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ABSTRACT
In this paper, we compare the performance of a canonical genetic
algorithm (CGA), the Self Adaptive Genetic Algorithm (SAGA), and
a feed-forward neural network (FFNN) on a predictive modeling
problem with incomplete data. Predictive modeling involves learn-
ing relationships between the features and labels of the data points
in a dataset. Datasets with missing input values may cause prob-
lems for some learning algorithms by biasing the learned models.
Imputation refers to techniques for replacing missing data through
methods such as statistical probabilities, multivariate analysis, ma-
chine learning, or K-nearest neighbors.

We study how imputed datasets impact the ability for CGA,
SAGA, and FFNN to learn effective models. Results indicate that
imputation method has little effect on CGA and SAGA performance
and a noticeable effect on FFNN performance. All three algorithms
perform similarly when applied to data imputed by univariate strate-
gies, but FFNN is noticeably worse on data imputed by trained mul-
tivariate strategies. With increased quantities of imputed data, test
accuracy decreases for all three algorithms while control accuracy
remains surprisingly stable in all cases except for FFNN on trained
multivariate imputation. Interestingly, CGA and SAGA identify the
most relevant input values, even when a large amount of the data
is imputed.
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1 INTRODUCTION
In this work, we compare the abilities of linear prediction models
optimized by a self-adaptive genetic algorithm (SAGA) and a canon-
ical genetic algorithm (CGA) to a feed-forward neural network
(FFNN) on a binary classification task given different amounts of
imputed data and data imputation strategies. The task is to predict
whether the total Medicare standardized payment amount received
by a physical therapist (PT) is above the median amount [8, 14].
The CGA, the SAGA, and the FFNN are given the same set of train-
ing data consisting of labelled data points and a test set to verify
performance on data points not seen during training.

In recent years, the importance of data integrity has increased
due to the challenging problems faced in big data and prediction
modeling, particularly when datasets have missing values. When
working with data like medical information, there is a chance that
some data may be unfilled or unavailable. Many algorithms used
for data analysis and data prediction require completed datasets.
This means we need to either rework these algorithms or find
a way to complete these datasets. We review the latter, utilizing
imputation strategies to infer values to fill in the gaps and study
how the different algorithms perform.

Data imputation is the process of repairing missing data in a
dataset through connections related to other data in the dataset
[3]. An early version of data imputation is multivariate imputation
by chained equations (MICE) [13], which imputes data through a
chained equation and a seven-choice strategy which depends on
a per-value observation. A later variation of this is the DataWig
[1] architecture, which builds on top of the MICE architecture but
enhances it by accepting multiple types of data types and including
imputation strategies that includes deep learning of the dataset. Ad-
ditional deep-learning techniques have been developed, including
deep-generative modeling [7, 15] and autoencoders [5].

We start by analyzing the similarity between the ground truth
data and the imputed data created by different imputation strategies
using loss functions and comparing the change in independent vari-
ables’ statistics like median, mean, and standard deviation. We then
examine how the prediction models react to different imputation
strategies and to growing amounts of imputed data by reviewing
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training and test accuracy on both an imputed dataset and the
original dataset.

We also examine the weights of the linear models generated
by the CGA and SAGA. Norat et al. [8, 14] claim that the CGA
and SAGA can identify the relevant input variables in a predictive
modelling problem. We investigate whether such an ability persists
in datasets with increasing amounts of imputed data.

We test the impact of different imputation strategies on a spec-
trum of missing data to see the impact imputation strategy selection
has on the CGA, SAGA, and FFNN. Our results provide guidance
as to which imputation strategies are best to pair with the CGA,
SAGA, or FFNN given a percent of missing data.

2 METHODOLOGY
Our primary dataset consists of 40,662 data points split into different
sets for training and testing. Each data point consists of 25 features
as labelled in Table 1, along with a binary label of whether or not
the data point represents a PT office that receives more than the
median standardized payment amount.

