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We present a self-adaptive genetic algorithm for the problem of predicting if a Medicare standardized payment
to a physical therapist will be above or below the national median. The percentage of Americans 65 and over
is expected to increase in the coming years, increasing the need for physical therapy services. As a result,
accurate prediction of expected Medicare payments based on local factors will be of increasing importance. A
self-adaptive genetic algorithm is an evolutionary algorithm in which some or all of the algorithm’s parameters
are evolved over the course of its execution. Self-adaptation is a useful tool both for improving the performance
of evolutionary algorithms, as well as improving usability through lessening the amount of parameter tuning
required of the algorithm’s user. While other self-adaptive approaches tend to focus on self-adaptation of
only a few parameters, our approach self-adapts all of the parameters related to crossover and mutation.
We compare the performance of our self-adaptive genetic algorithm with that of logistic regression and a
canonical genetic algorithm on the problem of predicting Medicare payments. Logistic regression is a commonly
used benchmark for this type of problem and a canonical genetic algorithm is included to allow us to see if
any performance costs arise from the self-adaptive mechanisms. Results show that our self-adaptive genetic
algorithm is effective at the classification of Medicare standardized payments to physical therapists, achieving
accuracies of over 93%. Performance remains strong with training sets as small as 5% of the full data set.
The problem representation used by our method allows for the identification of the relevant features for
classification which means that our approach is capable of simultaneously performing classification and feature
selection.

1. Introduction .
SAGA performance to that of a manually tuned canonical GA to exam-

ine the impact of the self-adaptation on GA performance and to logistic
regression (LR) (Hosmer Jr & Lemeshow, 1989) which is a traditional
analytical method for such problems in the field of health informatics.

EAs have been successfully applied to predictive classification prob-
lems for healthcare applications (Fidelis et al., 2000; Wu et al., 2019)
as well as other applications such as multi-criteria inventory classifi-

In this paper, we present a new self-adaptive genetic algorithm
(SAGA) and apply it to the problem of predicting when the annual
standardized Medicare payment of a physical therapist (PT) will be
above or below the national median. This problem is a predictive
classification problem in which we seek to learn a model that can
accurately map the input variables of a data point to a binary outcome.

Genetic algorithms (GA) (Holland, 1975) are a sub-type of evolutionary
algorithms (EA) that have been successfully applied to a variety of
predictive classification problems. EAs have multiple parameters that
must be effectively tuned in order to ensure satisfactory results, with
GAs being no exception. In order to make the GA a more accessible
analysis tool for domain specialists, we develop a GA that self-adapts all
of its operator-related parameter settings, reducing the need for domain
specialists to understand and tune those parameters. We investigate the
effectiveness of SAGA on a predictive classification problem, comparing
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cation (Guvenir & Erel, 1998) and prediction of a country’s natural
gas usage (Kovacic & Dolenc, 2016). In addition to these real-world
examples, previous work shows effective results when testing EA clas-
sification on various benchmarking data sets (Dehuri et al., 2008;
Fernandez et al., 2010). GAs are also used in conjunction with other ML
algorithms to identify the relevant features of a classification problem.
Typically, these hybrid approaches use a GA to select the relevant
features of a problem then other algorithms, such as support vector
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machines (Min et al.,, 2006), random forest classifiers (Paul et al.,
2017), neural networks (Jefferson et al., 2000; Shrivastava et al., 2017),
linear discriminant analysis (Hoglund, 2017), or LR (Vandewater et al.,
2015; Zhang et al., 2018), perform the classification using the features
selected by the GA.

One of the challenges to successfully using an EA is appropriately
setting the parameter values for the algorithm. Optimal parameter
settings vary from problem to problem, making effective parameter
tuning an essential element of using an EA. An EA consists of multiple
interdependent parameters that cannot be tuned independently due
to potential non-linear interactions among the parameters (Grefen-
stette, 1986; Schaffer et al., 1989). Because of this interdependency,
a combinatorially exhaustive search is necessary to fully optimize the
parameter settings. This combinatorial search is potentially hampered
by the discrete values that the user chooses for the search, which may
result in missing the optimal settings.

In order to reduce the need for manual parameter tuning and to
improve EA usability for non-practitioners, we investigate the effec-
tiveness of allowing a EA to automatically adjust its own parameter
settings during a run. This self-adaptive approach means that the EA
evolves not only candidate solutions to a target problem but also many
of the parameter values that define how the algorithm operates. The
idea of self-adaptation within the field of EAs is not new (Back, 1992a,
1992b; Contreras-Bolton & Parada, 2015; Hinterding, 1997; Kivijarvi
et al., 2003; Murata & Ishibuchi, 1996; Serpell & Smith, 2010; Smith
& Fogarty, 1996; Spears, 1995; Yoon & Moon, 2002); however, these
previous works each apply self-adaptation to a limited subset of the pa-
rameters. Our approach expands upon previous work by self-adapting
all parameters relating to genetic operators and operator rates.

We investigate the effectiveness of SAGA on predictive classification
problems and show that SAGA is able to adapt parameter values to
produce competitive performance as compared to LR and to a canonical
GA. We compare with LR because it is a commonly used benchmark
for classification problems that map multiple independent variables to
a binary outcome (Chaurasia & Pal, 2014; De Vasconcelos et al., 2001;
Min et al., 2006; Serban et al.,, 2011; Thornblade et al., 2018). We
compare with a canonical GA to verify that SAGA can perform as well
as a manually tuned GA without the need to tune as many parameters
as a GA. Our primary measurement is classification accuracy but,
beyond these basic results, we are also interested in analyzing the
behavior of SAGA on this problem. Specifically, we analyze the evolved
coefficients of SAGA, the amount of true positives/negatives and false
positives/negatives found by SAGA, and the ability of SAGA to identify
the significant features of a problem.

This study begins with a look into past studies of adaptation of EAs.
We give a more in depth description of the problem. We describe the
workings of SAGA and explain the setup for our study followed by our
results. Finally, we analyze the behavior of the SAGA.

2. Related work

For EAs, well-tuned parameters are vital to ensuring good results.
Parameter tuning, however, can be a difficult and time consuming task.
Thus, how best to handle and simplify parameter tuning is an ongoing
problem in the field, with studies dedicated to this task dated from the
field’s inception through today (De Jong, 1975; Eiben & Smit, 2011a;
Mills et al., 2015; Schaffer et al., 1989). This difficulty has even lead to
attempts to create a “parameter-less” GA (Harik & Lobo, 1999) which,
while greatly improving usability, in practice basically gives default
values for the parameters and comes at the cost of lowered final result
quality.

One approach to addressing the difficulty of parameter tuning is to
use parameter control; wherein one or more parameters are dynamic
over the course of a run. There are multiple survey papers covering
the many different studies and implementations of parameter control
that have been proposed over the years (Eiben et al., 1999; Eiben &
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Smit, 2011b; Hinterding et al., 1997; Karafotias et al., 2015). Parameter
control consists of three categories: deterministic, adaptive, and self-
adaptive (Eiben et al., 1999). Each category controls the dynamic
parameters through different methodologies. Deterministic control is
the simplest of the three and changes parameters throughout a run in
a fixed, pre-determined manner. Adaptive control changes parameters
through some sort of feedback mechanism, e.g. basing a parameter’s
value on the previous contributions of the parameter or on the pop-
ulation’s average fitness. Self-adaptive control encodes the parameters
onto the genome of the individuals and evolves parameters using the
evolutionary process through which the problem’s candidate solutions
are evolved.

