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A B S T R A C T   

This paper describes our investigation to determine whether undesirable health conditions of an automobile 
driver can be identified in real time solely by monitoring and assessing his/her driving behavior. The concept has 
great potential to reduce the accident rate on roadways, especially for young inexperienced drivers who may be 
suffering from chronic health conditions that when uncontrolled, can result in dangerous driving actions. Our 
approach involves building models of “normal” and “abnormal” driving by an individual through machine 
learning from observation (MLfO, or simply LfO). Conceptually, discrepancies between actual driving actions 
taken by a driver in real time and the actions prescribed by a model of her/his normal driving, and/or similarities 
to a model of his/her abnormal driving, could indicate a dangerous medical condition. If appropriate, the system 
could alert the driver and/or the appropriate authorities (e.g., EMTs, police, or parents if a minor) of the po-
tential for danger. More specifically, our research created models of human driving through the use of an LfO 
system developed previously in our laboratory called Force-feedback Approach to Learning from Coaching and 
Observation with Natural and Experiential Training (Falconet). Time-stamped traces of actions taken by 12 human 
test subjects in a driving simulator were collected and used to create the models of human driving behavior 
through Falconet. Then the overall actions prescribed by the models (called the agents) were compared to the 
original traces to ascertain whether similarities and/or differences between the human test subject behaviors and 
the agent behaviors could be indicative of the target conditions. In our use case presented here, the target 
condition was Attention Deficit/Hyperactivity Disorder (ADHD), a condition that afflicts many driving age 
teenagers and which can be detrimental to safe driving when not under control through medication. The work 
described in this paper is exploratory in nature, with the objective of showing scientific feasibility. The results of 
extensive testing indicate that the agents created with the Falconet system produced promising results, being able 
to correctly characterize traces in up to nearly 82% of the test cases presented. Nevertheless, as is typical in such 
exploratory works, we found that much further work remains to be done before this concept becomes ready for 
commercial application. In this paper we describe the approach taken, the agents created and the extensive 
quantitative experiments conducted, as well as any insights learned. Areas of further research are also identified 
and discussed.   
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1. Introduction 

Driving a motorized vehicle on US roads - or anywhere in the world 
for that matter - can be dangerous to one’s health. The US National 
Safety Council estimates that there were 38,800 traffic fatalities in the 
US in 20191. While these numbers have not grabbed the attention of the 
press or of our political leadership in the midst of the COVID-19 
pandemic, traffic fatalities remain a serious problem that takes a 
terrible annual toll in lives, and cries out for innovative ways to reduce 
these losses. The work we describe here seeks to bring Artificial Intel-
ligence to bear to reduce this needless loss of life, especially in young 
drivers. The research is the result of a collaborative five-year program by 
four institutional partners: Drexel University, Children’s Hospital of 
Philadelphia (CHOP), George Mason University (GMU), and the Uni-
versity of Central Florida (UCF). This article only describes the research 
conducted (mostly) at the University of Central Florida, but discusses the 
overall objectives of the larger project to which all partners have 
contributed in ways not discussed in this paper. 

Our overall concept explores opportunities for identifying health 
issues in a person in real time while he/she drives a motor vehicle. Our 
objective is to build a general approach for detection of abnormal 
driving behavior. Such abnormal behavior may be influenced by active 
health conditions, such as driving under the influence of alcohol or 
drugs, or may be the result of an event (e.g., stroke or heart attack). Our 
use case particularly targets young drivers who may be afflicted with 
complex disorders whose identification strictly via driving actions may 
be complex. As our use case, we address the detection of uncontrolled 
Attention Deficit/Hyperactivity Disorder (ADHD), a prevalent chronic 
medical disorder that when not controlled, has the potential for known 
negative health and quality of life consequences, including motor 
vehicle accidents2. 

Many other similar works reported in the literature (see the related 
works in section 3 below) involve physically instrumenting the driver to 
monitor his/her biological signals such as blood pressure, heart rate, 
skin temperature, direction of eye gaze (Groom, van Loon, Daley, 
Chapman, & Hollis, 2015) (Karatekin, 2007), EEG (Groom et al., 2010 – 
although not on a driver) and others. Unlike these works, our approach 
does not involve instrumenting the driver and is therefore non-invasive. 
It only monitors variables that can be automatically accessed from the 
car, such the car’s speed, acceleration/deceleration, angle of steering 
wheel, plus several environmental variables such as traffic signals and 
the presence of other vehicles around it. Much of the required data (e.g., 
speed, angle of steering wheel) can be obtained directly from the auto-
mobile. Many of the environmental variables, such as speed limit in road 
segment and proximity to traffic signs or signals are already easily 
available from modern road navigation systems. On the other hand, 
when in actual practice, the detection of other vehicles, pedestrians and 
road hazards will initially require complex instrumentation such as 
cameras and machine vision interpretation. However, in a (possible) 
future of inter-vehicle communication and highly instrumented road 
networks, especially in urban settings, such information may be avail-
able directly through these means, thereby making such additional 
instrumentation potentially unnecessary, or at least minimal. 