The dataset comes from the 2014 Medicare Provider Utilization
and Payment Data: Physician and Other Supplier Public Use File
(PUF) and 2015 - 2016 Area Health Resources File from the 50
states and District of Columbia. The data is sourced from collected
Medicare Part B non-institutionalized claims from PUF that are rep-
resentative of the healthcare market where a healthcare practician
is located. For additional details in the distribution of values in the
dataset please refer to Norat [8].

The CGA, SAGA, and the FFNN utilize the same training and
testing dataset with 20,331 data points for training and 10,016 data
points for testing. In addition to the training and test data points,
the FFNN is provided a validation set of 10,016 data points for
hyper-parameter tuning. The control dataset is the ground truth
test set, meaning the values are not imputed and remain the same
for the CGA, SAGA, and FFNN for every run and evaluation on
true data.

To generate the missing data, we iterate through each data point
and each feature in the data point and remove it with a given
probability, leaving the dataset to have values missing completely at
random. The data points’ binary labels are not removed so the labels
are never imputed. This probability is the percent of imputed data.
We create imputed datasets in which the percentage of missing data
ranges from 10% to 90% in increments of 10%. For each combination
of missing data percentage and imputation strategy, we create ten
unique imputed datasets. Imputation occurs independently of the
CGA, SAGA, and FFNN on the datasets and missing values from
each set are imputed using one of the nine different imputation
strategies. Each set corresponds with a imputation strategy that
is distinguished through different percentages of imputed data
ranging from 0% to 90%.

The removal of data and the data imputation stages are inde-
pendent from the training stages of the CGA, SAGA, and FFNN.
This means each run has its own unique version of the dataset.
Each algorithm for each of the nine imputation strategies and ten
different percentages ranging from 0% to 90% of imputed data runs
10 times. In total, there are 900 pairs of training and test data sets

i Independent Variable Type
0 Gender is female Categorical
1 Doctor of PT degree Categorical
2 # of HCPCS/CPT codes billed Continuous
3 # of medicare beneficiaries served Continuous
4 Charge to medicare allowed amt ratio Continuous

5 Avg medicare standardized payment
amt per beneficiary Continuous

6 Proportion of physical agent Continuous
7 % of therapeutic procedures Continuous
8 Proxy for $ of new patients Continuous
9 Avg age of beneficiaries Continuous

10 Avg hierarchical condition category
(HCC) risk score of beneficiaries Continuous

11 Small practice location Categorical
12 Mid-sized metro area practice location Categorical
13 Non-metro area or missing Categorical

14 Standardized medicare payment
per beneficiaries Continuous

15 Primary care physicians per 10K pop
(2009), county level Continuous

16 # of PTs per 10K pop (2009),
county level Continuous

17 Beneficiaries as a share of total pop,
count level Continuous

18 Avg age of beneficiaries, count level Continuous
19 % of female beneficiaries, county level Continuous

20 Avg HCC risk score of beneficiaries,
county level Continuous

21 % of medicare beneficiaries eligible for
medicaid, county level Continuous

22 Median household income, county level Continuous

23 % persons 65+ in deep poverty,
county level Continuous

24 # of PTs serving medicare per 10K
beneficiaries, county level Continuous

Table 1: The independent variables in the medicare dataset

per algorithm, and at the end of each run, we evaluate the model on
the original ground truth test set which we call the control dataset.

2.1 Imputation Strategies
Table 2 lists the imputation strategies that we investigate. Strategies
include univariate strategies, which only have access to the same
feature from every data point, and multivariate strategies, which
have access to every feature from every data point. We will refer
to the imputation strategy simply as strategy from this point on
unless otherwise prefixed.