Deterministic and adaptive control methods often show improved
results over fixed parameters; however, they generally do not improve
usability as they introduce new mechanisms that themselves must be
properly designed or tuned. The most common examples of determin-
istic control consist of decreasing the mutation rate over time according
to some predetermined mathematical formulae (Fogarty, 1989; Hesser
& Mainner, 1990). This decrease is beneficial as a higher mutation
rate early on can aid in exploration, but may be detrimental later in
the run when exploitation, the fine-tuning of a good solution, is more
important. Selection pressure may also be adjusted over the course of a
run to vary the balance of exploitation and exploration (Lu et al., 2015).
In practice, deterministic control methods are not commonly used, as
adaptive or self-adaptive strategies offer more flexibility.

Adaptive control utilizes a feedback system to intelligently control
the dynamics of parameters. The most common approach to adaptive
control is to base operator parameters (e.g. crossover rate and mutation
rate) on population characteristics such as fitness, diversity, or size
(Alsaeedan & Menai, 2015; Castro & Camargo, 2004; Chiba et al., 2019;
Contreras et al., 2020; Han & Xiao, 2022; Li et al., 2017; Srinivasa et al.,
2007; Sun & Lu, 2019; Thierens, 2002; Venugopal et al., 2009; Yang
et al.,, 2021; Yu et al., 2022; Yuan & Wang, 2019; Zhou et al., 2022),
Other examples of adaptive control methods include basing operator
rates or step sizes on the fitness contributions of the operators (Lin
et al., 2003; Riedel et al., 2005; Xue et al., 2019), adapting parameter
values through reinforcement learning (Karafotias et al., 2014), or
adjusting crossover exploration proportionally to parent similarity (Deb
& Beyer, 2001). Adaptive control methods introduce the possibility of
using multiple genetic operator methods, where the algorithm can itself
select which operator to use based on the adaptive feedback, such as
doing a probabilistic selection for the operator method to use based on
the fitness contributions of each operator (Acan et al., 2003; Hadka
& Reed, 2013; Hong et al., 2002; Qin & Suganthan, 2005). Studies
on adaptive methods also cover aspects of an EA beyond crossover
and mutation; such as population size (LaPorte et al., 2015), parent
selection pressure (Xie & Zhang, 2013), or the migration interval used
in island models (Mambrini & Sudholt, 2015; Srinivasa et al., 2007).
While adaptive parameter control methods do remove the need to set
some parameters, they instead require the user to design a feedback
mechanism, which often has its own parameters that need to be tuned.
As a result, the amount of setup required of the user is not lessened, and
may even be increased depending on the complexity of the feedback
mechanism.

The final parameter control method, self-adaptation, is the approach
we use in our work. Of the three types of parameter control, self-
adaptation is the most compatible to improving algorithm usability
since it does not inherently require the user to design and tune the
mechanism in which the parameters are changed, as that is delegated
to the evolutionary processes already present within the algorithm.
Like adaptive control, self-adaptation can also result in performance
improvements; a (1,4) EA is shown to have a lower number of ex-
pected evaluations with a self-adaptive mutation rate than with a
static rate (Doerr et al., 2018). For GAs, there are multiple studies
in the past covering concepts such as self-adaptive mutation rates
(Back, 1992a, 1992b; Smith & Fogarty, 1996), self-adaptive selection of
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Table 1
Self-adaptive algorithm comparison.
Algorithm Mutation Crossover
Rate Operator Operator Arguments/ Rate Operator Operator
Selection  Step Size Selection ~ Arguments
Béck (1992b) X
Béck (1992a) X
Spears (1995) X
Beyer (1996) X
Galaviz and Xuri (1996) X X X
Murata and Ishibuchi (1996) X X
Smith and Fogarty (1996) X
Hinterding (1997) X X
Greenwood and Zhu (2001) X
Hansen and Ostermeier (2001) X
Yoon and Moon (2002) X
Kivijéarvi et al. (2003) X X
Serpell and Smith (2010) X X
Contreras-Bolton and Parada (2015) X X
Doerr et al. (2018) X
Sabar et al. (2019) X X X X
SAGA X X X X X X
genetic operators (Hinterding, 1997; Murata & Ishibuchi, 1996; Spears, 3. Problem

1995; Yoon & Moon, 2002) or some combination of the two (Galaviz
& Xuri, 1996; Kivijarvi et al., 2003; Sabar et al., 2019). CMA-ES, a
very effective method for numerical optimization, updates the individ-
uals’ mutation step sizes through the self-adaptation of a covariance
matrix (Hansen & Ostermeier, 2001). Self-adaptation is also used to dy-
namically adapt the rules that each individual solution uses to decode
their own representation (Hartmann, 2002). The dynamic variability
of the self-adaptive parameter can be beneficial since the optimal
parameter setting may be different at different points in the execution;
furthermore, adaptation and self-adaptation can discover emergent
synergy between multiple operations within the algorithm. Some recent
approaches examine self-adaptive mutation specifically on permutation
representations (Serpell & Smith, 2010) and self-adaptive selection of
multiple mutation and crossover operators on the Traveling Salesman
Problem (Contreras-Bolton & Parada, 2015). Self-adaptation is an ex-
cellent tool for our purposes since it has a history of both improving
performance and lessening the burden of parameter tuning. The latter
is a primary motivation of this work: to make an EA that is more
accessible to domain practitioners who want to apply EAs in their fields.

Table 1 shows how previous works have utilized self-adaptation as
compared to our SAGA. The table categorizes the type of self-adaptation
according to whether the algorithm adapts the rate, operator selection,
or operator arguments for both mutation and crossover. Where our
implementation stands out is the scale of the self-adaptation. Previous
self-adaptive EA studies apply self-adaptation to only one or a few
parameters, focusing on just mutation parameters (Bick, 1992a, 1992b;
Beyer, 1996; Doerr et al.,, 2018; Greenwood & Zhu, 2001; Hansen
& Ostermeier, 2001; Hinterding, 1997; Serpell & Smith, 2010; Smith
& Fogarty, 1996), just crossover parameters (Spears, 1995; Yoon &
Moon, 2002), just operator type (and not rates) (Contreras-Bolton &
Parada, 2015; Murata & Ishibuchi, 1996). In evolutionary strategies,
it is the norm to use self-adaptation on the mutation step size (Beyer,
1996; Greenwood & Zhu, 2001; Hansen & Ostermeier, 2001), which
we categorize here in the mutation “Operator Arguments/Step Size”
column since the step size is controlled through the ¢ argument of a
Gaussian distribution. It should be noted, that in SAGA there is a single
mutation step setting per individual while some ES methods have a
unique mutation step size for each value in the chromosome (Hansen
& Ostermeier, 2001). Due to potential non-linear relationships among
system parameters (Grefenstette, 1986; Schaffer et al., 1989), the per-
formance of an EA that self-adapts just a subset of parameters, as well
as the self-adaption process of such a system, may be limited by any
user specified (non-adaptive) parameters that are set. To maximize the
usability improvements of our system, SAGA applies self-adaptation to
all of the parameters associated with genetic operators, operator types,
and operator rates.

The problem we address is a predictive classification problem in
which we use physical therapist (PT) demographic, practice, and mar-
ket characteristics to predict if the annual Medicare payment to a
PT will be above or below the industry median. The large amount
of data that is available in this era of big data is a rich source of
information for many industries including the health care industry.
Medicare is the primary source of health insurance for individuals
aged 65 or older in the United States (US). Physical therapy services,
which can improve and maintain mobility, strength, and general health,
are covered by the Medicare fee-for-service (FFS) program (American
Physical Therapy Association, 2014). Due to the aging baby boomer
population and to recent declines in birth rate, the 65+ segment of the
US population is expected to increase from 15% in 2014 to a projected
24% in 2060 (Mather et al., 2015). As this segment of the US population
increases, demand for physical therapy services is also expected to rise.
PTs receive payments from Medicare for the clients they serve who
are on Medicare. A better understanding of the factors associated with
receiving above or below median Medicare payments can inform PTs
and policy makers about practice variability as well as provide potential
strategies and policies for improving access to physical therapy services
for Medicare FFS beneficiaries.