Specifically, we sought to investigate how machine learning could be 
employed to detect abnormal driving behavior. We use the concept of 
Machine Learning from Observation (MLfO, or simply, LfO) of human 
performance as the basis for our approach. LfO is a type of machine 
learning that builds a model of a person’s behavior (actions) strictly 
through unobtrusive observation of his/her behavior. We call these 
models agents, and they are capable of prescribing a control action to be 
taken in a just-in-time fashion as a reaction to the situation being faced 
by the driver (we call it the context), as perceived in real time through a 

suite of sensors. The overall behavior prescribed by the agent as it 
“drives” the route alongside the human driver is then compared to the 
human’s actual behavior in real time to detect any meaningful similar-
ities or discrepancies that could suggest a problematic condition. Our 
work uses an LfO system (described later) to generate two models of an 
ADHD-afflicted automobile driver’s behavior: one under “normal” 
conditions (i.e., not under the influence of ADHD), and another one 
under “abnormal” conditions (i.e., under the influence of ADHD). This 
approach involves an extra step – that of building these models (agents) 
a priori. However, we believe that there may be advantages to using 
agents that can operate in real time in reaction to the traffic context, and 
that are generalized (i.e., can cover similar but not identical situations to 
what was observed during their training). 

Randell, Charlton, and Starkey (2020) report that there is significant 
difference in driving behavior between the ADHD-afflicted drivers who 
are medicated and those who are un-medicated. We thus define “normal” 
behavior here as that of an ADHD-afflicted driver who is currently on a 
correct dose of appropriate medication, while an “abnormal” driver is an 
ADHD-afflicted driver who is currently not on any relevant medication 
and therefore under the active influence of ADHD. 

The LfO system used to generate the two types of agents (under 
medicated and un-medicated conditions) was the Force-feedback 
Approach to Learning from Coaching and Observation with Natural and 
Experiential Training (Falconet) (Stein & Gonzalez, 2011; Stein, 2009). 
The agents are trained by Falconet to learn how to drive a car only by 
observing how humans do it. Upon completion of the training process, 
they are capable of determining a driving action in light of the driving 
situation, and executing it in a simulation. A subsequent extension of 
Falconet (Stein & Gonzalez, 2014) made it context-centric, such that it 
prescribed the actions based on the context identified through inter-
pretation of the sensor readings; this context is to be the same as what 
the driver would perceive. This contextualization permitted agents 
created with this extension to succeed in applications where agents 
created with the original version of Falconet could not (see Stein & 
Gonzalez, 2014). Actually, with some modifications, these agents could 
conceivably be used to drive a physical car autonomously, but that is a 
story for another day. 

The agents used in our research were created from unobtrusive 
observation of 12 human test subjects as they drove a simulated vehicle 
(called own-car) through a simulated road network. The use of a car 
simulator eliminated safety risks to the human test subjects, to our 
research staff, and to any other drivers and pedestrians who might have 
been present if we had gathered the data while driving an actual auto-
mobile on actual roads. This would have been particularly perilous when 
a test subject afflicted with ADHD was to be driving the car while un- 
medicated. 

When realized to its fullest potential, we envision this approach to 
work as follows: an at-risk driver who suffers from a chronic medical 
condition is brought to a test center when in a normal state of health (i. 
e., medicated), and asked to drive a simulated automobile through 
several different traffic contexts. The same individual could be asked to 
return to the test center while un-medicated (on a different day) to drive 
the same simulated road network. Her/his performance data are 
collected as time-stamped traces, which are then presented to Falconet 
(after some non-trivial pre-processing) to create an agent that accurately 
reflects her/his normal (or abnormal) driving style. This agent is 
thereafter placed on-board his/her car on a computer with access to a 
suit of sensors, and is used to predict what the driver would normally do 
under the traffic conditions being perceived by the agent through the 
suite of sensors. Any discrepancies between the normal agent and the 
driver’s actual actions - that are consistent over time and/or severe - 
could be flagged as indicative of an abnormal condition, and corrective 
action could be initiated by the system by contacting the appropriate 
authorities before an accident occurs. Additionally, a second agent that 
is reflective of how the same individual drives when under the influence 
of his/her chronic condition (an abnormal agent) would look for 

1 https://www.nsc.org.  
2 https://chadd.org/for-adults/adhd-and-driving/. 
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similarities between the abnormal agent and the driver’s actual actions. 
Ideally, both could be used to obtain corroborating evidence. We should 
note here that our research described here did not include placing these 
agents in an actual automobile to detect the conditions in real time. We 
only assessed the after-the-fact correlation between an agent-generated 
trace and a human-generated trace, as the reader will see below. Placing 
the model on-board an automobile to detect abnormal conditions in real 
time is our logical next major step but it is regrettably left for future 
research. 

