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ABSTRACT 
 
Critical to Army readiness, simulation-based training offers a cost and time-effective way to keep personnel well-
versed in their roles, responsibilities, tactics, and operations. Simulation-supported exercises currently require long 
planning timelines and significant resources. Although semi-automated military simulations provide essential 
behavioral artificial intelligence to assist in fulfilling participant roles, they still need human simulation operators to 
control friendly and opposing forces. Exercise support simulation operators come directly from the intended training 
audience, assigning Soldiers role-playing duties versus training with their organization. Units train with a fraction of 
their team, reducing training quality and its overall impact. One method for reducing overhead and improving the 
quality of simulation-supported training is implementing fully automated and adaptive opposition forces (OPFOR). 
 
DeepMind’s AlphaStar, AlphaZero, and MuZero illustrate the progression of machine learning research. Using large 
datasets or generalized algorithms, these agents learned how to play and defeat professional players at complex, 
combative strategy games. These games include delayed and sparse rewards, imperfect information, and massive state 
spaces, all feats that support the idea that machine learning may be the key to developing adaptive OPFOR in 
constructive military simulations. 
 
This paper surveys the existing literature on the use of machine learning for automated OPFOR decision-making, plan 
classification, and agent coordination. This analysis serves as a starting point for future research on the current 
capabilities and limitations of developing adaptive OPFOR in support of constructive military simulations.  
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INTRODUCTION 
 
National threats continue to challenge local and global safety and security (Department of Defense [DoD], 2022). The 
complexity of future warfare grows as threatening nations and organizations straddle the tenuous threshold of 
competition and conflict on a multi-domain battlefield (Army Futures Command [AFC] Futures Concepts Center 
[FCC], 2020). To deter the aggression of perceived threats, United States (US) military forces must rapidly develop 
and maintain combat readiness (DoD, 2022).  
 
The Army provides the DoD with trained and ready forces through training that is “challenging, relevant, realistic, 
and performed to the highest standards” (Headquarters, Department of the Army [HQDA], 2021). Ideally, training 
takes place in live environments at the individual to company level, supported by training aids, devices, simulations, 
and simulators (TADSS). However, higher echelon units at the battalion, brigade, and above have training 
requirements that live environments may not support due to time, cost, or safety. Higher echelon units require an 
integrated training environment (ITE) of live, virtual, and constructive (LVC) training (HQDA, 2021, Appendix J). 
Live training consists of real Soldiers operating real systems; virtual training includes real Soldiers operating simulated 
systems; while constructive simulations require real Soldiers to operate numerous simulated entities. The Army 
defines entities as “independent [simulated] objects with complex behaviors and attributes (e.g., personnel, vehicles, 
complex munitions, and key communications devices)” (United States Army Combined Arms Center [USACAC], 
2018, p. 5). Through an appropriate mix of LVC training, Army units train and maintain the proficiency of their 
formations within a “band of excellence” (HQDA, 2021, pp. 1-3). 
 
TADSS and an ITE enhance training and reduce costs but still require considerable overhead. The Army needs 
technical simulation, network, and infrastructure subject matter experts (SME) to operate and integrate training 
simulations. Simulated wraparound forces (higher and lower echelon blue forces, neutral organizations and civilians, 
enemy forces, etc.) require personnel to develop operational and tactical plans and provide control during execution. 
A training exercise's operational, technical, logistical, and administrative requirements result in 12-24 months of 
planning (Joint Chiefs of Staff, 2015, pp. E-3). The added complexity of developing relevant scenarios that account 
for Multi-Domain Operations (MDO) (AFC FCC, 2020) and dense urban environments will only lengthen planning 
timelines and complicate efforts. To summarize: 
 

The Integrated Training Environment (ITE) Training Aids, Devices, Simulators (TADSS) 
currently lack the ability to allow units and Soldiers to conduct realistic, multi-echelon, collective 
training, seamlessly from squad to Army Service Component Command (ASCC) echelons, 
anywhere in the world, and require significant training overhead (time, money, people) to utilize. 
(USACAC, 2018, p. 1) 