The data that we use to make this classification comes from the
2014 Medicare Provider Utilization and Payment Data: Physician and
Other Supplier Public Use File (PUF) and the 2015-2016 Area Health
Resources File (AHRF). These data can be split into two groups;
provider level variables and county level variables. The provider level
variables come from the PUF and give data for 40,662 specific Medicare
service providers from across the country. The county level variables
come from the AHRF and give data on the local health care markets in
which the Medicare service providers reside. Each data point consists of
25 independent variables representing provider and county practice pa-
rameters and a corresponding dependent variable representing whether
the PT received an above median Medicare payment. Table 2 lists the
independent variables and their scopes. Fig. 1 shows a histogram of the
distribution of all 40,662 dependent variables of standardized Medicare
payments in our data set, along with the overall median value.

4. Algorithm description

We evaluate the performance of SAGA on this problem by com-
paring it to a canonical GA and to LR a benchmarks. We begin by
describing LR. Next, we describe our canonical GA benchmark, the
fitness function utilized by both the canonical GA and SAGA, and how
SAGA extends the canonical GA.
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Table 2
Independent variables.
D Independent variable Level of Observation Data Type Notes
1 Gender Provider Binary 1 = Female, 0 = Male
2 Doctor of Physical Therapy degree Provider Binary 1 = Yes, 0 = No
3 Number of unique HCPCS/CPT codes Provider Integer Each HCPCS/CPT code refers to a unique service that may
billed per PT be provided and billed by a PT
4 Number of beneficiaries per PT Provide Integer Number of patients served by the PT that are Medicare
beneficiaries.
5 Billed charge to Medicare allowed Provider Float Ratio of the total amount billed by the PT for services to
amount ratio the sum of the Medicare allowed amounts for those services.
6 Average Medicare standardized Provider Float The total Medicare standardized payment received by a PT
payment per beneficiary divided by the number of unique Medicare beneficiaries
treated by the PT.
7 Percent of physical agents Provider Float Proportion of physical agent CPT codes (e.g. hot/code pack,
ultrasound, electrical stimulation, etc.) relative to all CPT codes.
8 Percent of therapeutic procedures Provider Float Proportion of therapeutic exercise CPT codes (e.g. manual
therapy, therapeutic exercise, physical agents, etc.) relative
to all CPT codes.
9 Number of new patients per PT Provider Integer Number of Medicare beneficiaries receiving initial physical
therapy evaluation service (CPT code: 97001) from PT.
10 Average age of beneficiaries Provider Integer Average age of PT patients that are Medicare beneficiaries.
11 Average Hierarchical Condition Provider Float Each Medicare beneficiary is assigned an HCC risk score that
Category (HCC) risk score predicts the relative cost of treating that beneficiary in the next
year, compared to all Medicare beneficiaries. This variable is the
average of the risk scores of all beneficiaries treated by the PT.
12 Small metro practice location® Provider Binary Practice location is in a metropolitan area with population
fewer than 250,000.
13 Mid-sized metro practice location® Provider Binary Practice location is in metro area with population of
250,000-1,000,000.
14 Non-metro metro practice location® Provider Binary Practice location is outside of a metro area.
15 Standardized risk-adjusted per capita County Float This measure is adjusted to allow for comparison of medical
Medicare costs costs in different counties.
16 Primary care physicians per 10,000 County Float Primary care physicians are those with specialties of general
population family medicine, general practice, general internal medicine,
and general pediatrics.
17 PTs per 10,000 population (2009) County Float Number of PTs per 10,000 population.
(The data for this variable is from 2009.)
18 Percent of beneficiaries eligible for County Float Percent of Medicare beneficiaries in county who are eligible
Medicaid for Medicaid coverage.
19 Average age of beneficiaries County Integer Average age of Medicare beneficiaries in county.
20 Percent female beneficiaries County Float Percent female Medicare beneficiaries in county
21 Average HCC risk score County Float Average HCC risk score of Medicare beneficiaries in county.
22 Beneficiaries percent of population County Float Percent of Medicare beneficiaries among the population in
the county.
23 Median household income County Integer Based on the American Community Survey (ACS)
24 Percent of persons 65 or older in deep County Float Deep poverty refers to households with income that is less
poverty than half of their poverty threshold".
25 PTs per 10,000 beneficiaries County Float Number of PTs per 10K Medicare beneficiaries in county.

aAt most one location type will be set to 1. If all binary location types are set to 0, the location type is: Large metro practice location (population size greater than 1,000,000).

bThe poverty threshold varies based on the size of the family.
4.1. Logistic regression

LR is a commonly used benchmark for predictive classification
problems of this kind in the field of health informatics (Chaurasia &
Pal, 2014; De Vasconcelos et al., 2001; Min et al., 2006; Serban et al.,
2011; Thornblade et al., 2018). LR makes a prediction on whether a
data point j belongs to a class x based on the logistic function:

1

= - 1
1 + e~ Go+Zsivi) )

px,j

where p, ; is the probability that data point j belongs to class x, s, is
the intercept, s; is the coefficient for independent variable i, and v, ; is
the independent variable i of data point j. For our implementation, we
use the LogisticRegression class from the scikit-learn library in Python.

4.2. Canonical genetic algorithm

We use a canonical generational GA (Grefenstette, 1986; Holland,
1975) as a comparison for SAGA. SAGA extends this canonical GA, thus
the purpose of this comparison is to ensure that the changes that are
made to a canonical GA to create SAGA do not have a detrimental effect
on the outcome.

Algorithm 1 shows the pseudocode for a canonical GA.  The
algorithm begins with a randomly initialized population of candidate
solutions. The GA cycles through multiple generations until a stopping
condition is met. In each generation, every individual of the popu-
lation is evaluated using a fitness function to obtain a measure of
the quality of that individual’s encoded solution. A selection method
probabilistically selects the more fit individuals to become “parents”
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Fig. 1. Histogram of the distribution of the annual standardized Medicare payment
amounts. The median value is $23,296.85. Please note that the y-axis uses a log scale.

Algorithm 1: Genetic Algorithm.

1: Initialize population of candidate solutions

2: while stop condition is false do

3: Evaluate population (fitness)

4 Probabilistically select parents for next generation (selection)
5: Apply crossover to parents to generate children (crossover)
6: Apply mutation to children (mutation)

7: Replace population with children

8: end while

from which new candidate solutions will be created. Genetic operators
(crossover and mutation) are applied to the parents to create a new
generation of candidate solutions. The new generation of solutions
replace the previous generation. Table 3 lists our parameter settings for
the canonical GA. These parameter settings are determined empirically.

Each individual or candidate solution in the population consists of a
vector of 51 floating-point values, ¢; : i =0, ..., 50, initialized randomly
in the range [-1:1]. The ¢, coefficient encodes a constant while the ¢, to
¢, coefficients encode values that adjust the impact of the independent
variables on the classification outcome. The fitness of an individual
is calculated as follows: First, the GA calculates a linear summation,
prediction;, for each data point j to be classified:

25
prediction; = ¢y + Z C;Ui,j (2)
i=1
where v, ; is the ith independent variable, i = 1,...,25, of the jth data
point and ¢/ is the ith modified coefficient as calculated by:

el if 1.0 < 05 < =05

1

2
oo ¢ ?f —0.5 < ¢;495 < 0.0 @)
¢; if0.0<¢yp5 <05

i 0.5 <5 <10

Note that i corresponds with the ID number in column 1 of Table 2. The
reason for raising the coefficients ¢, through c,5 by a power specified
by the coefficients c,¢ through cs,, respectively, is that the ranges of the
independent variables in our data set vary greatly, with some variables
having ranges that are magnitudes larger than others. This modification
provides a mechanism for dealing with this wide variability of ranges.
Next, we apply the linear summation of Eq. (2) to each of the data
points in the training set and determine a classification based on:

1 if prediction; > 0.0

0 if prediction; < 0.0 @

aboue_medianj = {

Expert Systems With Applications 218 (2023) 119529

Table 3
GA parameters.