2. Objectives of our research 

The major objective of our research presented here was to show the 
scientific feasibility of our general approach to identifying negative 
health conditions strictly by monitoring a driver’s driving actions. We 
use medicated and un-medicated drivers afflicted with ADHD as our use 
case to show such feasibility. Our hypothesis in this research is: 

Models of human driving behavior, built through machine learning 
from observation of human drivers afflicted with ADHD, can be 
compared to their actual driving behavior to identify when these 
drivers are operating a motor vehicle while suffering from un- 
controlled ADHD conditions. 

Fundamentally, our approach looks for overall differences in driving 
actions over an extended (several minutes) period of time, rather than 
for specific actions that may be typical of drivers suffering from a spe-
cific condition (e.g., lane drifting, running stop signs or red lights, 
ignoring emergency vehicles). The advantage to this approach is that it 
could be generally applicable to many different conditions, without 
having to specify and codify specific behaviors for each condition. In 
such a way, we avoid the problem of a system that does not recognize a 
telltale behavior because it was not defined and codified a priori. In 
other words, our approach is unlike that of a knowledge-based system 
that could only identify specific behaviors known to an expert and 
properly codified into the system. 

More specifically, we pursued the following two objectives:  

1) Discern whether the state (e.g., medication condition) of a specific 
human driver can be identified by comparing her/his current driving 
actions to those of models of his/her driving behavior while medi-
cated and/or while un-medicated. The question, in effect, is whether 
their normal and abnormal driving behaviors are sufficiently 
different and whether the actions that embody the differences are 
able to be captured and reflected sufficiently well in models built 
through machine learning from observation. If so, this would indi-
cate scientific feasibility.  

2) Assess whether the driving actions of several medicated humans are 
similar enough among themselves such that generic models of 
“normal” driving can be built for use on multiple humans. Similarly, 
the same was done for drivers in an “abnormal” state. If they are 
similar enough, conceivably one generic model could be used for all 
(or at least several) drivers in the same medication state. This would 
facilitate the exploitation of this technology in actual applications. 
Otherwise, individual models specific to each driver would have to 
be created. 

We refer to the first as a Horizontal Assessment, where in our ADHD 
use case, the medicated and un-medicated agents pertaining to one in-
dividual test subject are compared to traces of the same test subject 
driving while medicated and while un-medicated. We refer to the second 
objective as Vertical Assessment, where a generic agent trained with 
multiple traces of different human test subjects driving under the same 
medication condition is compared to the traces of other test subjects in 
the same condition. The agents generated by Falconet were trained to 
output the speed of the car and the steering wheel angle. The speed 

models the foot pressure on the accelerator or brake pedals. The steering 
wheel angle situates the simulated car on the roadway and in the lane. 
Tests were designed to verify/disprove our hypotheses and objectives 
above. More details on these tests can be found in section 4.7 below. 

We next describe the relevant literature to properly place our work 
within the state of the art. 

3. Related work in driver health monitoring 

In this section, we review the work of others who have investigated 
the impact of ADHD on adult and teenage driving behaviors as well as 
the concept of monitoring a driver with the objective of discovering 
some sort of physical or mental state on the part of the driver. We should 
note here that we do not claim to have made any advances in machine 
learning as a part of our research presented here. Therefore, we do not 
review any of the very extensive literature in machine learning. 

There is ample evidence in the literature about the effects of ADHD 
on human task performance (Boland et al., 2020) dating back to the late 
1990′s. Reimer, Mehler, D’Ambrosio, and Fried (2010) and Biederman 
et al. (2012) state that teenagers and young adults with ADHD “… have 
been shown to be at increased risk for impairment in driving behaviors” 
(Biederman et al., 2012). Barkley, Murphy, O’Connell, and Connor 
(2005) extend that statement to adults as well as teenage drivers. Curry 
et al. (2017), Curry, Yerys, Metzger, Carey, and Power (2019) take this 
further by reporting that ADHD-afflicted teens have a higher incidence 
of motor vehicle crashes in their first few months after initial licensure 
than do the general population of teenagers in their same first few 
months after licensure. Merkel et al. (2016) recorded videos of ADHD- 
and non-ADHD-afflicted drivers and had human judges observe recor-
ded high G-force events and determined that drivers with ADHD 
exhibited more risky driving behaviors and increased consequences for 
“faulty driving”. Fabiano et al. (2016), Faraoner et al. (2019) and Aduen, 
Cox, Fabiano, Garner, and Kofler (2019) provide recommendations on 
interventions to improve the driving habits of young drivers. 

In a meta-study, Vaa (2014) refutes the mainstream opinion indi-
cated above and asserts that the accident rate for ADHD-afflicted drivers 
was in fact not higher than for non-afflicted drivers. This report claims 
that the reason for the higher accident rates reported for ADHD-afflicted 
drivers in several other studies such as (Barkley, Guevremont, Anasto-
poulos, DuPaul, & Shelton, 1993) was that ADHD-afflicted drivers tend 
to drive more miles than those not afflicted. Nevertheless, we base our 
work here on the predominant opinion that un-medicated ADHD- 
afflicted drivers can present a greater driving risk than those who are 
medicated (or not afflicted with ADHD). 