Univariate strategies include taking the mode, mean, or median
of the missing feature from all data points that did not have that fea-
ture removed. For categorical data, we find the mean and median by
mapping the categories to a numerical value. Two other univariate
strategies for missing features use a combination of using the mode
for categorical features and mean or median for continuous features
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Strategy Type Trained
Mean Univariate

Continuous Mean
& Categorical Mode Univariate

Median Univariate
Continuous Median
& Categorical Mode Univariate

Mode Univariate
KNN [10, 12] Multivariate
DataWig [1] Multivariate X

Iterative Bayesian Ridge [9] Multivariate X
Iterative Linear Regression [11] Multivariate X

Table 2: List of applied imputation strategies, along with
whether they make predictions based off multiple other vari-
ables (multivariate) or just itself from other instances (uni-
variate), and whether they are trained methods.

(as demonstrates in Table 1). We call these strategies meanmode
and medianmode. Since univariate strategies only have access to
a single feature from all the datasets, the imputed values have no
relationship with the other features.

More complex multivariate strategies such as SciKit Learn’s
Bayesian Ridge iterative data imputer [4, 9], SciKit Learn’s Linear
Regression iterative data imputer [4, 11], or Amazon’s DataWig
imputer [1] learn from all available information in a dataset to infer
missing values based on available ground truth values. We will refer
to these three strategies as trained multivariate strategies as they all
require training. The iterative imputers start by replacing missing
values with the mean of the feature. The iterative data imputer
then creates a prediction model to replace missing values trained
on data points where the true labels are available. The process for
the Bayesian and linear regression is repeated iteratively for ten
iterations, no random starting state, and all other settings default
to SciKit. Felix et al.[2] shows that DataWig is highly accurate in
imputing missing values. The settings we use for DataWig are the
default case, we only provide the data in order to impute.

We also consider another multivariate machine learning (ML)
imputation strategy, K-nearest neighbors [12], for data imputation.
This strategy looks at similar data points to fill vacant spots by
looking at the K data points surrounding a missing data point and
averages them. We use 5 for K as it is the default K value from
SciKit learn. We measure the similarity between data points by
using Euclidean distance between the data points using the values
that are not missing from both data points.

2.2 Genetic Algorithm Setup
We use two variations of a genetic algorithm, a canonical genetic
algorithm (CGA) and the self-adaptive genetic algorithm (SAGA)
developed by Norat et al. [8, 14]. Table 3 gives the CGA and SAGA
parameters used in our experiments.

The CGA and the SAGA are both generational genetic algorithms.
The CGA uses fixed parameters defined by the user, whereas the
SAGA encodes certain parameters inside individuals on a secondary

Parameter
Name

CGA
Values

SAGA
Values

Population 100 100
# Gens 200 200
Selection Tourn Tourn

Tournament
Size 10 SA

Crossover 2-pt SA
Crossover

Rate 0.8 SA

Mutation Uniform SA
Mutation
Rate 0.2 SA

Table 3: GA parameters used for the CGA and SAGA, where
SA means the values are Self-Adapted.

chromosome called the parameter chromosome that allows individ-
uals to evolve its own optimal parameters in addition to evolving a
solution to the problem [8]. These parameters include the crossover
operator, the crossover rate, the mutation operator, the mutation
rate, and tournament selection size.

Including both the CGA and the SAGA allows us to see how
introducing self-adaptive parameters affect the ability for the GAs
to create a good model. Parameter selection is often a deterrent for
using GAs, as there are many parameters which require fine-tuning
in order to have the CGA effectively solve the problem.

Mutation operators available for the SAGA to choose from in-
clude Uniform Random, Gaussian, Polynomial, and Swap, and the
crossover operators available for the SAGA to choose from include
Uniform, Simulated Binary, Arithmetic, Linear, Blend, Simplex,
and Parent-Centric. Each operator has a value called the usage
rate encoded in the SAGA’s parameter chromosome. Mutation and
crossover operators are selected by entering the operators in a tour-
nament and selecting a winner based on the operators’ respective
usage rate for that individual, or average of the operators’ respec-
tive usage rate for the parents involved in the crossover. Crossover
rate and mutation rate are directly encoded as a float value between
0 and 1.

