimum value of the range.

We want to test our PID-inspired method against the methods
above to see how it performs and if it can avoid sinks-states and
re-specialize effectively.

4 RESULTS AND DISCUSSION
We test our method, as well as TD0, TD1, TD2, and TD3, on the
straight, zigzag, sharp, s-curve, and random paths to examine its
effectiveness on various task demand changes, and on multiple
swarm sizes (50, 100, and 500 agents) to examine its scalability. Our
PID-inspiredmethod demonstrates superior performance compared
to others across all paths and for all swarm sizes.

Figure 3 compares the error rates of different threshold modifi-
cation methods with different swarm sizes and task demand paths
along with error bars representing one standard deviation. The
smaller the average difference better the performance. The results
are averaged out over 100 runs. Graph(a) depicts the error rate in
a straight path, graph(b) in a s-curve path, graph(c) in a random
path, graph(d) in a sharp path, and graph(c) in a zigzag path. The
𝑦-axis of each of the graphs represents the average error rate of
the system throughout a run, averaged over 100 separate runs. As
discussed before, in our setup, error rate is the difference between
the target and the tracker. The 𝑥-axis of each graph represents
different threshold modification methods (TD0, TD1, TD2, TD3,
and PID-inspired method) with different swarm sizes. The color
green represents swarm size 50, yellow represents swarm size 100,
and red represents swarm size 500. Figure 3 demonstrates that the

42

PID-inspired modifications in response threshold models in swarm intelligent systems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 2: Block diagram of our PID-inspired method

(a) (b) (c)

(d) (e)

Figure 3: Average distance between the target and the tracker averaged over 100 runs. Green indicates swarm size 50, yellow 100
and red 500 in a (a) Straight path (b) S-curve path (c) Random path (d) Zigzag path (e) Sharp path

PID-inspired method consistently outperforms other methods in
various paths and with different swarm sizes. This indicates that
our method is a non-risky choice for unknown paths and is scalable,
a crucial factor for swarm system algorithms.

4.1 Specialization analysis
Specialization is beneficial to any multi-agent system [28]; we all
use specialization, from insect societies [3] to human societies [36].
Specialization is not an easy term to define. Even in response thresh-
old studies, there is no agreed-upon rule for when to call an agent
specialized on a specific task. In our system, for a more thorough
comparison of the methods, we need to examine how the thresholds
of the system change and how they adapt to varying task demands.
Therefore, we call an agent a specialist in a particular task if that
task’s corresponding threshold is the lowest among the four. The
speciality of agent 𝑖 , 𝑆 (𝑖), in time step step 𝑡 , given north threshold,

𝑇𝑖,𝑁𝑜𝑟𝑡ℎ , east threshold, 𝑇𝑖,𝐸𝑎𝑠𝑡 , south threshold, 𝑇𝑖,𝑆𝑜𝑢𝑡ℎ and west
threshold, 𝑇𝑖,𝑊 𝑒𝑠𝑡 can be written as :

𝑆𝑡 (𝑖) = argmin{𝑇𝑖,𝑁𝑜𝑟𝑡ℎ,𝑇𝑖,𝐸𝑎𝑠𝑡 ,𝑇𝑖,𝑆𝑜𝑢𝑡ℎ,𝑇𝑖,𝑊 𝑒𝑠𝑡 } (17)

When changes in task demand are significant, a high variance
for the number of agents specialized in a specific task indicates
the system’s responsiveness. When task demands are constant, low
variance indicates the system’s stability.

For a more thorough comparison of the methods, we examine
examples of individual runs and how the agents’ specialty changes.
Figures 4 to 8 represent how agents’ specialization, 𝑆𝑡 (𝑖), change
over time in different paths. The 𝑦-axis in all figures represents the
time step in the experiment. The 𝑥-axis represents 𝐴𝑔𝑒𝑛𝑡0 through
𝐴𝑔𝑒𝑛𝑡99. Each color in the graphs represents the agent’s specialty
at that time step. Blue shows north specialty; yellow shows east;
red shows south; and green shows west.