A significant amount of work has been done in monitoring the state 
of drivers, principally around detecting loss of driver consciousness 
resulting from fatigue/lack of sleep or intoxication. Das, Zhou, and Lee 
(2012) collected data from 108 drivers under normal conditions and 
under alcohol-induced impairment in a driving simulator. Based only on 
steering wheel movement, they differentiated driving states based on 
nonlinear invariant measures (such as sample entropy). Jin et al. (2013) 
detected sleepiness based on eye movement using machine learning 
(Support Vector Machines) in a study with 12 drivers. They report 
predictive accuracies between 74% and 96% when trained for specific 
drivers, and of 72% for a general model. Liang (2009) used data mining 
algorithms on a 100-car naturalistic dataset to detect driver distraction. 
Otmani, Pebayle, Roge, and Muzet (2005) reported on which driving 
performance measures were correlated with sleep deprivation. Kang 
(2013) applied several techniques to the detection of drowsiness and 
distraction, and to predictions of dangerous driving. 

Research has progressed sufficiently for automatic detection of 
drowsiness such that a range of approaches exist based on in-vehicle, 
behavioral or physiological measures (Sahayadhas, Sundaraj, & Mur-
ugappan, 2012). Sahayadhas et al. review approaches based on detect-
ing yawning, facial expression and eye-related measurements; head pose 
and gaze direction; approaches based on physiological measurements; 
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and those based on vehicle features such as steering wheel or lateral 
position deviation, e.g., (Torkkola, Massey, & Wood, 2008). They 
conclude that there is an urgent need for public datasets on real driving 
conditions to evaluate these techniques. Their research demonstrates the 
feasibility of using driving behavior to detect clearly dangerous driver 
states (distraction, intoxication and drowsiness) but the work has not 
extended to subtle (nonintrusive) monitoring of more complex behav-
iors resulting from medical conditions such as ADHD to predict when the 
conditions of the drivers are not well-controlled. 

Other work has focused on predicting high-risk situations before they 
happen. Siordia, de Diego, Conde, Reyes, and Cabello (2010) present a 
machine learning approach to predict driving risk level, based on fea-
tures extracted from a driving simulator (including visual features, such 
as “driver is not holding the steering wheel”), achieving classification 
rates of higher than 90% when the model was trained and tested in the 
same scenario, but only between 20% and 60% when they tried to 
generalize across scenarios, indicating that the sets of rules (obtained 
from experts) used for preparing the data are highly domain dependent. 
More robust models are needed for this important predictive capability. 

There has been work on learning predictive models of driving 
behavior. Suzuki et al. (2005) propose a model to learn driving behavior 
(with focus on collision avoidance) based on stochastically switched 
linear models. Specifically, they learn linear models, and then learn a 
switching policy based on Hidden Markov Models (HMMs). They 
observe that often a human driver “switches the simple control laws 
instead of adopting the complex nonlinear control law”. Oliver and 
Pentland (2000) presented an approach based on HMMs and Coupled 
HMMs (CHMMs) trained from data from a Smart Car from 70 different 
drivers, that was capable of predicting behavior up to 1 s before the 
maneuver takes place. Kishimoto, Abe, Miyatake, and Oguri (2008) 
present a Dynamic Bayesian Network model capable of differentiating 
hasty and un-hasty behaviors. These models were trained separately for 
different maneuvers: passing, starting and stopping, turning left, etc. 
Salvucci (2004) presents an ACT-R-based model for predicting lane 
changes. 

Finally, other members of our project group have addressed the same 
problem from different Machine Learning perspectives. Our partners at 
Drexel University use clustering methods and classification algorithms 
(k-NN) to identify segments in a time series that show similar traits 
(Grethlein & Ontañón, 2020; Grethlein et al., 2020). Likewise, our other 
partners at George Mason University employ a direct comparison 
approach that selects specific regions of the trace and creates a contrast 
dynamic feature dependency (CDFD) graph or pattern of the event (Li, 
Zhao, Lee, & Lin, 2020; Li, Zhao, Lee, Sassanin, & Lin, 2020). 

4. Our approach 

In this section, we briefly describe the LfO system used to create the 
agents, the data used for creating these agents, the simulator used to 
capture these data from the human test subjects, and the tests con-
ducted. We begin by describing the underlying technology used to create 
(train) and execute our agents. 