Tournament Size is dependent on the individuals in the popu-
lation who have a "tournament weight" self-adaptive parameter
between 0 and 1, where each tournament has a max weight of 2
[8]. As we randomly sample individuals for the tournament, we
add the tournament weight parameter from the SAGA parameter
chromosome towards the max weight. The tournament is full when
that max weight is reached.

The fitness of the CGA and SAGA individuals is determined by
the accuracy of the prediction model at correctly classifying a data
point. Each individual encodes a constant and a set of weights for
a weighted sum that will be the linear prediction model. The CGA
chromosome and the SAGA solution chromosome consist of a list of
51 floats ranging between -1 to 1. The first float value represents the
constant, which is followed by 25 values representing the weights,
one per feature, and then followed by 25 float values that aremapped
to an integer between one and four to be exponents applied to those
weights. Equation 1 demonstrates the mapping function applied to
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Figure 1: Neural Network Model Layout

the float exponent values to get an integer between one and four.

𝑚𝑎𝑝_𝑒𝑥𝑝 (𝑥) =


1 : 𝑥 < −0.50,
2 : −0.50 ≤ 𝑥 < 0.00
3 : 0.00 ≤ 𝑥 < 0.50
4 : 0.50 ≤ 𝑥 ≤ 1.00

(1)

Equation 2 demonstrates the weighted sum calculated per data
point.

𝑤_𝑠𝑢𝑚(𝑥) = 𝑐ℎ𝑟𝑜𝑚𝑜 [0]+
25∑︁
𝑖

𝑋 [𝑖]∗𝑐ℎ𝑟𝑜𝑚𝑜 [𝑖]𝑚𝑎𝑝_𝑒𝑥𝑝 (𝑐ℎ𝑟𝑜𝑚𝑜 [𝑖+25])

(2)
The weighted sum is the constant plus the sum of the features

multiplied by their respective weights which were raised to a corre-
sponding exponent. The chromosome (labelled "𝑐ℎ𝑟𝑜𝑚𝑜" in Equa-
tion 2) is the list of values that encode the solution inside an indi-
vidual. If the weighted sum is above zero, then we predict the label
is True, and otherwise we predict False.

2.3 Feed-Forward Neural Network Setup
We utilize a feed-forward neural network (FFNN) designed around
the Medicare dataset as the neural-network approach. Figure 1
shows the basic structure of the FFNN. The FFNN uses the Keras
Sequential API that creates three layers, the first one serving as
input, the middle layer serving as a hidden rectified linear unit
(RELU) layer with 23 nodes each input unique feature from the
medicare dataset, and a final sigmoid layer to output a prediction
of one or zero. Two nodes are not included in the FFNN since one
column of the dataset, the practice location, needs to be expanded
into two more columns for the CGA and SAGA to train a model
on, which is not required for the FFNN. Table 4 gives the basic
parameters of the FFNN.

The Adam optimization algorithm [6], which is currently the
state-of-the-art in optimization as well as computationally fast,
optimizes the weights per node in the FFNN. The binary cross
entropy loss function locates and optimizes a binary classification
for the features per row. The FFNN trains on 315 epochs without
an early-stop condition and a batch size of 4096.

Parameter Note
Neuron count 23 + 23 + 1

Layers 3 layers
Training Rate 0.001
Batch size 4096
Epochs 315

Loss Function Binary Crossentropy
Optimization Function Adam Optimization

Dropout No
Table 4: Neural Network Parameters

Figure 2: Explained Variance comparison between the im-
puted data and the original data.

3 COMPARING IMPUTED AND TRUE DATA
We provide statistics to measure the quality of the data imputation.
We use loss functions to measure how similar the ground truth val-
ues are compared to the imputed values. We then look at how each
strategy on average can change the median, mean, and standard
deviation of the independent variables’ values.

3.1 Similarity
We test several loss metrics to measure the difference between the
imputed values and the original values to see how similar they are.
We only review the features in this section since the labels are not
removed or imputed.