Parameter Value

Stopping Condition 200 generations

Population size 100
Crossover rate 0.9
Crossover operator two-point
Mutation rate 0.2

uniform random
Tournament, size 10

Mutation operator
Parent Selection method

Algorithm 2: Self Adaptive Genetic Algorithm.

1: Initialize population of candidate solutions

2: while stop condition is false do

3 Evaluate population (fitness)

4: Probabilistically select parents for next generation (selection)

5 for each set of parents do

6 Probabilistically select crossover operator according to
encoded weights (see Algorithm 3)

7: Apply crossover to parents to generate children

8: end for

9: for each child do

10: Probabilistically select mutation operator according to
encoded weights (see Algorithm 3)

11: Apply mutation to child

12: end for
13: Replace population with children
14: end while

Table 4
SAGA Parameters.

Parameter Value

Stopping Condition 200 generations
Population size 100
Parent Selection method Tournament, size 10

Both SAGA and the canonical GA use this fitness function.
4.3. Self adaptive genetic algorithm

Accurately tuning EA parameters is known to have a very large
impact on the algorithm’s performance. Tuning these parameters is also
quite difficult and time consuming however, as interdependencies mean
that they often cannot be tuned individually. This task can be particu-
larly challenging for someone who is not previously familiar with EAs.
SAGA automates the GA parameter tuning process by encoding and
evolving many of the parameter values as part of individuals that are
evolved in a SAGA population. Specifically, our SAGA implementation
self-adapts the parameters of mutation rate, crossover rate, selection
of the mutation operator, selection of the crossover operator, and any
additional arguments required by the selected mutation and crossover
operators. We include a variety of crossover and mutation operators
in the list of candidate operators with the goal of covering a range
of genetic operator behaviors. Algorithm 2 shows the pseudocode for
SAGA. Table 4 gives the basic parameter settings that we use for SAGA
on this problem.

The addition of self-adaptation adds new information that must be
encoded within an individual. SAGA representation takes inspiration
from previous EA setups that utilize multiple chromosomes (Cavill
et al.,, 2005; Hinterding, 1997; Kiihn et al.,, 2013) and consists of
two chromosomes of data. Fig. 2 shows the SAGA representation. The
first chromosome is called the solution chromosome and encodes the
same information as that encoded by an individual in the canonical
GA. The second chromosome is called the parameter chromosome and
encodes all of the self-adaptive parameter information. The values in
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Solution chromosome

Co|Cr|Co| Cs0

Parameter chromosome

DPol|P1|DP2] D22

Fig. 2. SAGA uses a multi-chromosome representation with one chromosome encoding
the solution and one chromosome encoding parameter values.

Table 5
SAGA Crossover Operators.

Crossover operator Number of Arguments

Two-point

Simulated binary (Deb & Agrawal, 1995)
Blend (Eshelman & Schaffer, 1993)
Arithmetic (Michalewicz, 1992)

Linear (Wright, 1991)

Simplex (Tsutsui et al., 1999)

UNDX (Kita et al., 2000)

PCX (Deb et al., 2002)

NN O HMHMEO

Table 6
SAGA Mutation Operators.

Mutation operator Number of Arguments

Uniform random 0
Gaussian 1
Polynomial (Deb & Deb, 2014) 1

the parameter chromosome are modified over the course of execution
using the same evolutionary mechanism that modifies the solution
chromosome. The modification of these parameter chromosome values
thus modifies the very evolutionary mechanisms themselves for the
subsequent generations.

The parameter chromosome consists of a vector of 23 floating-point
values, p; : i = 0,...,22, initialized randomly in the range [0,1]. The
size of the parameter chromosome depends on the number of crossover
and mutation operators employed; our implementation includes eight
crossover operators and three mutation operators. Tables 5 and 6 give
the crossover and mutation operators, respectively, employed by SAGA
along with the number of arguments each operator requires. The
elements specified in the parameter chromosome include three types of
values: operator rates, operator fitnesses, and operator arguments. Ta-
ble 7 lists the specific elements encoded in the parameter chromosome.

Two values in the parameter chromosome, p, and pg, specify the
self-adaptive mutation and crossover rates, respectively. Each encoded
value represents the associated rate for that individual. For mutation,
each individual utilizes its own encoded mutation rate. For crossover,
the effective crossover rate of a pairing of parents is the average of the
parents’ crossover rates.

Eleven values in the parameter chromosome specify operator fitness
values. SAGA employs multiple operators for mutation and crossover,
unlike a canonical GA which has a single operator for each. Every
time mutation or crossover is to occur, one of the employed operators
is probabilistically selected. To facilitate this selection, each of the
candidate mutation/crossover operators is assigned an operator fitness
value, a floating-point value in the range of [0,1] that is encoded in
the parameter chromosome. With regard to the probabilistic selection
mechanism, operator fitnesses are to the crossover/mutation operators
what fitness is to the individual; a higher value improves the probability
of an operator being selected. The idea is that the more effective
operators should evolve to have higher operator fitnesses and therefore
be used more often than the less effective operators.
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Table 7
Parameter chromosome specification.

Value Operator Operator Fitness Operator Argument
Po Mutation rate

P Gaussian mutation X

P> Gaussian mutation X
P3 Polynomial mutation X

P4 Polynomial mutation X
s Uniform Random mutation X

P Crossover rate

Py Two-point crossover X

P Simulated Binary crossover X

Py Simulated Binary crossover X
Pio Blend crossover X

P Blend crossover X
P12 Arithmetic crossover X

Pi3 Arithmetic crossover X
Pia Linear crossover X

Pis Simplex crossover X

Pis Simplex crossover X
P17 PCX crossover X

Pis PCX crossover X
Pio PCX crossover X
P UNDX crossover X

Do UNDX crossover X
P UNDX crossover X

Algorithm 3: SAGA Crossover/Mutation Selection Process.

1: Order crossover/mutation operators by operator fitness (high to
low)

2: for each crossover/mutation operator in ordered list do
3 if not last operator in list then

4 Generate random number in [0,1]

5 if Random number less than 0.9 then

6: Select operator and exit for loop

7 else

8 Move to next operator in ordered list
9 end if
10: else if last operator in list then
11: Select operator and exit for loop
12: end if
13: end for

Ten values in the parameter chromosome specify operator argument
values. Some genetic operators require one or more arguments. For ex-
ample, Gaussian mutation requires a sigma argument to determine the
size of the Gaussian distribution. All operator arguments are encoded
as floating-point values in the range of [0,1] within the parameter
chromosome. If the argument in question has a range that is not [0,1],
then the encoded value in the range of [0,1] is mapped to the expected
range of the argument when the argument is utilized.

The SAGA crossover and mutation operator selection processes
probabilistically favor operators with higher operator fitness values.
Although crossover selection and mutation selection are separate pro-
cesses, both follow the logic presented in Algorithm 3.  For the
selection of a mutation operator, each individual utilizes the mutation
operator fitnesses encoded in its own parameter chromosome. For the
selection of a crossover operator, the effective operator fitnesses for
each of the crossover operators is the average of the parents’ encoded
crossover operator fitnesses. Because crossover mixes the encoded data
of multiple parent individuals, how crossover handles multiple chromo-
somes of data must be addressed. In SAGA, when crossover occurs, the
parents’ solution chromosomes mix with each other and the parameter
chromosomes mix with each other; there is no crossover between
solution and parameter chromosomes.