 
Currently, the Army is developing its future training simulation system, the Synthetic Training Environment (STE) 
(USACAC, 2018). The STE is the Army’s attempt to centralize and standardize Army simulations to simplify the 
exercise development process allowing commanders to spend more time training and less time planning. It aims to 
reduce the technical and logistical overhead commonly associated with simulation-supported (sim-supported) 
exercises using advancements in simulation technology. To achieve the STE’s Critical Operational Attributes 
(USACAC, 2018, p. 16), the Army acknowledges the need to leverage artificial intelligence (AI) and machine learning 
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(ML) technologies (Kimmons, 2020; Rozman, 2020; USACAC, 2018; 2019). Entities or agents within a simulated 
environment capable of adapting to the training audience can enhance learning, performance, and engagement (Van 
Den Bosch et al., 2020).  
 
This paper identifies requirements to develop intelligent agents that can make decisions, recognize opponent plans, 
and coordinate actions in response to the training audience. This paper analyzes recent advancements and trends in 
building adaptive automated forces, identifies current challenges the training community has with realizing automated 
opposition forces (OPFOR), and discusses potential innovative paths to overcome those obstacles for Army training 
simulations. This work provides a background of the current state of Army constructive and virtual simulations and 
establishes a baseline understanding of ML concepts for adaptive agents. Next, we discuss recent advancements in 
ML that support agent decision-making, plan recognition, and multi-agent coordination. Finally, the paper discusses 
what these advancements mean for the Army, what research gaps remain, potential solutions to these challenges, and 
concludes our findings.  
 
 
BACKGROUND 
 
Current Military Simulations 
 
Army training simulations primarily include virtual and constructive simulations. Virtual simulations consist of a 
complete physical mockup of a weapon system that engages targets in a virtual world, such as the Army’s Aviation 
Combined Arms Tactical Trainer (AVCATT) (United States Army Acquisition Support Center, 2022). Or they can be 
as simple as a 3D first-person shooter, such as the Army’s Engagement Skills Trainer (Program Executive Office for 
Simulation, Training and Instrumentation [PEO STRI]). Virtual trainers also include virtual reality and augmented 
reality technologies, as in the STE’s planned Integrated Visual Augmentation System (IVAS) Squad Immersive Virtual 
Trainer (SiVT) (PEO STRI). Constructive simulations best support higher echelon exercises by simulating large 
formations and operational and strategic assets not typically available in a live home-station training event. Joint Semi-
Automated Forces (JSAF) is a simulation used for joint-level training and experimentation for tactical to strategic 
operations. One Semi-Automated Forces (OneSAF) is the Army’s central constructive simulation that supports Army 
training, test and evaluation, analysis, intelligence, acquisition, and experimentation communities (PEO STRI). 
OneSAF and JSAF model individual entities up to brigade formations (Padilla, 2012, pp. 853-857). Table 1 provides 
a small subsection of the virtual and constructive simulations used across the joint force. 
 
Table 1. US Military Simulations, adapted from (Padilla, 2012, p. 867) 
 

 
 
With recent advancements in AI and ML, researchers are witnessing the potential of adaptive computer-generated 
agents (Ballanco, 2019; Fossaceca & Young, 2018; Priya Narayanan, 2021). However, current AI and ML methods 
in DoD simulations are still semi-automated and rule-based (Abdellaoui et al., 2009; Oswalt et al., 2019), thus 

Name Type User Purpose Operational Level Military Unit

AFSERS Constructive, Virtual USAF Training & Mission Rehearsal Tactical Battalion

AWSIM Constructive USAF Training, Mission Rehearsal, Experimentation Operational, Tactical Wing

JCATS Constructive US Joint Training, Analysis, Experimentation Tactical Up to Battalion

JSAF Constructive US Joint Training & Experimentation Strategic, Operational, Tactical Up to Brigade

MTWS Constructive USMC Training & Analysis Tactical Up to MEF and JTF

OneSAF Constructive Army Training, Experimentation, & Acquisition Strategic, Operational, Tactical Up to Brigade