Figure 2 demonstrates the explained variance (exp var) over the
percent of imputed data. Each subplot is a different imputation
strategy. The band around the line represents the 95% confidence
interval (CI).

A higher explained variance suggests imputed values are more
similar to the original values. We can see that the univariate strate-
gies, except the mode strategy, have an almost linear decrease in
explained variance with an increase in the amount of imputed data.
Multivariate strategies, however, have higher explained variance,
particularly with smaller amounts of imputed data. Themultivariate
strategies perform similar to the univariate strategy, if not worse,
with larger amounts of imputed data.

Figure 3 demonstrates the mean absolute error (MAE). We can
see that the univariate strategies disregarding mode are fairly linear
and increasing; however, the multivariate strategies have a lower
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Figure 3: Mean absolute error (MAE) comparison between
the imputed data and the original data.

Figure 4: Rootmean square error (rMSE) comparison between
the imputed data and the original data.

MAEwith smaller amounts of imputed data and an equal MAE with
larger amounts of imputed data when compared to the univariate
strategies.

Figure 4 demonstrates the root mean square error (rMSE). Similar
to theMAE, the rMSE is lower for multivariate strategies with lower
amounts of imputed data and equal or higher with larger amounts
of imputed data. Unlike the with the MAE, the rMSE for univari-
ate strategy is logarithmic-like, whereas the trained multivariate
strategy is closer to linear.

The multivariate strategies tend to generate values more similar
to the original dataset because they have the ability to predict
missing features in data points based off the other features rather
than simply aggregate based off the same feature from all the data
points. Multivariate strategies work well with small amounts of
imputed data, but as more data gets imputed due to greater loss of
data, the multivariate strategies are more similar to the univariate
strategies. Multivariate strategies perform worse as more data is
imputed since there is less data remaining to be trained on and
consequently more likely to produce an incorrect value.

3.2 Effects on Statistics
We next review the impact of imputation strategy selection on
the statistics of the features. Figure 5 demonstrates the change in
the median, mean, and standard deviation of the original dataset

Figure 5: Average absolute relative change of the mean, me-
dian, and mode of the independent variables between the
imputed data and the original data.

and the imputed dataset. We measure the absolute difference as a
ratio per independent variable, then average it to understand the
average relative change of the statistics of the whole dataset. Each
line represents one of the different statistics, and each subgraph is
a different imputation strategy.

Multivariate strategies, especially Datawig and KNN, appear to
better maintain the mean, median, and standard deviation when
compared to the univariate strategies, especiallywith lower amounts
of imputed data. Having access to multiple variables allows these
strategies to impute values more accurately per data point, which
makes sense on why the multivariate strategies are better at imput-
ing values that preserve the mean, median, and standard deviation
of the original dataset’s features.

4 EMPIRICAL RESULTS
This section details the breakdown of the performance of the CGA,
SAGA, and FFNN. The breakdown consists of the training, testing,
and control accuracy as the amount of imputed data increases. The
control accuracy is the performance of the algorithm on the true
test data with no imputations. The results per imputation strategy
at each percentage of imputed data for each algorithm is an average
of ten runs, each with a unique set of missing data. Finally, we
provide a breakdown of the weights generated by the CGA and
SAGA and how they are impacted by the amount of imputed data.

4.1 Training and Testing Accuracy
We review the algorithms’ ability to train models on the dataset
given different amounts of imputed data, then review the models’
performance on unseen data points by testing the models on a test
set with the same amount of imputed data and strategy.

4.1.1 Training Accuracy. Figure 6 plots the training accuracy with
respect to the percent of imputed data. Each subplot is a different
imputation strategy, and each line in the subplots represents a
different algorithm (SAGA, CGA, or FFNN). The band around the
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Figure 6: Training Accuracy for the SAGA, CGA, and FFNN
for each imputation strategy.

lines represent the 95% confidence interval (CI). The axes’ lowest
value is 50% since 50% is the expected accuracy when classifying at
random in a binary classification task.