43

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Maryam Kebari, Annie S. Wu, and H. David Mathias

Figure 4: Straight path specialization comparison of different
threshold adaptation methods

Figure 5: S-curve specialization comparison of different
threshold adaptation methods

4.1.1 No change (Straight path). We start with the simplest path.
The straight path has a constant west task demand. As we have
seen in Figure 3, the PID-inspired method outperforms TD0, TD1,
TD2, and TD3 across all swarm sizes. In Figure 4, we can see that
since the initial threshold for all agents is set randomly, the agent’s
specialty, 𝑆 (𝑖), has a random pattern in the first few time steps. In
the TD0 method, the thresholds are fixed, so we see no change in
specialty across time, which is expected.

In TD1, TD2, TD3, and PID-inspired methods, we can see that
some agents change their specialty,𝑆 (𝑖) from other tasks to west
in the initial time steps; however, we witness that there are more
agents with a west specialty in the PID-inspired method than others.
The variance of the number of agents specialized in the west, in
this particular run with the PID-inspired method, is 13.00, which is
higher than 0, 3.06, 4.33, and 1.97, which are the variance of the west
specialists for TD0, TD1, TD2 and TD3, respectively. In the initial
timesteps, agents become specialized in the west direction, and the
higher variance number indicates that specialization on thewest has
occurred more with the PID-inspired method. If we only consider
the last 100 timesteps, all variances go to zero, which indicates
that agents settle and stablize after some time. This stabilization is
expected since task demands are constant for the straight path.

4.1.2 Constant change (s-curve path and random path). Second, we
analyze paths with gradual, constant changes in task demands, the
s-curve, and random paths. The PID-inspired method outperforms
the others in terms of the average distance between the target and
the tracker.

Figure 5 depicts the specialty graph for the s-curve path. TD0 has
a constant specialty through time. We can see that other methods
specialize and re-specialize in earlier time steps; however, TD1,

Figure 6: Randompath specialization comparison of different
threshold adaptation methods

Figure 7: Zigzag specialization comparison of different
threshold adaptation methods

TD2, and TD3’s ability to re-specialize diminishes as the experiment
progresses. They become stuck in their previous specialty and fail
to adapt. The PID-inspired method, however, can adapt to changing
task demands. We can see a periodic pattern in the specialty change
of its corresponding agents, which is in line with the s-curve’s
periodic pattern. Figure 6 shows the specialty graph for the random
path. Again we can see that TD1, TD2, and TD3 have a harder time
respecializing than the PID-inspired method.

Since in the s-curve and random paths, we have constant task
demand changes; specialties never settle with the PID-inspired
method. The PID-inspired method has higher variance in all task
demands; for example, the variance for specialists in the north for
the PID-inspired method in the s-curve path is 34.69, and for others,
it is 0, 1.35, 2.87, and 0.69. For the random path, for the PID-inspired
method, it is 67.52, and for others, it is 0, 2.40, 9.512, and 5.06,
respectively. If we only consider the last 100 timesteps, variances
remain similar to considering all 500 timesteps. This indicates that
agents don’t get stuck in sink states and stay responsive throughout
the experiment.

4.1.3 Abrupt change (Zigzag path and sharp path). Finally, we ana-
lyze paths that are constant for a while and then abruptly change.
The zigzag pattern has a constant east task demand, but north and
south demand change periodically at peak points. In Figure 7, we
can see again that TD1, TD2, and TD3 specialize and re-specialize
in the early stages, but as time goes by, they become less responsive
but PID-inspired method can continue to adapt.