Fig. 3 illustrates the behavior of each of the crossover operators
that we include in SAGA. Each of these illustrations shows a two-
dimensional plot for a theoretical setup where each individual contains
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Fig. 3. SAGA Crossovers: Examples of the space of 100 potential offspring (designated by dots) generated from the crossover of a set of fixed parents (designated by X).

only two values in a chromosome and each axis represents one of these
values. Parents are represented by X and 100 children, represented by
dots, are randomly generated by applying crossover to the parents.
These plots show that there is a wide variety of possible crossover
behaviors; we chose these crossover operators to purposefully have
a diversity of behaviors so that the SAGA can adapt to whichever is
most beneficial. Note that some of these operators use three parents
instead of the traditional two. We do not give detailed mathematical
descriptions of each of these crossover operators as some are fairly
complex and require extensive explanation. Tables 5 and 6 provide
references to previous works that do contain the detailed descriptions
for each operator if such is desired.

5. Experimental methods

We evaluate the performance of the SAGA on the problem of clas-
sifying if the Medicare standardized payment for physical therapists is
above or below the national average and compare its performance to
that of LR as a benchmark. We also compare the SAGA’s performance to
that of a canonical GA to verify that SAGA can perform at least as well
as a canonical GA. Our evaluation metric is the percentage of correct
classifications. We split the input data into a training set and a test set,
where the algorithm is trained on only the training set but is evaluated
against both. We run the problem on five data sets, each consisting
of a different ratio of training and test data; these training:test ratios
are: 50:50, 25:75, 10:90, 5:95, and 1:99. The training set sizes are no
larger than 50% because a previous study (Wu et al., 2019) showed
no significant difference in results for this same problem while using
training sets ranging from 50% to 85%.

We run the SAGA and GA on both the raw input data and stan-
dardized input data. The ranges of the independent variables vary
greatly and standardization provides a mechanism for equalizing these
ranges such that the larger range variables do not have an artificially
large impact on the result. Although we do give the SAGA and GA
a mechanism for adjusting the magnitude of the coefficients, we do
not know how effectively that mechanism will be used by the SAGA
and GA. Testing the SAGA and GA on both standardized and raw data
will give us an indication of how well the SAGA and GA can evolve
coefficient magnitudes. We therefore test five methods: SAGA on raw

data (RD-SAGA), SAGA on standardized data (SD-SAGA), GA on raw
data (RD-GA), GA on standardized data (SD-GA), and LR.

The standardized independent variables are calculated as follows.
Let Uij represent the standardized value of the ith independent variable
from data point j. Then

o, =t ©)

where v, ; is the corresponding raw independent variable,

40662
5= —_ . 6
Y = 20662 ;1 Ori ©)

is the average of the ith independent variable across all 40,662 data
points, and o; is the standard deviation of o;.

6. Results

Our results evaluate performance with respect to two evaluation
measures. The first and primary measurement is accuracy; the number
of correct classifications. The second measurement is a breakdown of
the accuracy into the number of true positive, true negative, false
positive, and false negative classifications.

Tables 8 and 9 show the accuracy results of our study on the training
and test data sets, respectively. The tables show the accuracy of each of
the algorithms for each data set. We execute 50 runs of the SAGA and
GA algorithms, due to their pseudo-random nature; therefore, the tables
show the best single run and the average of all 50 runs, along with
the 95% confidence interval. In addition, the test data table, Table 9,
highlights the best accuracy in bold.

SD-SAGA shows the best overall accuracy across the data sets,
outperforming LR and the other SAGA and GA methods on both test
and training sets. The only instance in which SD-SAGA is not the best
performer is the 99% test data set, in which RD-GA slightly outperforms
it by 0.15%. The RD-GA appears to be the second best performer
overall, followed the RD-SAGA, LR, and lastly SD-GA.

Interestingly, the methods that use standardized data are both the
best and worst performing of the SAGA and GA methods. In the case
of SAGA, standardization provides a clear advantage, with SD-SAGA
outperforming RD-SAGA on every instance, while the opposite is true
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Table 8
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Training data accuracy results. The Best columns show the result of the highest accuracy run and the average columns show the average accuracy of all 50 runs along with the

95% confidence interval.

Data set RD-SAGA SD-SAGA RD-GA SD-GA LR
Best Avg Best Avg Best Avg Best Avg
Train 50% 93.10 77.82 + 3.79 94.17 93.45 + 0.16 93.26 89.37 + 0.96 91.37 90.46 + 0.16 93.11
Train 25% 93.65 80.89 + 3.42 94.14 93.58 + 0.15 93.25 89.87 + 0.77 91.53 90.27 + 0.17 92.95
Train 10% 93.33 83.52 + 2.88 94.45 93.00 + 0.55 92.97 90.00 + 0.66 91.69 90.37 + 0.13 92.94
Train 5% 94.10 81.38 + 3.26 95.47 93.86 + 0.58 94.44 90.14 + 0.91 93.51 91.14 + 0.17 93.85
Train 1% 94.34 77.63 + 3.31 96.06 92.16 + 0.75 93.10 88.53 + 0.87 91.87 90.12 + 0.21 92.86
Table 9

Test data accuracy results. The Best columns show the result of the highest accuracy run and the average columns show the average accuracy of all 50 runs along with the 95%

confidence interval. The best accuracy across the five methods is bolded.

Data set RD-SAGA SD-SAGA RD-GA SD-GA LR
Best Avg Best Avg Best Avg Best Avg
Test 50% 92.92 77.80 + 13.61 93.84 93.15 + 0.54 93.12 89.35 + 0.96 91.32 90.40 + 0.17 92.90
Test 75% 93.20 80.92 + 12.47 93.86 93.25 + 0.49 93.15 90.08 + 0.74 91.44 90.40 + 0.17 93.02
Test 90% 93.23 83.06 + 10.56 93.80 92.40 + 1.92 93.47 89.82 + 0.69 91.85 90.21 + 0.17 92.93
Test 95% 92.76 80.09 + 11.68 93.40 91.91 + 1.89 93.17 89.16 + 0.87 91.61 90.07 + 0.20 93.01
Test 99% 91.74 75.60 + 12.14 91.95 87.92 + 3.02 92.10 86.23 + 0.97 91.45 87.90 + 0.46 90.98
T T T " RD-SAGA —=_ Table 10
SD-SAGA Py Statistical results of test data sets. Best results are in bold.
95 RD-GA R 50:50 test set
SD-GA TP TN FP FN
LR —a—
RD-SAGA 9698 9231 983 419
94 I o ° 1 SD-SAGA 9829 9211 906 348
oy RD-GA 9647 9285 832 567
g SD-GA 9352 9215 902 862
g 98 LR 9424 9470 647 790
<
25:75 test set
9| TP TN FP FN
RD-SAGA 14625 13798 1424 649
SD-SAGA 14559 13982 1240 715
o1 | RD-GA 14540 13867 1355 734
SD-GA 13952 13935 1287 1322
5‘0 4‘0 3‘0 2‘0 1‘0 0 LR 14120 14232 990 1154
. . 10:90 test set
Training set size (percent of full data set) P ™ . N
Fig. 4. Best accuracy achieved for each training set size (percent of full data set). RD-SAGA 17672 16447 1845 631
SD-SAGA 17643 16604 1688 660
RD-GA 17646 16558 1734 657
SD-GA 16620 16991 1301 1683
for the GA methods. One consistent effect standardization has on both LR 16870 17151 1141 1433
SAGA and GA is that it lowers the variation from run to run, as 5:95 test set
shown by the smaller confidence intervals and smaller distance be- i ™ FP FN
tween average accuracy and best accuracy on both of the standardized RD-SAGA 18707 17005 2293 623
data methods in Tables 8 and 9. Increased consistency across runs is SD-SAGA 18339 17568 1730 991
ith ily a benefit nor a detriment in and of itself. Increased RD-GA 18818 17172 2126 >12
netther necessartly a bene Of 1sell. s SD-GA 17753 17635 1663 1577
consistency can mean that the GA/SAGA more consistently converges LR 17990 17932 1366 1340
at th‘e optimal (or near optimal) solution, or it cgn mean t.hat it more 1799 test set
consistently converges prematurely, on a sub-optimal solution. P ™~ FP FN
Fig. 4. shows hoW accuracy changes with dfecreasmg training set. size. RD-SAGA 19046 17882 2245 1082
The x-axis plots training set size and the y-axis plots accuracy achieved SD-SAGA 18976 17802 2325 1152
on the test data set. Results indicate that there is little to no degradation RD-GA 18724 18351 1776 1404
in the classification accuracy on test data set as the training set size SD-GA 19196 17616 2511 932
LR 18208 18406 1721 1920