Imputation strategy selection does not impact the algorithms’
training accuracy significantly. The multivariate strategies allow
the algorithms to have a slightly higher training accuracy than the
univariate strategies. The mode univariate strategy leads to the
largest difference in performance as the FFNN maintains a slightly
higher training accuracy than the CGA and SAGA.

As the amount of imputed data increases, all three algorithms
decline in training accuracy. The FFNN has the highest training
accuracy for all the strategies with ground truth data with accuracy
as high as 98%, and continues to do so with smaller amounts of
imputed data. The three algorithms’ training accuracies also became
more similar in terms of training accuracy as the amount of imputed
data increases, however the CGA always has a somewhat lower
training accuracy than the other two algorithms.

4.1.2 Testing Accuracy. Figure 7 plots the test accuracy with re-
spect to the percent of imputed data. The test accuracy represents
the accuracy of the algorithms’ models on unseen imputed data
points.

The importance of imputation strategy selection on the FFNN
becomes apparent when reviewing the test accuracy of the three
algorithms. All univariate strategies and the KNN strategy seem
to lead to similar results where none of the three algorithms are
particularly better or worse. General FFNN performance appears
to be stable across univariate and KNN strategies, including some
significant outliers in mean, median, continuous median and cat-
egorical mode, mode, KKN, and Linear Regression, but has wider
sway in accuracy when compared to the CGA or SAGA.

As observed in Figure 7, we can infer that for the FFNN that
trained multi-variate datasets impacts the performance much more

Figure 7: Testing Accuracy for the SAGA, CGA, and FFNN for
each imputation strategy

than the univariate and KNN datasets. Since the FFNN is a neural
network, understanding why it performs poorly on ML imputated
data is difficult since neural networks lack human-interpretability.
We speculate that there are two reasons for the neural network to
be impacted. The first is that ML-imputation transforms the range
of data that is in the dataset - a number that would be replaced by
an integer would be replaced by a double number with multiple
decimal points. This transformation changes the data representation
presented to the ML, which causes it to train and expect different
representations when attempting to predict a number. This leads
to the second problem - overfitting in predictions that produces
highly inaccurate predictions. It is important to note that the GA
implementations do not share this same behavior, which means
that the GA is resilient against high data transformation.

All three algorithms demonstrate similar test accuracy as the
amount of imputed data increases. The test accuracy for all three
algorithms start around 85%, and all decrease to just below 60%
with 90% imputed data if we disregard the FFNN’s performance on
trained multivariate algorithms.

4.2 Control Accuracy
Figure 8 plots the control accuracy with respect to the percent of
data that was imputed for training. The control accuracy is what
we call the accuracy of the algorithms’ models on the unmodified,
ground truth test set that contains no imputed values. The control
accuracy represents how these models work on true data, despite
training on imputed values. We find that the FFNN can actually
predict more accurately on ground truth data when trained on im-
puted data. We also find that, despite the large amounts of imputed
data, CGA and SAGA maintain a control accuracy similar to the
test accuracy on ground truth data. We speculate that the CGA and
SAGA are capable of maintaining a high control accuracy because
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Figure 8: Control Accuracy for the SAGA, CGA, and FFNN
for each imputation strategy

the CGA and SAGA are still finding relevant relationships between
the features and the labels of the data points.

The sensitivity of FFNN to imputation strategy observed in the
testing accuracy results persists in the control accuracy results.
Where the CGA and SAGA seem to maintain a control accuracy
equal to the test accuracy of models training on ground truth data,
the control accuracy of the FFNN varies between strategies.

The KNN strategy and the univariate strategies excluding mode
tend to give the FFNN an advantage over the CGA and SAGA with
medium amounts of imputed data. The FFNN actually has an in-
crease in control accuracy with these strategies when the amount
of imputed data initially increases. This improvement could be due
to increasing generalization initially that occurs when random fea-
tures are replaced with the univariate strategies and KNN. With
moderate data loss, diversity of data points decreases and imputa-
tion will more likely impute data points that make it slightly easier
for the FFNN to obtain a higher accuracy. Another factor that can
improve the prediction is that since the control set has data points
that are correct, it makes it easier for a trained FFNN model to
correctly predict values, an observable factor that can be seen in
the CGA and SAGA.