For the sharp path, the task demand stays constant and suddenly
takes a random turn. In Figure 8, we can see again that even with a
non-periodic path, the PID-inspired method has a better ability for
respecializing than other methods. In the zigzag and sharp path,

44

PID-inspired modifications in response threshold models in swarm intelligent systems GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 8: Sharp path specialization comparison of different
threshold adaptation methods

task demands stay constant for a while and then abruptly change.
If we consider the 500 timesteps, the variance of specialists for all
tasks is higher in the PID-inspired method. For example variance of
the number of specialists in the south direction for the PID-inspired
method in the zigzag path is 36.79, and the others are 0, 1.47, 2.53,
and 0.28. If we only consider the last 100 timesteps, PID-inspired
method variances reduce significantly, for example in the sharp
path variance of the south direction speciality in 500 time steps is
43.61, and in 100 timesteps it is 8.02. That is because task demands
in the sharp and zigzag paths remain constant for a while and then
abruptly change. We have a low variance for periods when task
demand is constant, and agents’ specialties do not change as much,
indicating systems stability under constant task demand.

To illustrate the effectiveness of specializations and respecial-
ization, we discuss an example from the zigzag path. We choose
the zigzag path because it has explicit points for abrupt changes in
task demands. Figure 9 shows the number of specialized agents on
each task with different threshold modification methods. A small
time interval [400,500] is chosen for a clearer depiction. The 𝑥-axis
shows time, and the 𝑦-axis indicates the number of agents spe-
cialized in tasks (a) west, (b) south, (c) north, and (d) east. Blue
represents TD0; red, TD1; yellow, TD2; green, TD3; and orange,
PID. In the zigzag path, task demands for north and south alternate
periodically. The same pattern can be seen in Figure 9c and Fig-
ure 9b. The zigzag path takes the northeast direction first, which
explains why there is a bump at the beginning of Figure 9c and
Figure 9e. Agents specialize in the north and east direction initially,
but after the south task demand increases, some of the agents with
previous north and east specialty change to south specialty. This
is why we see similar highs and lows for the north and east. The
number of west specialists has very small changes since there is
no task demands in that direction. The small changes are due to
the system trying to correct small over-shootings at peak points
when task demands change abruptly. These over-shootings can
be reduced by tuning the parameters on zigzag path itself instead
of the straight path or using more precise tuning methods. These
figures show that the specializations of the agents are in line with
the task demands and that PID is more responsive and is able to
specialize and re-specialize.

5 CONCLUSION
In this study, we test the effectiveness of a novel PID-inspired thresh-
old modification method on a decentralized, non-communicating,

(a)

(b)

(c)

(d)

Figure 9: Number of specialized agents with different thresh-
old modification methods from timestep 400 to 500 in task:
(a) West direction (b) South direction (c) North direction (d)
East direction

threshold-based swarm system. We test our method on a collec-
tive tracking problem in a 2D vector space. We consider a target
and a tracker that can move a fixed distance at each time step and
the tracker is collectively controlled by the swarm of agents. Prior
threshold modification methods can effectively specialize initially,
but the agents have a hard time re-specializing when demands
change and fail to adapt. Our method is based on the PID control
loop factors, which are the error rate, the derivative of the error
rate, and the integral of the error rate. The error rate in our sys-
tem is defined as the distance between the target and the tracker.
Each agent has a separate controller that modifies the thresholds
of that agent. Our results indicate that our method outperforms
other discussed methods across all paths regardless of the swarm
size. Under constant task demand, the agents reach stable special-
ization, and with changing task demands, agents can specialize and
re-specialize without becoming stuck. Our method is immune to
sink states and is, therefore, able to re-specialize to changing task
demands throughout a simulation.

6 ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under
Grant No. IIS1816777.

REFERENCES
[1] Brian DO Anderson and Arvin Dehghani. 2008. Challenges of adaptive control–

past, permanent and future. Annual reviews in control 32, 2 (2008), 123–135.
[2] Hamid R Berenji. 1992. Fuzzy logic controllers. An introduction to fuzzy logic

applications in intelligent systems (1992), 69–96.

45

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Maryam Kebari, Annie S. Wu, and H. David Mathias

[3] Samuel N Beshers and Jennifer H Fewell. 2001. Models of division of labor in
social insects. Annual review of entomology 46, 1 (2001), 413–440.