decreases from 50% down to 10% of the input data. Only when the
training set is down to 1% of the input data, equal to around 400 data
points, is there a clear and consistent drop in accuracy on test data
across the algorithms when compared to all other training set sizes. On
this particular problem, it appears that large training data sets are not
required.

Table 10 gives the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) classifications accrued on
the test set experiments, where a positive classification represents a
Medicare standardized payment that is above the median. In each
column the best result is in bold. For TP and TN, the best result is the
largest value. For FP and FN, the best result is the smallest value. In

the case of the SAGA and GA methods, these results refer to the best
run as shown in Table 9.

Table 10 has a few noteworthy observations. First, is that despite
having the best accuracy in all but the 99% test set, SD-SAGA rarely
scores the best in any one category of TP, TN, FP, or FN. Rather, SD-
SAGA begets the best overall accuracy by getting good enough results
on each of the four categories. Another observation is that the SAGA
and GA methods tend to favor positive classifications, having a larger
ratio of TP to TN and FP to FN. The only exception is the SD-GA which
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produces a more even ratio of positive and negative classifications on
all but the 99% test set. LR, on the other hand, is much more balanced
in regards to the amount of positive and negative classifications; in
fact, LR consistently has the lowest number of false positives in all test
sets. This leads to LR having the best record for correctly classifying
negative classifications. The SAGA and GA methods however are better
at avoiding incorrect negative classifications, leading to higher correct
positive classifications. Because the dividing point between our two
classes is the median of the medicare standardized payments, and a
median is by definition in the middle, our data is evenly split between
the two classes. This means that LR is actually correct in making
roughly equal positive and negative classifications; however, in total,
LR makes more incorrect classifications. Hence, the SAGA methods, de-
spite disproportionately favoring positive classifications, return higher
overall accuracies.

7. Analysis

We take a closer look at the results of SAGA in order to better
understand why it evolves as it does. While our focus is on SAGA, we
similarly examine the GA to see if the self-adaptive mechanisms cause
any noticeable divergences in evolutionary behavior when compared to
a canonical GA. We begin by examining the evolved coefficient values
to see if they provide any insight on how the independent variables are
used to make a classification. To help with this analysis, we examine
how the characteristics of the independent variables from the input
data relate to the coefficients. Our observations suggest that the SAGA
and the GA may be performing feature selection in conjunction with
finding appropriate coefficient values, so we further explore the ability
of SAGA and GA to effectively enact feature selection during evolution.

7.1. Coefficient analysis

Here we take a deeper look into the evolved coefficients. Figs. 5
and 6 are both organized in the same manner. Fig. 5 shows the
evolved coefficients from the best individual of every run for both RD-
SAGA and RD-GA. Fig. 6 shows the same for SD-SAGA and SD-GA.
The y-axis displays the value of the coefficient and the x-axis shows
the ID number of the independent variable to which each coefficient
corresponds. There are 50 lines in each coefficient group along the
x-axis corresponding to each of the 50 runs. The x-axis starts with a
Oth value; this is the intercept and is marked as O so that the other
coefficient numbers align properly with the IDs in Table 2.

First, we see that there is a larger difference between standardized
data and raw data than there is between SAGA and GA. The evolved
coefficients are very similar for SD-SAGA and SD-GA and the evolved
coefficients are also very similar for the RD-SAGA and RD-GA. This
consistent similarity suggests that the self-adaptive mechanisms that
are added to SAGA to dynamically control genetic operator parameters
do not significantly change the evolution of candidate solutions as
compared to a GA.

The two raw data methods, RD-SAGA and RD-GA, (Fig. 5) both
show very inconsistent and chaotic results. For the majority of the
independent variables, the evolved coefficients are all over the place.
Not only are the magnitudes of the coefficients very different from run
to run, but the signs are as well; it is not uncommon to see runs with
coefficients near both extremes of 1 and —1 for the same independent
variable. Despite this noise, there are a few independent variables that
are evolved to consistent values in almost every run; four, six, nine,
fifteen, and twenty-three, which according to Table 2 correspond to
“Number of beneficiaries”, “Average Medicare standardized payment
per beneficiary”, “HCC risk score”, “Primary care physicians per 10,000
population (county)”, and ‘“Median household income (county)”. Four,
six, and nine are consistently positive, usually with a medium to
large magnitude while fifteen and twenty-three are consistently near
zero. Variables four, six, and nine appear to be the most important
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in determining the outcome while fifteen and twenty-three appear to
be disruptive and are thus evolved to zero to remove their influence
entirely; this is further reinforced when we analyze both the coefficients
of SD-SAGA and SD-GA and the input data.

The plots for the standardized data methods, SD-SAGA and SD-GA,
in Fig. 6 show more consistent coefficients as compared to RD-SAGA
and RD-GA. Similar to RD-SAGA and RD-GA, we see that the coeffi-
cients at indices four, six, and nine all have highly positive magnitudes,
signaling their significance. These three coefficients are even more
consistent here than in the raw data methods, and nearly always evolve
to magnitudes near the maximum of 1. The variables that consistently
evolve to zero in the raw data methods, fifteen and twenty-three, are
again almost always very near zero; however, they no longer stand out,
as nearly all other coefficients are similarly evolving to zero.

Furthermore, the standardized data methods drastically reduce the
magnitude of the majority of the coefficients. This is especially true
on SD-SAGA, where most coefficients evolve to near zero. By evolving
coefficients near zero, SD-SAGA is effectively removing the associated
independent variable from the calculation, since any number multiplied
by a sufficiently small number will be nearly zero. Thus, SD-SAGA
and SD-GA are effectively enacting simultaneous feature selection and
classification through its evolutionary mechanisms. This is less true on
the smaller training set sizes, where apparently there is not enough
information to fine tune these coefficients as effectively; the lower ac-
curacy on the 99% test set is most likely due to this. Further exploration
of this idea of GAs for simultaneous feature selection and classification
is worth investigating in the future.

7.2. Input analysis

We need more background information to understand why the
coefficients evolved as they do, so we take a look at the input data
and its relation to the evolved coefficients. Fig. 7 shows histograms of
each of the independent variables. The x-axes indicate the value of the
independent variable and the y-axes show the frequency of that value.
These plots are generated from the full input data set of 40,662 data
points.

First, we can see why standardization can have a stabilizing effect
on the evolution. There is a very large difference in the ranges of these
variables; some are binary, O or 1, some are continuous with very small
ranges, from O to less than 1, and others still are continuous from 0 up
to tens or hundreds of thousands.

All of the independent variables have non-negative ranges, which
further explain some of the differences between the raw data and
standardized data methods. Thus, when running on the raw data, to
push towards a negative classification, there must be some negative
coefficients or a negative intercept; this can be observed in Fig. 5. The
process of standardization transforms the data such that there are both
positive and negative inputs. Thus, negative coefficients are no longer
required to obtain negative classifications, and in fact the plots of Fig. 6
show nearly exclusively positive coefficients and intercepts.