VBS Constructive, Virtual USA Training & Mission Rehearsal Tactical Squad

WARSIM Constructive USA Training & Mission Rehearsal Operational, Tactical Brigade and above

RESA Constructive USN Training & Acquisition Operational, Tactical N/A

Organizations: USA: US Army, USAF: US Air Force, USN: US Navy, USMC: US Marine Corps
Simulations: AFSERS: Air Force Synthetic Environment for Reconnaissance and Surveillance Mode, AWSIM: Air Warfare Simulation,                                              
JCATS: Joint Conflict and Tactical Simulations, JSAF: Joint Semi-Automated Forces, MTWS: Marine Ground Task Force (MAGTF) Tactical Warfare Simulation,   
ONESAF: One Semi-Automated Forces, VBS: Virtual Battlespace, WARSIM: Warfighters Simulation, RESA: Research, Evaluation, and System Analysis 
Units: MEF: Marine Expeditionary Force, JTF: Joint Task Force
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requiring human simulation operators (sim-operators) to control computer-generated forces (CGF). JSAF/ONESAF 
entities can fully automate their actions but need a mission plan. A sim-operator must designate the task and purpose 
(mission) of every entity or unit and any path(s) they should follow before the simulation starts. Once running, the 
simulated entities can sense and react to their surroundings based on a limited number of behaviors. Even with these 
features, JSAF/OneSAF entities cannot handle novel situations outside their pre-defined behaviors. Sim-operators 
must monitor and intervene when necessary, thus requiring training in basic military tactics and how to operate the 
simulation to ensure that the presented agent behaviors make sense to the training audience (realism). As an exercise 
grows, so do support requirements and administrative overhead. 
 
The government and industry are aware of current military simulation AI limitations and are attempting to improve 
them. Bohemia Interactive recently released their new VBS® Control Behavior Pack 1, allowing users to build 
customizable behaviors (Bohemia Interactive Simulations, 2020). The behaviors are pre-programmed based on what 
Bohemia identifies as typical use cases. Also, exercise planners or SMEs must pre-construct the behavior trees before 
execution (Bohemia Interactive Simulations, 2020). Once the training event executes, the agents cannot operate 
outside their pre-defined behavior trees, preventing proper adaptation to the trainee’s actions.  
 
The US Army Training and Doctrine Command Proponent Office for Constructive Simulations works with Army 
OneSAF user communities (training, test and evaluation, analysis, intelligence, acquisition, and experimentation) to 
constantly improve OneSAF and maintain its concurrency through a requirements prioritization process (USACAC, 
2005). In addition, organizations can make slight modifications to local copies of their software depending on their 
environment. Although this allows for a constantly improving simulation, the behaviors are simplistic and not 
adaptable. 
 
AI in Army simulations has matured over the years but is rigid, predictable, and only adaptable through human 
intervention. It may be possible to reduce administrative burdens such as sim-operator training and management by 
creating CGFs that can adapt to trainee tactics.  
 
Artificial Intelligence and Machine Learning for CGFs 
 
Game developers have experimented with AI for decades to develop intelligent agents. Techniques include finite 
state machines, behavior trees, fuzzy logic, Markov systems, goal-oriented behaviors, and various combinations of 
two or more methods (Millington & Funge, 2009). Monolith’s commercial horror game F.E.A.R. implemented goal-
oriented action planning (GOAP) to produce the appearance of realistic tactical behaviors in real-time between 
agents who were unaware of one another (Orkin, 2006). Guerrilla Games’ Horizon Zero Dawn utilized hierarchical 
task networks to control individual local agents, local and global agent herds, and a blackboard to coordinate 
individual agent actions (Thompson, 2019). Even though agent intelligence and coordination are improving in 
today’s commercial video games, they still cannot learn a player’s skill level or unique tactics and adapt. 
 