4.1. Machine learning from observation 

The process of machine learning from observation creates agents that 
learn to act in a manner similar to a human actor who is observed as she/ 
he performs a control task (e.g., controlling some type of physical de-
vice). The observations are recorded in a time-stamped trace, taken 
either from a simulator (as in our case) or from an actual device in the 
physical world. Two important (self-imposed) restrictions on our work 
are that: 1) no interaction of any type is permitted with the performing 
actor, other than the quiet observation of her/his behavior. That means 
that no questions can be asked of the actor before, during or after the 
performance. Moreover, no further performances can be arranged to 
clarify any unresolved ambiguities. We refer to this as unobtrusive 

observation. Secondly, 2) the actor’s performance is not for the purposes 
of training anyone or anything. Rather, it is to be an uninhibited natural 
performance of carrying out the task to be observed. These two re-
strictions allow the application of our techniques to observing actors 
who may not be aware that they are being observed (e.g., observing the 
tactics of enemy forces in a battle or of an opponent in athletic 
competition). These are the main distinguishing features between our 
version of LfO and Learning from Demonstration, an otherwise similar 
area of research. 

There is an extensive body of research literature on Machine 
Learning from Observation, Learning from Demonstration and other 
variations of this theme that use labels such as Behavioral Cloning and 
Learning from Instruction. All of these share the common basic objective 
of learning through direct interactions with humans. Following up on 
our statement in section 3 above, we likewise do not claim here to have 
made an advance in LfO. Rather, we present a novel application of LfO 
systems and methods already described in the literature (i.e., Falconet). 
Therefore, we have refrained from providing a review of the extensive 
LfO body of literature in order to limit the length of this article. We refer 
interested readers to Argall, Chernova, Veloso, and Browning (2009) 
and Torabi, Warnell, and Stone (2019) for detailed reviews of the 
literature in these topics. 

Our research group has done extensive work on learning from un-
obtrusive observation of human behavior since the early 1990s, mostly 
while driving an automobile or performing similar control tasks that 
have included driving a battle tank, tactically navigating a submarine, 
flying a drone, loading boxes on ships with a movable crane, and even 
herding sheep. The observations all took place in simulators to avoid the 
impracticality of real world exercises (e.g., finding a battle tank, a 
submarine or a herd of sheep), not to mention avoiding the aforemen-
tioned inherent risks to all personnel involved when driving real auto-
mobiles on public roads. The Falconet system used in our work had been 
previously applied to automobile driving behavior with good results (see 
Stein & Gonzalez, 2011), so it was our natural initial choice. Another LfO 
system that had been previously (and successfully) used to learn auto-
mobile driving behavior was the Genetic Context Learning system (GenCL) 
(see Fernlund, 2006) which used Genetic Programming (Koza, 1992) as 
its basis for learning. However, in an early phase of this investigation, 
our results with GenCL were not deemed to be satisfactory, so we 
desisted on its further use. Other potentially applicable systems such as 
Sidani’s IASKNOT (Sidani & Gonzalez, 2000), Stensrud’s FAMTILE 
(Stensrud & Gonzalez, 2008), Trinh’s COPAC (Trinh & Gonzalez, 2013), 
Johnson’s COLTS (Johnson & Gonzalez, 2014) and an un-named system 
by Aihe (Aihe & Gonzalez, 2015) had not been specifically or extensively 
applied to learning driving behavior and thus were not explored. We 
hope to study the applicability and usefulness of some of these other 
systems in our future research. 

Falconet employs a novel algorithm called Pigeon-Alternate (simply 
called Pigeon here) (Stein, Gonzalez, & Barham, 2015) that combines 
Neuro-evolution (Stanley & Miikkulainen, 2002) and Particle Swarm 
Optimization (Kennedy & Eberhart, 1995) in an alternating manner. We 
discuss Falconet and Pigeon in greater detail in Section 5 below. 
Nevertheless, for full descriptions of Falconet and of the Pigeon algo-
rithm we direct the interested reader to (Stein and Gonzalez, 2011, 
2014; Stein et al., 2015) and particularly to the doctoral dissertation that 
served as source documents for these publications, (Stein, 2009). 

4.2. Driving simulator 

Our experiments comprised observing the driving behavior of 12 
different human test subjects on a driving simulator. The data collection 
was done by our partners, the Children’s Hospital of Philadelphia and 
George Mason University. Each of the test subjects was medically 
certified to be afflicted with ADHD. Each test subject was asked to drive 
a simulated automobile through four simulated and pre-determined 
routes (called Drive 1 through Drive 4) while under two separate 
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medication states (or conditions). The test subjects drove each of these 
routes twice – once while under a medicated state and once while un- 
medicated. The drives under each medication state were done on 
different days. The routes presented the driver with traffic lights that 
changed color (red to green only), stop signs, and construction zones, 
speed limits, and included other traffic. The test subjects were allowed 
one unrecorded drive of arbitrary duration (Drive 0) prior to being 
recorded in order to allow him/her to become familiarized with the 
simulator. 