[4] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. 1996. Quantitative
study of the fixed threshold model for the regulation of division of labour in
insect societies. Proceedings of the Royal Society of London. Series B: Biological
Sciences 263, 1376 (1996), 1565–1569.

[5] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. 1998. Fixed response
thresholds and the regulation of division of labor in insect societies. Bulletin of
Mathematical Biology 60, 4 (1998), 753–807.

[6] Rakesh P Borase, DK Maghade, SY Sondkar, and SN Pawar. 2021. A review of
PID control, tuning methods and applications. International Journal of Dynamics
and Control 9 (2021), 818–827.

[7] Mike Campos, Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. 2000.
Dynamic scheduling and division of labor in social insects. Adaptive Behavior 8,
2 (2000), 83–95.

[8] Vincent A Cicirello and Stephen F Smith. 2003. Distributed coordination of
resources via wasp-like agents. Lecture Notes in Computer Science (2003), 71–80.

[9] Satoru Isaka and Anthony V Sebald. 1993. Control strategies for arterial blood
pressure regulation. IEEE Transactions on Biomedical Engineering 40, 4 (1993),
353–363.

[10] Anshul Kanakia, Behrouz Touri, and Nikolaus Correll. 2016. Modeling multi-
robot task allocation with limited information as global game. Swarm Intelligence
10 (2016), 147–160.

[11] Vera A Kazakova and Annie S Wu. 2018. Specialization versus Re-Specialization:
Effects of Hebbian Learning in a Dynamic Environment.. In FLAIRS Conference.
354–359.

[12] Vera A Kazakova, Annie S Wu, and Gita R Sukthankar. 2020. Respecializing
swarms by forgetting reinforced thresholds. Swarm Intelligence 14 (2020), 171–
204.

[13] Michael JB Krieger and Jean-Bernard Billeter. 2000. The call of duty: Self-
organised task allocation in a population of up to twelve mobile robots. Robotics
and Autonomous Systems 30, 1-2 (2000), 65–84.

[14] Wonki Lee andDaeEunKim. 2019. Adaptive approach to regulate task distribution
in swarm robotic systems. Swarm and evolutionary computation 44 (2019), 1108–
1118.

[15] Daniel Merkle and Martin Middendorf. 2004. Dynamic polyethism and compe-
tition for tasks in threshold reinforcement models of social insects. Adaptive
Behavior 12, 3-4 (2004), 251–262.

[16] Costas P Pappis and Ebrahim H Mamdani. 1977. A fuzzy logic controller for a
trafc junction. IEEE Transactions on Systems, Man, and Cybernetics 7, 10 (1977),
707–717.

[17] Youbin Peng, Damir Vrančić, and Raymond Hanus. 1996. A review of anti-
windup, bumpless and conditioned transfer. IFAC Proceedings Volumes 29, 1
(1996), 1524–1529.

[18] Richard Price and Peter Tiňo. 2004. Evaluation of adaptive nature inspired
task allocation against alternate decentralised multiagent strategies. In Parallel
Problem Solving from Nature-PPSN VIII: 8th International Conference, Birmingham,
UK, September 18-22, 2004. Proceedings 8. Springer, 982–990.

[19] James B Rawlings. 2000. Tutorial overview of model predictive control. IEEE
control systems magazine 20, 3 (2000), 38–52.

[20] Mahdi Razzaghpour, Shahriar Shahram, Rodolfo Valiente, and Yaser P Fallah. 2021.
Impact of communication loss on mpc based cooperative adaptive cruise control
and platooning. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall).
IEEE, 01–07.

[21] Gene E Robinson. 1987. Regulation of honey bee age polyethism by juvenile
hormone. Behavioral ecology and sociobiology 20 (1987), 329–338.

[22] DE Seborg, Thomas F Edgar, and SL Shah. 1986. Adaptive control strategies for
process control: a survey. AIChE Journal 32, 6 (1986), 881–913.