We identify five independent variables that have ranges larger than
[0,100]: four, six, nine, fifteen, and twenty-three. Without standardiza-
tion, these five variables will have the largest impact on the outcome
because of their larger ranges. These five variables match perfectly with
the five variables identified earlier that are the only consistent variables
on the raw data methods. This explains the inconsistent and chaotic
nature of the coefficients on the remaining variables on RD-SAGA and
RD-GA; the other variables are too small to have a significant effect on
the outcome and so their coefficient does not matter.

We identify variables four, six, and nine as the influential variables
for making a correct classification since they are important on both
the standardized data and raw data methods. These three variables are
also among the five identified as having larger ranges. This observation
leads to the conclusion that the raw data methods benefit from the
fact that these influential variables have large ranges. If the opposite
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Fig. 5. Best coefficients for RD-SAGA (left column) and RD-GA (right column) on all 50 runs. The training:test ratios are indicated on each plot.

is true, such that the influential variables have small ranges and the
non-influential variables have large ranges, then RD-SAGA and RD-
GA would have had much more difficulty. This theoretical situation,
however, does not guarantee that RD-SAGA and RD-GA will perform
poorly; it would require these algorithms to evolve all the large range,
non-influential coefficients to near zero and still evolve large coeffi-
cients on the small range, influential variables. In conclusion, despite
the fact that RD-SAGA and RD-GA perform well here, GA methods, self-
adaptive or otherwise, should follow the norms of other classification
ML algorithms in standardizing their input data.

7.3. Significant variables analysis
In order to further test the simultaneous feature selection and clas-

sification abilities of SAGA, we run the problem two more times; first
using only the significant independent variables as identified earlier (4,

6, 9) and second using all but those three independent variables. With
this extra experimentation, we want to see how correct SAGA is in its
identification of the three significant variables (4, 6, 9). Do the SAGA
and GA methods focus on these three because they are required for
high accuracy, or can similar accuracy be reached without them? We
also include LR again to continue its role as a comparison benchmark.

Tables 11 and 12 show the results of the experiment when using
only the three significant variables (4, 6, 9) on training and test data,
respectively. Similarly, Tables 13 and 14 show the results when using
all variables except the three significant variables on training and
test data, respectively. Comparing the results of these tables, we can
clearly see that every method scores significantly higher when using
the significant variables, with accuracies that are 20% to 30% higher
across the board. The insignificant independent variables alone are not
sufficient to accurately classify this problem through either SAGA, GA,
or LR. These results validate the SAGA’s capabilities for simultaneous

10
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Fig. 6. Best coefficients for SD-SAGA (left column) and SD-GA (right column) on all 50 runs. The training:test ratios are indicated on each plot.

feature selection and classification on this data set, as the variables
deemed significant by SAGA are indeed the only variables that are
necessary to finding high accuracy results.

Using only significant variables has a large improvement on the
performance of SD-GA, no change in performance for SD-SAGA, and
a slight improvement on the remaining three methods. SD-GA gains
2.48% in performance from 91.32% in Table 9 to 93.80% in Table 12
on the 50% test data set, with similar improvements on the other
data sets. The same improvement is not made on SD-SAGA, which is
the best performance method when all variables are used. Using only
significant variables results in an SD-SAGA performance of 93.82%
on the 50% test data set, which is nearly identical to the 93.84%
performance with all variables from Table 9. RD-SAGA, RD-GA, and
LR all gain 1% or less on most of the data sets. The 99% test data set
is the one exception, where RD-SAGA, RD-GA, and LR gain around 2%
when using only significant variables. The results are also somewhat

11

equalized across the methods, with multiple ties for best accuracy
across the SAGA and GA methods. These results show that SD-SAGA
is the most capable at handling the insignificant variables; reinforced
by the coefficient figures in Section 7.1, where SD-SAGA finds the most
consistent coefficients for the insignificant variables. The inclusion of
more variables increases the search space, increasing the difficulty of
the problem; this increase in difficulty is not a factor for SD-SAGA,
which is effective enough to find excellent results on both sets of
variables.

Fig. 8 shows the plots of the evolved coefficients on the 50:50
training:test set using only the significant variables. We see a very
large difference between the evolved weights of the standardized data
methods and raw data methods for both SAGA and GA. On the raw
data, the intercept is negative, coefficient 4 is very small in either
direction, coefficient 6 is very small and negative, and coefficient 9
is positive with either a very small or very large magnitude. Closer
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Fig. 7. Histograms of the values of each independent variable. The variable ID numbers in the top right corner of each subplot correlate with the ID numbers in the leftmost

column of Table 2.

Table 11

Training data accuracy results using only significant variables. The Best columns show the result of the highest accuracy run and the average columns show the average accuracy
of all 50 runs along with the 95% confidence interval.

Data set RD-SAGA SD-SAGA RD-GA SD-GA LR
Best Avg Best Avg Best Avg Best Avg
Train 50% 94.09 83.30 + 3.06 94.11 94.04 + 0.03 94.00 91.94 + 1.22 94.09 94.07 + 4.0e-5 93.15
Train 25% 93.99 82.04 + 2.98 94.03 93.98 + 0.01 93.93 90.21 + 1.99 94.03 93.99 + 4.9e-5 93.02
Train 10% 94.05 83.23 + 2.95 94.10 93.90 + 0.04 93.80 90.52 + 1.79 94.10 94.00 + 0.03 92.75
Train 5% 94.88 76.22 + 3.18 94.98 94.81 + 0.04 94.84 91.98 + 1.70 94.98 94.86 + 0.02 94.20
Train 1% 95.07 78.85 + 3.62 95.07 94.86 + 0.08 94.83 91.70 + 1.81 95.07 94.99 + 0.04 91.40
Table 12

Test data accuracy results using only significant variables. The Best columns show the result of the highest accuracy run and the average columns show the average accuracy of
all 50 runs along with the 95% confidence interval. The best accuracy across the five methods is bolded.

Data set RD-SAGA SD-SAGA RD-GA SD-GA LR
Best Avg Best Avg Best Avg Best Avg

Test 50% 93.84 83.74 + 2.94 93.82 93.69 + 0.03 93.72 91.88 + 1.17 93.80 93.70 + 0.01 92.92

Test 75% 93.92 82.04 + 2.99 93.92 93.82 + 0.01 93.87 90.10 + 1.98 93.94 93.82 + 0.01 93.02

Test 90% 93.80 82.86 + 2.98 93.88 93.67 + 0.05 93.89 90.48 + 1.83 93.86 93.75 + 0.03 93.12

Test 95% 93.76 78.35 + 3.18 93.90 93.70 + 0.05 93.82 91.18 + 1.70 93.90 93.73 + 0.04 93.28

Test 99% 93.85 80.07 + 3.14 93.49 92.19 + 0.14 93.83 91.05 + 1.62 92.64 92.26 + 0.07 92.92
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Training data accuracy results using only insignificant variables. The Best columns show the result of the highest accuracy run and the average columns show the average accuracy

of all 50 runs along with the 95% confidence interval.