The data used in our particular study were collected at George Mason 
University in a half-cab Realtime Technologies, Inc. motion-based high- 
fidelity driving simulator. The driving scenarios were programmed 
using JavaScript while the driving environment was developed in Sim-
Vista and run using SimCreator. Participants completed the practice 
(unrecorded) drive and the four different experimental (recorded) 
drives, each lasting between 7 and 15 min. The drives contained ambient 
traffic and consisted of two- and four-lane roads in rural and urban 
environments. Three cameras recorded the participants’ foot movement, 
face, upper body, and over the shoulder view; however, these camera- 
based data were not used to build our models. See Fig. 1 for some vi-
sual scenes in the driving simulator, and Figs. 2 and 3 for simplified 
maps of the four drives with the traffic signals indicated therein. Table 1 
describes the traffic devices present in each of the drives. See Lee et al. 
(2018) for more information about the study design, including details 
about the participant profiles, recruitment procedure, etc. 

4.3. Agents created 

Twenty-four (24) agents were created from twelve (12) human test 
subjects who were known to suffer from ADHD – 12 agents that model 
each test subject’s individual behavior while driving medicated, and 12 
other agents that model their behavior while driving un-medicated. The 
test subjects were specifically recruited for this study and had to pass a 
set of clinical screening criteria to assure ADHD affliction. They were 
anonymously labeled as Subject #602, Subject #607, Subject #608, 
Subject #609, Subject #612, Subject #613, Subject #615, Subject 
#617, Subject #619, Subject #620, Subject #622 and Subject #627. 
The same traces of these twelve human test subjects were used for the 
Horizontal and Vertical tests. 

We should note here that although the test subjects drove pre- 
determined routes (Drives 1 through 4) in their experiments, the 
Falconet-based agent building process in no way used this pre- 
determination to assist in its creation of the agents. Thus, it can be 
safely asserted that the process is a general one and would work the 
same way with any other route driven as long as it had the same ele-
ments (e.g., traffic lanes, traffic lights, stop signs, etc.). 

4.4. Context and its role in our approach 

It is widely accepted in cognitive psychology that humans rely 
heavily on context for memory recall, speech, and problem solving 
(Hollister, Gonzalez, & Hollister, 2019). However, context had origi-
nally been an underappreciated component of artificial intelligence in 
the early AI literature (Zibetti, Hamilton, & Tijus, 1999). That has 
changed over the last 20 years or so since the emergence of context- 
sensitive computing (Dey, 2001). We are strong believers in the power 

of contextual reasoning for building intelligent agents, so the agents 
created in this project were designed to operate in a context-centric 
manner. That is, an agent is trained on how to act in a particular situ-
ation (a context) where certain specific assumptions are valid. An agent 
thus not only has to learn what to do when in a particular context, but 
must also be able to infer in what context it finds itself at all times so it 
can autonomously “place itself” in the correct computational context 
when the situation around it changes, so it can act appropriately. To 
infer the context in which it is, the agent needs to be able to recognize 
the environmental and internal conditions, as well as its own goals. To 
implement such context-centric behavior, the resulting agents operate 
under the Context-Based Reasoning (CxBR) paradigm (Gonzalez, Sten-
srud, & Barrett, 2008). 

Briefly, CxBR dictates that an agent can be in one of several 
mutually-exclusive Major Contexts, which are situations where only a 
(usually small) subset of the agent’s total knowledge is relevant. In 
CxBR, exactly one Major context, the so-called active context, controls 
the agent at any one time; so, it is imperative that the active context 
correctly reflect the situation in which the agent finds itself at all times. 
Each Major context has one or more transition rules, which determine to 
which other Major context the control is to switch when the active Major 
context is no longer deemed suitable to address the situation at hand. 
Transition rules, of course, are also context sensitive so that the Major 
context to which to switch depends on the active context. It also contains 
one or more action rules (or action functions), which determine what the 
agent should do when it is under the control of this context. However, 
when a relatively brief and specialized situation presents itself, a context 
can temporarily pass control of the agent to a sub-context designed to 
handle that specialized situation. An example of such specialized situ-
ations could be passing another car on a two-lane road. In this example, 
while driving on a rural two-lane road and being controlled by a Major 
Context appropriately called Two-lane-road-driving, the agent en-
counters a slow moving truck ahead and decides it wants to overtake it. 
The Major (active) Context passes control of the agent to a sub-context 
that might be appropriately called Passing-in-two-lane-road, which 
manages the agent’s actions while it is passing the truck, only to return 
control to the original active Major Context that invoked it after the 
passing procedure is completed. However, if the agent’s situation were 
to change (at any time) such that the active context is no longer suitable 
to address it, then the active context’s transition rule(s) will return false 
and a new Major Context, whose (at least one) transition rule(s) return 
true, would become the new active context. If no Major Context is able to 
take control (should only happen very rarely), then a default context 
becomes the active context. 