One potential method for preventing trainees from exploiting AI limitations is to enable agent adaptation through ML. 
Four of the most prolific methods of ML include supervised learning, unsupervised learning, semi-supervised learning, 
and reinforcement learning. Supervised learning leverages large, labeled datasets to train agents. Researchers used 
this process to clone human player behavior in the 3D first-person shooter Counter-Strike Go through pixel data 
scraped from human play sessions (Pearce & Zhu, 2021). Supervised learning also enabled AlphaStar to defeat 80% 
of ranked players in StarCraft II (SC2) (Vinyals et al., 2019). Unsupervised learning trains machines by providing 
them with large amounts of unlabeled data and allowing them to discover patterns. Unsupervised learning may not fit 
well with military simulation environments due to potential noise in the data and the production of undesired behaviors 
(Fossaceca & Young, 2018; Roessingh et al., 2017). However, unsupervised learning methods have anticipated player 
tactics in a video game environment resulting in improved human-agent cooperation (Chen, 2017). Semi-supervised 
learning is a hybrid of both approaches. In this method, a machine trained on a set of labeled data develops a predictive 
model. Then, the trained machine receives unlabeled data producing pseudo-trained data. By keeping only accurately 
labeled pseudo-data and adding it to the machine’s baseline, the machine iteratively improves its ability to classify 
future unlabeled data. Figure 1 illustrates this process. Facebook recently employed semi-supervised learning to 
improve its speech recognition algorithms (Kahn et al., 2020). Although unsupervised learning may not handle the 
noise of military simulations, the iterative nature of semi-supervised learning could help filter noisy data and build 
confidence in the application technique through observed iterative improvements during training. Reinforcement 
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learning (RL) requires no initial data and enables an agent to learn and operate in its environment through a trial-
reward process (Lee et al., 2018). 
 

 
Figure 1. Semi-Supervised Learning 

 
Different combinations of supervised, unsupervised, and reinforcement learning approaches have achieved 
remarkable results in developing agents capable of operating in large state spaces. Computers are capable of learning 
and mastering games in a myriad of ways. They can map raw pixel data to control inputs in simple video games 
(Mnih et al., 2016; Mnih et al., 2015). Use self-play to determine the optimal move in any situation in perfect 
information board games (Silver et al., 2018). Or even train against other agents designed to directly exploit their 
weaknesses (Vinyals et al., 2019). Adaptive CGFs in military simulations must be capable of making decisions, 
recognizing the trainee's plan or intent, and coordinating actions. In the following sections, we discuss the state of 
these capabilities and how they contribute to the development of adaptive OPFOR. 
 
 
MACHINE LEARNING 
 
Military training simulation environments consist of significantly high dimensions and variables, making it near 
impossible for tactical and technical SMEs to develop rule-based solutions that consider every possible situation. 
Advances in ML and deep learning algorithms are making headway in handling large complex environments similar 
to military simulations. The Army can potentially use these algorithms in Army simulations to produce intelligent 
OPFOR capable of adapting to each organization's skills and techniques. To improve Army simulations, agents must 
adapt their decision-making, plan and intent recognition, and coordination to truly challenge Army Soldiers and teams. 
 
Automated Agent Decision-Making 
 
Policies govern intelligent agent decision-making by defining what action an agent should take based on its current 
situation. Similarly, Army doctrine dictates that squads receiving fire from an enemy bunker should execute Battle 
Drill 5: Knock Out a Bunker (HQDA, 2016, pp. J-15). As it is impossible to define every possible action an agent 
should take in every likely scenario in a training simulation, the Army cannot define every action a Soldier should 
take in battle. Thus, the Army trains a core set of tactical tasks during initial training, and Soldiers expand their 
knowledge by training with their units. Soldiers grow their foundational knowledge through exposure to additional 
training scenarios, and this experience improves Soldier adaptability. Just as Soldiers learn to make critical decisions 
in different scenarios through training, intelligent agents can learn to make decisions through RL.  
 