[23] Shahriar Shahram and Yaser Pourmohammadi Fallah. 2023. Utilizing Speed
Information Forecast in Energy Optimization of an Electric Vehicle with Adaptive
Cruise Controller. Technical Report 2023-01-0685. SAE Technical Paper. https:
//doi.org/10.4271/2023-01-0685

[24] JB Slate and LC Sheppard. 1982. Automatic control of blood pressure by drug
infusion. IEE Proceedings A (Physical Science, Measurement and Instrumentation,
Management and Education, Reviews) 129, 9 (1982), 639–645.

[25] Guy Theraulaz, Eric Bonabeau, and JN Denuebourg. 1998. Response threshold
reinforcements and division of labour in insect societies. Proceedings of the Royal
Society of London. Series B: Biological Sciences 265, 1393 (1998), 327–332.

[26] Jakob S Vesterstrom, Jacques Riget, and Thiemo Krink. 2002. Division of labor in
particle swarm optimisation. In Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No. 02TH8600), Vol. 2. IEEE, 1570–1575.

[27] Anja Weidenmüller. 2004. The control of nest climate in bumblebee (Bombus
terrestris) colonies: interindividual variability and self reinforcement in fanning
response. Behavioral Ecology 15, 1 (2004), 120–128.

[28] Andrew Whiten, Dora Biro, Nicolas Bredeche, Ellen C Garland, and Simon Kirby.
2022. The emergence of collective knowledge and cumulative culture in animals,
humans and machines. , 20200306 pages.

[29] Annie S Wu and Vera A Kazakova. 2017. Effects of task consideration order
on decentralized task allocation using time-variant response thresholds. In The
Thirtieth International Flairs Conference.

[30] Annie S Wu, David H Mathias, Joseph P Giordano, and Anthony Hevia. 2020.
Effects of response threshold distribution on dynamic division of labor in decen-
tralized swarms. In The Thirty-Third International Flairs Conference.

[31] Annie S Wu and H David Mathias. 2020. Dynamic response thresholds: Hetero-
geneous ranges allow specialization while mitigating convergence to sink states.
In Swarm Intelligence: 12th International Conference, ANTS 2020, Barcelona, Spain,
October 26–28, 2020, Proceedings 12. Springer, 107–120.

[32] Annie S Wu, H David Mathias, Joseph P Giordano, and Arjun Pherwani. 2021.
Collective control as a decentralized task allocation testbed. Technical Report.
Technical Report CS-TR-21-01. University of Central Florida.

[33] Annie S Wu and Cortney Riggs. 2018. Inter-Agent Variation Improves Dynamic
Decentralized Task Allocation.. In FLAIRS Conference. 366–369.

[34] Zhenglong Xiang, Daomin Ji, Heng Zhang, Hongrun Wu, and Yuanxiang Li.
2019. A simple PID-based strategy for particle swarm optimization algorithm.
Information Sciences 502 (2019), 558–574.

[35] Toru Yamamoto and SL Shah. 2004. Design and experimental evaluation of a
multivariable self-tuning PID controller. IEE Proceedings-Control Theory and
Applications 151, 5 (2004), 645–652.

[36] Xiaokai Yang and Siang Ng. 1998. Specialization and division of labour: A survey.
Springer.

[37] Hong Zhang, G Trott, and RP Paul. 1990. Minimum delay PID control of inter-
polated joint trajectories of robot manipulators. IEEE Transactions on Industrial
Electronics 37, 5 (1990), 358–364.

[38] John G Ziegler and Nathaniel B Nichols. 1942. Optimum settings for automatic
controllers. Transactions of the American society of mechanical engineers 64, 8
(1942), 759–765.

46

https://doi.org/10.4271/2023-01-0685
https://doi.org/10.4271/2023-01-0685

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Response threshold models
	2.2 The PID controller

	3 Experimental methods
	3.1 Testbed setup
	3.2 PID-inspired method
	3.3 Other methods

	4 Results and Discussion
	4.1 Specialization analysis

	5 Conclusion
	6 Acknowledgments
	References