In our work, each agent was composed of five independent context 
agents – Rural Construction Zone (RCZ), Rural Stop Sign (RSS), Urban 
Construction Zone (UCZ), Urban Stop Sign (USS) and Urban Traffic Light 
(UTL) (see Fig. 4). These five context agents reflect the behaviors 
observed in the test subjects when they were in these different traffic 
situations. We should note that a CxBR agent normally possesses the 
knowledge to determine in which context it finds itself; however, such 
was not put into effect in our agents, as our intent was to assess whether 
the contextualized behaviors were accurate representations of the test 
subjects observed. Furthermore, while Falconet possesses the means to 
automatically learn the transition rules that serve to trigger context 
changes, these features were not activated in our work. So, when 

Fig. 1. Scenes (from left to right): Drive 1 - approaching stop sign; Drive 2 - cruising down a straightaway; Drive 3 - navigating construction zone; Drive 4 – 
approaching a light. 
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evaluating the performance of an agent, its different contexts were 
compared only to the corresponding context segments that were 
manually identified in the drives (and used in the training). We therefore 
leave for future research the automated transitioning between contexts, 
something that will ultimately be necessary for practical 
implementation. 

4.5. Data used for training the agents 

Our observation of the test subjects driving the simulated car (own- 
car) consisted of recording forty (40) variables (e.g., speed, acceleration, 
deceleration, location, nearby traffic, etc.) as a function of time and at a 
frequency of 10 Hz, throughout each test subject’s four drives. The 
resulting time-stamped record of these variables and their values over an 
entire continuous drive (the traces) of driving behavior, constitute the 
record of our observation of human driving behaviors. 

Seven of the 40 recorded variables reflect the relative location of 
own-car: these are the distances to: (1) the nearest stop sign, (2) a 
construction zone, (3) a traffic light, (4) a left turn to be made at the 
nearest intersection, (5) a right turn to be made at the nearest inter-
section, and (6)-(7) left and right curving turns respectively. These 
variables serve to gauge the distances to static road objects or locations 
to which a driver may react as he/she approaches them. 

Two other variables describe other aspects of the simulation: (8) 
simulation time, and (9) road slope. 

Twelve (12) more variables were recorded that measure the 
following for own-car: pedal pressure (10) for throttle and (11) for 
brake; (12) speed; (13) acceleration; (14-15-16) XYZ coordinates of 
own-car; (17) cumulative distance traveled in 2D; and (18) cumulative 
distance traveled in 3D; (19) steering wheel angle; (20) own-car head-
ing; and (21) heading error. These variables measure how the driver 
controls own-car, in reaction to the immediate environment and its 

Fig. 2. Simplified Depiction of Drives #1 and #2.  

Fig. 3. Simplified Depiction of Drives #3 and #4.  

Table 1 
Driving scenario characteristics.  
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effect on the car. 
Finally, there are sixteen (16) variables that track other vehicles 

(OVs). OVs are a highly dynamic element of driving and a crucial 
consideration in road safety. Four OVs can be tracked at a time, one for 
each “ray” region around own-car (see Fig. 5). The area within a 300 m 
radius of own-car is divided into frontal and rear rays (Rays 1 and 3, 
respectively, covering 60 degrees each) and left and right rays (Rays 2 
and 4, respectively, covering 120 degrees each). The closest OV in each 
ray (if any) is tracked. For each of these four OVs, we track their: X-Y 
coordinates; distance to own-car; and approach speed relative to own- 
car. These make the total 37. 

Lastly, the color of a traffic light, the speed limit in force in the road 
segment being traveled by own-car and the lane offset were also ac-
quired from the simulation, but they were in the form of one hot 
encodings. The lane offset has six possible values, only one of which is 
set to true (1) at any time. These assume a four-lane road with no 

median, and are: “off-road left”, “left outer lane”, “left inner lane”, “right 
inner lane”, right outer lane” and “off-road right”. Likewise, traffic light 
color can be one of three values: red, green and none (a yellow light is 
never observed in our simulation). Lastly, only four specific speed limits 
are possible: 3, 15, 35 and 45 MPH. Counting these as three discrete 
variables (rather than 13 one hot encodings), makes the final variable 
count 40. 

4.6. Training data preparation and presentation 

The traces of human driving behavior were collected by our partners 
at George Mason University as discussed in section 4.2. These traces 
were then subjected to a data preparation process to enhance the traces 
with additional information, correct certain variables, and modify the 
trace format to be usable by Falconet. 

First, a data pre-processing module written by our partners from 
Drexel University was used to compute and add some variables, such as 
the distances and relative speeds to the various OVs. 

Secondly, another pre-processing module was written by the UCF 
team that made the following modifications to the data on the traces:  

1. The sampling rate in the traces was downgraded from 60 Hz to 10 Hz. 
This was done because, in our opinion, the 60 Hz sampling rate was 
unnecessarily high, as events do not happen that quickly in auto-
motive traffic actions. Moreover, it allowed our LfO algorithms to 
learn from longer training segments without being overwhelmed by 
useless data.  

2. The distance to the closest urban construction zone was added.  
3. The distance to the closest traffic light was modified to only consider 

traffic lights that govern own-car’s lane of traffic.  
4. The values of each variable were normalized to values in the range 

[-1.0, +1.0] to make them usable by neural networks (i.e., Falconet).  
5. Converted the traces to regular text files. 