RL agents learn how to make appropriate decisions through trial and error in an environment that grades their 
performance with a reward. RL methods are either value-based or policy-based and may or may not depend on a local 
environmental model (Lapan, 2020). Value-based methods use a value function to define the anticipated value of 
state-action pairs. At the same time, policies explicitly tell an agent what action to take given a specific state. Q-
Learning (Watkins & Dayan, 1992) is an early value-based RL algorithm that is the foundation of many advanced 
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techniques today. Policy-based methods typically use policy gradients to discover the optimal parameters to generate 
a policy that maximizes the agent’s cumulative reward (Lapan, 2020, p. 286). In contrast, model-based methods build 
a local model to predict or plan the next best action to take. These methods can work in isolation or leverage the 
strengths of each approach. However, the true advantage comes when combining RL methods with neural networks 
(NN). 
 
Two recent policy optimization algorithms are Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) and 
its updated version Proximal Policy Optimization (PPO) (Schulman et al., 2017). TRPO and PPO improve the stability 
of policy optimization by preventing an agent from diverging too far from its current policy. The algorithm only 
updates the agent’s action if the change is within a defined boundary. PPO is much simpler to implement and has 
shown positive results in robotic locomotion and Atari games (Schulman et al., 2017). PPO served as a target selection 
method in a larger framework designed to control agents in large state spaces (Shen et al., 2021) and has been used in 
multi-agent systems to facilitate cooperation amongst agents (Yu et al., 2021). 
 
Actor-critic algorithms leverage the best value-based and policy optimization methods by employing a critic that uses 
a value function to govern the parameters of an actor’s policy (Grondman et al., 2012). The asynchronous advantage 
actor-critic (A3C) employs multiple actor-critic pairs that work in parallel and has shown rapid learning gains while 
minimizing computing resource requirements (Mnih et al., 2016). When coupled with the ability to maintain direct 
memory of its experience, such as with long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997), A3C has 
been used to develop intelligent military CGFs (Toghiani-Rizi et al., 2017) and has supported the development of 
AlphaStar (Vinyals et al., 2019).  
 
Deep reinforcement learning (DRL), Figure 2, pairs RL algorithms with NNs to develop a policy through 
environmental rewards and state observations (François-Lavet et al., 2018). Deep Q-learning implements a deep Q-
network (DQN) in place of a Q-table to approximate all the Q-values for every action in a given state (Mnih et al., 
2015). DQN has seen iterative improvements with the addition of short-term memory (Kapturowski et al., 2019), 
episodic memory, incentivized exploration (Badia, Sprechmann, et al., 2020), and the balancing of exploration versus 
delayed rewards (Badia, Piot, et al., 2020). These enhancements resulted in agents handling game environments that 
provide multiple immediate rewards to significantly delayed and sparse rewards, as found in 57 different Atari games 
(Badia, Piot, et al., 2020). 
 
 

 

Figure 2. Deep Reinforcement Learning 

 
In addition to mastering Atari games, DRL has led to agents capable of operating in complex environments such as 
real-time strategy games. Using a convolutional neural network (CNN) to process visual data, AlphaStar used 
supervised learning of player data, DRL, and multi-agent reinforcement learning (MARL) to learn how to master SC2 
(Vinyals et al., 2019). By pitting AlphaStar against different versions of itself, including those specifically designed 
to exploit AlphaStar’s weaknesses, as well as learning from matches against human opponents, AlphaStar achieved 
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grandmaster status in the global rankings for SC2 (Vinyals et al., 2019). Though impressive, AlphaStar requires 
significant human player data to learn SC2 and cannot transfer its skills outside the game. AlphaZero, on the other 
hand, is a more generalized agent that taught itself how to play and master chess, shogi, and Go (Silver et al., 2018). 
AlphaZero also used a  CNN to process visual data but used a generalized RL algorithm and a generalized Monte 
Carlo Tree search to learn and master each board game by repeatedly playing itself (Silver et al., 2018). MuZero takes 
AlphaZero even further by having its NN dynamically create its own environment model to plan its next move, 
enabling it to play both board games and Atari games using the same algorithm (Schrittwieser et al., 2020). These 
advancements illustrate the power of DRL to create intelligent agents capable of adapting to an environment with or 
without large data repositories. Though the Army generates significant training data through sim-supported training, 
the policies and infrastructure required to leverage this data can be complex. However, general intelligence in virtual 
environments is quickly evolving and could lead to adaptive computer-generated OPFOR without needing large, 
labeled datasets.  
 