FFNN has the higher accuracy in the univariate and KNN strate-
gies and maintains a slightly higher accuracy until a gap chance
of 80%, where in mean, mode, KNN, and continuous mean and
categorical mode has the bigger decreases in accuracy. We can see
that similar to the test accuracy, the control accuracy is much lower
for the FFNN when trained on data points imputed by the trained
multivariate strategies.

As the amount of imputed data increases, the CGA and SAGA
remain at slightly above 80% control accuracy, whereas the FFNN
changes. As previously mentioned, the FFNN has a higher control
accuracy with non-trained strategies (Univariate strategies and
KNN) than they did when training on ground truth data. This is

Figure 9: Weights generated by the SAGA and the CGA for
"Female", "Num HCPCS", and "Num Medicare Beneficiaries"
as the amount of data imputed increases.

particularly true with amounts of imputed data between 20% and
80%.

4.3 Weight Extraction
One benefit of a linear model over a neural network is the ability to
interpret the relationship found between the features and the labels
by reviewing the weights. Seeing that the CGA and SAGA maintain
a high control accuracy, we further examine the weights CGA and
SAGA generate and how the imputation strategy selection and
amount of imputed data impacts those weights.

The CGA and SAGA’s weights demonstrate the relationship
between features and the label of the data points. Weights closer
to 1 and -1 demonstrate a stronger and more relevant relationship,
where 1 is a positively correlated relationship and -1 is a negatively
correlated relationship. Weights closer to zero are deemed to be
irrelevant to predicting the label.

We find that even as the amount of imputed data increases,
the CGA and SAGA are capable of finding the most relevant and
most irrelevant weights; however, weights that have medium or
inconsistent values in the original experiments [8, 14], change in
importance as the amount of imputed data increases.

We provide three examples of weights in Figure 9, showing the
weight values encoded in the best individual of the each run for
the "Female", "Num HCPCS", and "Num Medicare Beneficiaries"
features.

We can see that regardless of strategy selection, the most impor-
tant feature and least important feature stay relatively the same
up until about 80% of the data being imputed. All tested strategies
keep "Female" low and "Num Medicare Beneficiaries" high up until
80% of the data is imputed.

The weight for "Female" (whether the PT is female or not) is not
an important factor in determining the correct label [14], and stays
irrelevant regardless of the amount of imputed data. The weight for
"Number of Medicare Beneficiaries" is found to be important [14]
and stays important until there is a large amounts of imputed data at
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which point the weight starts to decrease. The weight for "Number
of HCPCS", however, is found to have growing significance as the
amount of data that was imputed increases. Wu et al. [14] and Norat
et al. [8] finds that the "Number of HCPCS" had some importance,
but not as significant as the features like "Number of Medicare
Beneficiaries".

These results demonstrate that the CGA and SAGA are still ca-
pable of finding relevant relationships between features and labels
despite large amounts of imputed data. This explains why the con-
trol accuracy remains high despite a lower training accuracy and
test accuracy. Having a low training and test accuracy but high
control accuracy demonstrates that these relationships may not
be as applicable on imputed data, but still work on true data. It
is important to note again from Figure 7 and Figure 8 and how
the accuracy in FFNN is highly impacted by using multivariate
trained imputation methods. This provides evidence to support our
speculation that the FFNN overfits its model when training and
generally results in low accuracy when predicting data from ML
imputed datasets.

Using the linear models optimized by the CGA and SAGA for
linear regression analysis may be less reliable with large amounts
of imputed data. Most relevant and irrelevant weights remain fairly
similar to the weights extracted on the original dataset, but some
weights change with increasing amounts of imputed data.