Data set RD-SAGA SD-SAGA RD-GA SD-GA IR
Best Avg Best Avg Best Avg Best Avg
Train 50% 67.38 56.09 + 0.91 71.76 71.20 + 0.08 65.09 55.83 + 0.63 71.02 70.57 + 0.04 69.84
Train 25% 66.97 55.36 + 0.57 71.53 70.91 + 0.11 65.17 55.78 + 0.66 70.52 70.27 + 0.04 69.07
Train 10% 61.29 55.49 + 0.39 71.77 70.87 + 0.14 66.01 57.97 + 1.10 70.59 70.31 + 0.04 68.85
Train 5% 62.03 55.03 + 0.30 72.21 71.08 + 0.20 64.39 55.96 + 0.66 71.08 70.60 + 0.05 67.60
Train 1% 62.81 56.50 + 0.37 77.59 75.07 + 0.43 66.50 57.49 + 0.64 75.62 74.91 + 0.09 69.78
Table 14

Test data accuracy results using only insignificant variables. The Best columns show the result of the highest accuracy run and the

average columns show the average accuracy

of all 50 runs along with the 95% confidence interval. The best accuracy across the five methods is bolded.

Data set RD-SAGA SD-SAGA RD-GA SD-GA LR
Best Avg Best Avg Best Avg Best Avg
Test 50% 63.12 49.62 + 1.25 70.88 70.23 + 0.10 65.51 51.38 + 0.80 70.58 70.02 + 0.08 69.76
Test 75% 63.91 50.73 + 1.40 71.09 70.42 + 0.11 60.16 50.46 + 1.15 70.67 70.28 + 0.06 69.21
Test 90% 63.26 50.45 + 0.65 70.72 69.98 + 0.14 65.68 51.56 + 1.27 70.61 69.99 + 0.09 68.99
Test 95% 66.85 49.94 + 1.11 70.63 69.26 + 0.18 59.63 50.47 + 0.97 70.25 69.49 + 0.11 68.80
Test 99% 59.38 49.88 + 1.04 68.98 66.92 + 0.32 65.19 50.18 + 1.47 68.63 67.21 + 0.22 67.96
Significant Variables
Ny Raw Data SAGA . Standardized Data SAGA
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Fig. 8. GAs and SAGA coefficients using only the significant variables on the 50:50 training:test set.

inspection reveals that RD-SAGA finds two different coefficient config-
urations that are viable; in one, both coefficient 4 and 9 are slightly
positive. In the other configuration, coefficient 4 is slightly negative,
and coefficient 9 is highly positive. Both of these configurations are
very different from the more consistent results of the standardized data
methods, wherein every coefficient and the intercept is positive. RD-GA
appears to find only the former configuration in all runs. Because the
GA has identical constant parameters across all runs, it is much more
likely for each run to follow a similar evolutionary path as compared
to SAGA with its dynamic parameters that are initialized randomly and
may evolve differently in each run. Therefore, the evolved individuals
are more likely to be more consistent in the GA than in the SAGA,
leading to the GA being unable to discover both of the viable coefficient
configurations. In terms of the accuracy of the SAGA and GA for this
particular problem, this consistency is irrelevant, as both configurations
find equivalent results. On other problems, the increased variation
across the runs of SAGA may lead to improved results if the GA gets
stuck in a local optima in every run.

Fig. 9 shows the plots of the evolved coefficients on the 50:50 data
set using only the insignificant variables, defined as every variable
except four, six, and nine. The plots of the insignificant variables are
much more varied across runs, even on the standardized data methods.
A few mostly consistent trends are found, the most prominent being
a highly positive coefficient for variable 3, “Number of HCPCS/CPT
codes billed”, but this is not as impactful on accuracy as the significant
variables are. With only the insignificant variables, neither the SAGA
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nor GA methods are able to find a clear strategy for obtaining accurate
results.

8. Conclusions and future work

In this study, we propose a self-adaptive GA and apply it to the
problem of classifying Medicare standardized payments as being above
or below the industry median. The motivation for developing SAGA
is twofold; to improve usability by reducing the amount of parameter
tuning necessary and to improve the results by allowing the algorithm
to itself determine the most effective parameter settings during the
execution of the algorithm. Previous studies on self-adaptation in EAs
focus the self-adaptation on only a few parameters in the system. Due
to potential non-linear interactions among system parameters, SAGA
extends previous approaches by applying self-adaptation to all of the
parameters related to the genetic operators.

Self-adaptation is implemented in SAGA by adding a second pa-
rameter chromosome to each regular GA solution chromosome. Both
chromosomes are subject to the evolutionary process. The second chro-
mosome encodes values for all genetic operators available in a given
SAGA run, and the evolved values in any given generation of a run
determine the operators that apply in that generation. The opera-
tors that may be applied in a given SAGA run are limited to those
specified at implementation. The presented implementation includes
eight crossover operators and three mutation operators from the GA
literature.
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Fig. 9. GAs and SAGA coefficients using only the insignificant variables on the 50:50 training:test set.

We compare SAGA to LR as a benchmark and compare SAGA
to a regular GA to ensure that the self-adaptive mechanisms do not
adversely affect the algorithm’s evolutionary capabilities. The input
data consists of 40,662 data points; each containing 25 independent
variables which consists of both provider and location information. We
divide the input data into training and test sets and run the experiment
on five sets of data, each with a different training set/test set ratio and
run with both raw and standardized data.

Results show that the SAGA performance of the standardized input
data yields the highest accuracy of all methods tested. All but one
of the SAGA and GA variants perform equivalent to or superior to
LR. SAGA and GA tended to give more positive classification than
negative classifications, which is an incorrect ratio since the data set
is even split between the two classes. LR on the other hand, found
roughly equal number of positive and negative classifications. Despite
the positive bias, the SAGA and GA still tended to return a higher
accuracy, particularly for the self-adaptive SAGA on standardized data.
Across all five of the methods, there is no appreciable degradation of
accuracy as the size of the training set decreases until the training size
reaches just 1% of the input data.

We run both the SAGA and the GA both with standardized and
raw data to see if standardization results in any noticeable differences.
Results indicate that standardization produces a small improvement in
accuracy for the SAGA and a small decrease in accuracy for the GA.
For this particular problem, the nature of the ranges of the independent
variables is beneficial to running the algorithms with raw data, since
the influence variables are also among the variables who have the
largest ranges; Nonetheless, the best results are found with standardized
data. Our results suggest that standardization is indeed recommended
for SAGAs and GAs on these kind of classification problems, much like
other ML methods.

One of the shortcomings of current state-of-the-art methods for
predictive modeling, such as LR and deep learning, is that they are
unable to provide explanations of how they make classifications. These
methods essentially generate a black box that accepts a data point
as input and outputs a classification. Analysis of the behaviors of
SAGA and GA indicate that they are effectively enacting simultaneous
feature selection and classification. This result means that, in addition
to learning how to make accurate classifications from training data, our
SAGA and GA approach can also provide information on which features
are most relevant for making an accurate classification. As a result, in
addition to achieving comparable or better classification accuracy as
LR, SAGA and GA can also provide users with valuable information
about the classification process itself.

With these findings, we propose that a tailor-made SAGA or EA
which is purposely designed around simultaneous feature selection
and classification can be made to expand EA use on classification
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problems. One potential fruitful avenue to approach this is through
the use of a subtype of EAs that have variable-length chromosomes. In
variable length EAs, each individual has a unique length chromosome.
For this problem, each individual would include a different subset of
the independent variables. Through the evolutionary mechanisms, the
EA should then evolve to individuals that contain only the influential
subset of independent variables. Self-adaption can then be applied to
these variable-length EAs to improve usability.

In conclusion, the primary contributions of this work are as follows:

» We show that SAGA is a competitive method for predictive clas-
sification in the field of healthcare informatics.

We show that, in addition to achieving effective classification,
the GA and SAGA methodology can also simultaneously perform
feature selection. Feature selection provides valuable domain-
specific insights about which are the relevant features that con-
tribute to the classification task.

Finally, we show that adding self-adaptation mechanisms to a GA
successfully eases the burden of turning a GA’s system parameters
without any detriment to a GA’s ability to learn and find a
solution. On the contrary, our results indicate that self-adaptation
may improve results over a manually tuned GA.
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