Plan Recognition and Agent Coordination 
 
The military invests significant resources in intelligence systems to determine the plan and intent of enemy forces. 
Even with these investments, predicting the opposition’s course of action at any given moment is challenging. Military 
simulations have access to all real-time information at any given moment. However, leveraging this advantage 
produces unrealistic actions that reduce realism and cause negative training. Further, access to simulation data does 
not provide insight into what a training audience has planned or what their ultimate objective might entail. Adaptive 
OPFOR must be capable of recognizing the plans or goals of other agents in military simulations. Predicting agent 
intent is crucial for enabling coordination amongst OPFOR agents and adapting their tactics in response to the actions 
of the training audience.  
 
Plan, activity, and intent recognition (PAIR) research allows intelligent agents to recognize the actions of other agents 
or humans, determine why they are conducting those actions, and determine the observed agent’s next move. A plan 
is a sequence of steps that enable an agent to accomplish a goal (conduct movement to contact), activity is a series of 
actions a person or agent is currently conducting (squad moving in column formation through enemy-controlled 
territory), while intent is the goal of the agent(s) (locate and engage enemy forces). Agents capable of observing the 
action of adversarial agents and recognizing their intent is critical to the development of adaptable OPFOR. 
 
Current approaches to PAIR employ traditional ML and brain-inspired strategies but mostly center around logic-based 
reasoning and deep learning techniques (Van-Horenbeke & Peer, 2021). Logic-based methods use one of two 
techniques. A pre-defined plan library allows an agent to compare observations against known plans (Avrahami-
Zilberbrand & Kaminka, 2014; Ni et al., 2021). However, plan recognition as planning instills an agent with domain 
knowledge which it uses to develop hypotheses to determine the goal of the observed agent and dynamically develop 
its perceived plan (Pereira et al., 2020; Shvo & Mcilraith, 2020; Vered et al., 2018). Figure 3 provides a simple 
illustration of the two concepts. Still, other techniques try to leverage the best of both worlds (Treger & Kaminka, 
2022).  
 

 
Figure 3. Plan Library vs. Plan Generation. "Stryker dismount" (US Army, 2012) is licensed under CC BY 2.0.  
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NNs and deep learning can reduce the heavy human workload needed to create plan libraries or domain expertise. 
However, they still require significant training to achieve their goals (Amado et al., 2018). CNNs show promise in 
classifying human activity and intent but struggle with situations that do not match their training (Dwivedi et al., 
2019). Model-based DRL like that found in MuZero (Schrittwieser et al., 2020) could enable agents to plan their 
actions concerning the actions of other agents if the other agent’s actions can be locally modeled. Another approach 
could be through few-shot learning, leading to goal recognition solutions with reduced data requirements (Dwivedi et 
al., 2019; Xian et al., 2020). 
 
Graph Neural Networks can aid agents in predicting one another’s following action (Liu et al., 2021). MARL enables 
agents to coordinate their efforts to accomplish a common goal if provided enough training (Baker et al., 2019; Ustun 
et al., 2020). Multi-Agent PPO (MAPPO) is an on-policy MARL algorithm for multi-agent tasks capable of handling 
discrete action spaces, cooperative relationships, and homogeneous agents (Yu et al., 2021). Combining the concept 
of intent recognition and multi-agent coordination, researchers developed a multi-agent learning algorithm that 
enabled agents to infer the intent of one another, allowing them to collaborate in a discrete game environment (Yuan 
et al., 2021).  
 
Indirect methods such as actor-critic (Christianos et al., 2020; Ustun et al., 2020) or evolutionary learning transfer 
(Hou et al., 2017) could lead to agent-coordinated action. In multi-agent deep deterministic policy gradient 
(MADDPG), the actors operate off local information and a local policy. Still, the critic(s) who maintains a global value 
function governs the actor(s) (Lowe et al., 2017). Through the rewarding process, this value function can indirectly 
coordinate the actions of all their associated actors.  
 