5 CONCLUSION
In this study, we compare the performance of a Canonical Genetic
Algorithm (CGA), a Self-Adaptive Genetic Algorithm (SAGA), and
a Feed-Forward Neural Network (FFNN) on a binary classification
problem given datasets with different amounts of imputed data
and imputation strategies. We show the impact of data imputation
strategy selection has on these algorithms and compare how they
perform.

Given that many algorithms, including the algorithms in this
paper, require complete datasets to build prediction models, we
must have a good understanding of data imputation and its effects
on prediction modeling in order to effectively use datasets that may
have missing data.

We remove data completely at random in our dataset and impute
the missing values using nine different imputation strategies and
review the differences between the imputed data and the ground
truth data. We then compare how the different algorithms are able
to perform on the imputed data based on the different accuracy on
the binary prediction task. We evaluate the algorithms by reviewing
their ability to train a model on imputed data (training accuracy),
their ability to classify data on unseen imputed data (test accuracy),
and their ability to classify data on unseen ground truth data despite
being trained on imputed data (control accuracy).

The CGA and SAGA both are genetic algorithms training a linear
prediction model. We find the performance is similar between the
two algorithms despite the SAGA having self-adaptive parameters
and the CGA using fixed pre-tuned parameters. The FFNN is differ-
ent as it trains on the data using neural networks, utilizing Adam
to improve the learning of the algorithm and loss functions such
as binary cross-entropy to predict values. The FFNN, while func-
tionally different to an evolutionary algorithm, can obtain higher

accuracy with moderate levels of imputed data in the test and con-
trol datasets.

We find that the multivariate strategies impute values more sim-
ilar to the original dataset by using loss functions between the orig-
inal and imputed datasets. We also find that multivariate strategies,
particularly Datawig and KNN, are more effective at maintaining
the mean, median, and standard deviation of the features in the
dataset.

The algorithms’ results demonstrate that imputation strategy se-
lection has a minimal impact on both the CGA and SAGA; however,
the FFNN has a much lower test and control accuracy when trained
on data imputed by a trained multivariate strategy. This is unex-
pected as the multivariate strategies impute data more similarly to
the original data according to our analysis. With univariate strate-
gies, the FFNN seems to perform similar to the CGA and SAGA in
terms of training and test accuracy; however, it seems to actually
improve in control accuracy. Understanding the impact of imputa-
tion strategy selection on predictive modeling is important, as we
have shown that different algorithms like the FFNN may perform
differently given imputation strategy selection, where others like
our CGA and SAGA are not as sensitive.

All three algorithms have a decrease in training and test accuracy
as the amount of imputed data increases, and the difference between
the accuracy of the algorithms decreases as the amount of imputed
data increases.

Control accuracy, however, seems to not be affected much by
the amount of imputed data. We find that, even with large amounts
of imputed data, all three algorithms are capable of maintaining a
control accuracy similar to the test accuracy on the ground truth
data. We find these algorithms on our dataset are capable of creating
a model that is just as effective on unseen true data when trained
on 80% imputed data versus when trained on ground truth data
assuming that the missing data is missing completely at random
and there are a significant number of data points.

The CGA and SAGA have overall very similar performance with
training, test, and control accuracy. Given that both algorithms
are genetic algorithms, it is not surprising that their performance
is similar. The SAGA has a slightly higher training accuracy than
the CGA, however the difference between the SAGA and CGA in
regards to test and control accuracy are not notable. Given the CGA
and SAGA’s similar performance, it seems advantageous to look
more into self-adaptive parameters, as parameter selection is often
a deterrent for using Genetic Algorithms.

Comparing the FFNN to the CGA and SAGA, we can see that the
FFNN performs similar to the CGA and SAGA on unseen imputed
data; however, FFNN has a higher control accuracy on moderately
imputed data when not using a trained multivariate imputation
strategy. The CGA and SAGA are better suited for datasets imputed
with trained multivariate strategies or for whenever understanding
the relationships between the features and the labels is important.
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