 
DISCUSSION 
 
Adaptable automated forces have many challenges, including the automation of decision-making, plan recognition, 
and agent coordination. Fortunately, recent advancements in ML are moving modeling and simulation technology 
towards making adaptable OPFOR a reality.  
 
Deep learning policy gradient algorithms are the most robust and adaptable ML promise among the decision-making 
approaches surveyed in this work. These approaches, such as TRPO and PPO, generate agents capable of making 
intelligent decisions in complex scenarios and adapting their policies in near real-time while not requiring policy 
retraining and the retention of complete training data to update their policies. Additionally, these approaches minimize 
variance in agent actions from exercise to exercise by preventing agents from straying too far from previous policy 
iterations. Even though a drawback to these approaches is that they require significant training data and time to be 
effective, these deep learning approaches provide the best agent decision-making means for automating OPFOR.  
 
In warfare, correctly recognizing an opposing force’s plan and intention allows the agent to adjust its current plan and 
outmaneuver the enemy. By recognizing a plan, the decision-making agent can analyze the battlefield’s situation, 
evaluate countermeasures, and select the best response. Plan recognition as planning with deep learning, such as 
recurrent and convolution NNs, are among the best performing techniques to identify situational and action patterns. 
Future adaptive agents that leverage these techniques will have a combative advantage in classifying the opposition’s 
plans, activities, and intent. Similarly, recognizing the plans and intentions of teammates could contribute to improved 
agent coordination (Yuan et al., 2021). Like the deep learning policy gradient approaches for adaptable decision-
making, these deep learning plan recognition approaches require vast training data to fully capture the variety of 
possible plans, intents, and actions in military scenarios. 
 
Lastly, implementing adaptive OPFOR in Army simulations requires standardization across simulation platforms. 
Agent and simulation data standards are necessary for these synthetic environments to provide agent ML approaches 
access to real-time simulation information and after-action review data. Through this data, agents can interpret the 
state of the simulation (observe), evaluate their past decisions (assess), and update their decision-making capabilities 
(adapt). The Army needs standardized methods and data formats for anonymized unit replays from past sim-
supported training events. Only then can this data train agents capable of replacing human sim-operators. Also, 
current and future Army simulations need to support the integration of ML uniformly. They must provide ML 
algorithms with helpful information such as observation states, rewards, and action space to enable learning and 
agent adaptation. OpenAI’s Gym (Brockman et al., 2016) is an example of an ML format becoming the de facto 
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standard for developing intelligent agents. The military is creating environments that support the research of ML and 
DRL in support of military requirements (Brawner et al., 2022; Freeman et al., 2019; Hung et al., 2022; Liu et al., 
2021; Ustun et al., 2020) but are useless to current and future Army simulations if the simulations are not modified 
or developed with ML in mind. 
 
Agents that learn how to implement military tactics in an operational scenario can provide Army training audiences 
with a unique, realistic, and challenging OPFOR each time they train in a simulation. Current deep learning research 
makes it possible for agents to make intelligent decisions based on experience, identify ways to recognize and plan 
against modeled opponents, and coordinate agent actions. As the state-of-the-art in deep learning continues to 
evolve, methods become more generalized and require less data. It is critical that the Army maintains oversight of 
DRL advancements and facilitates its rapid integration into future military simulations.  
 
    
CONCLUSION:  
 
Threats to national security develop rapidly in the current operational environment. Army readiness ensures that the 
nation has trained and ready units to deploy at a moment’s notice. Teams gain proficiency in their mission essential 
tasks through repetitive, realistic training. Deep learning agents can learn to adapt to Army training audiences. 
Continued research in agent decision-making, plan recognition, and coordination is the path to developing agents 
capable of real-time adaptation to Army training audiences. While adaptive agents continue to evolve with research, 
the Army must standardize unit training data formats to prepare for their future use in training any potential agents. 
Further, the Army must standardize current and future training simulations to facilitate the integration of these future 
solutions. The Army and the research community have challenges to overcome to realize fully automated, adaptive 
OPFOR. Still, the potential to converge on a solution and improve the readiness of Army forces is just on the horizon. 
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