The raw (unedited) traces recorded by the simulator provided the 
car’s speed in meters/sec. Expanding upon item 4 above, these speed 
values were subsequently normalized (as were all data) before being 
presented to Falconet The same min/max values were applied to every 
trace of every test subject and were selected to encompass the min/max 
values observed over all traces. Not all normalized values were in range 
[− 1.0, +1.0], however. If a variable’s min value was not <0, then the 
normalized values for that variable was in range [0, 1] instead. Thus, for 
a range defined as [m, n], given a value V and min/max values A and B, 
the normalized value D was computed as: 

Fig. 4. Context hierarchy for controlling driving agents.  

Fig. 5. The ray regions around a car to track other vehicles (not drawn 
to scale). 
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D = m + [(V-A)/(B-A)]*(n-m). 
For speed, the min/max values used were − 10 and 30 m/s, which is 

equivalent to − 22 and 67 miles per hour (it is possible for the human to 
drive backwards). 

For steering angle, the min/max values used were − 600 and 600 
degrees, where 0 degrees is dead straight ahead. As done for speed, the 
normalized steering angle values presented to Falconet were in range 
[− 1.0, +1.0]. A value of 360 degrees in absolute value corresponds to 
turning the wheel one full revolution (in either direction). Thus, − 1.0 is 
1.6 revolutions counter-clockwise, 0 is dead ahead, and 1.0 is 1.6 rev-
olutions clockwise. 

Third, once the raw traces had been captured, enhanced and 
normalized, the next step was to de-compose these traces into contexts - 
the contextualization process - to present them to Falconet for training 
the agents. Contextualization involved manually partitioning each test 
subject’s enhanced and normalized trace into segments belonging to 
particular context instances (there may be several instances of the same 
context in each drive). The approach taken to partitioning the context 
instance segments involved some hard rules as well as some human 
judgment – “eyeballing” if we may. The locations of stop signs, con-
struction zones and traffic lights were well-known from the drives used. 
So, these were the hard rules. However, not so obvious was exactly how 
far before a stop sign would a driver enter the stop-sign context, nor how 
soon after driving past the stop sign would one leave it. The same was 
true for the traffic lights and the construction zones. In the case of stop 
sign and traffic lights, the number of cars backed up behind it would also 
influence when the context would begin. The latter decisions were made 
judgmentally by the researcher performing the data preparation, and 
his/her judgment was facilitated by a tool called the Traffic Simulator 
that graphically displays the location of the moving cars and the traffic 
elements. See Wong, Hastings, Negy, Gonzalez, Ontañón, and Lee 
(2018) for details. The Traffic Simulator was an in-house tool that used 
OpenGL graphics to represent cars and road entities with simple colored 
geometric shapes and lines. The tool was used to replay a human’s 
behavior in the road environment, allowing a researcher to easily 
determine when the human’s behavior changed in reaction to an 
external stimulus, thereby possibly denoting the start or end of a context 
of interest. Training segments tended to be anywhere from 2 to 20 s in 
duration. 

Fig. 6 shows a screenshot of what the user would see in the Traffic 
Simulator. It illustrates an example of part of Drive #4 as the driver 
approaches the first group of cars (OV’s). There is a traffic light 
(currently red), and indicated by the circled red square on the side of the 
road where the state of the traffic light (i.e., its color) would be seen. 
Also shown are two event triggers that have already been triggered; this 

is indicated by the faded red squares, which means the driver has passed 
over them and in these situations, they triggered the other cars to appear 
ahead of the driver. 

Fourth, once the start/end time steps of several training segments 
denoting a given context (e.g., rural stop sign) were determined by the 
researcher, a script was applied to format these training segments into 
XML files that were used by Falconet. In order to ensure that each 
training segment exerted the same influence on agent training, regard-
less of the training segment’s temporal duration, each training segment 
has approximately the same number of comparison points - the points at 
which an agent’s performance was compared to that of its human test 
subject in order to determine its fitness. The optimal number of com-
parison points, as well as the number of time steps between comparison 
points for each segment, was computed programmatically via a script 
and stored in XML format. 

To train the individual agents used in the Horizontal tests, Falconet 
was presented with four subsets of the main trace that reflect instances 
of contextualized segments (for each context) taken from the four Drives 
driven by the test subject. Falconet averages the values of the four traces 
at each time step in the simulation and uses this to calculate loss for 
training. The Generic agents used in the Vertical tests were similarly 
trained, except using 12 such sub-traces for each context (four from the 
main traces of each of the three test subjects whose behaviors are re-
flected in the Generic agents). 

4.7. Description of tests conducted 

In this section, we shed additional light on the tests that were per-
formed as part of our assessment. 

Our tests involved subjecting the agents created by Falconet from 
observed human-generated traces to the same drives driven by the test 
subjects. These agents are expected to perceive the simulated environ-
ment and produce an output consisting of the car’s overall speed, and 
the angle of the steering wheel at a given time step. These are the two 
main variables that can be directly controlled by a driver. These data 
generated by the agents are recorded in another trace – the agent- 
generated trace. The output variables of interest in the human-generated 
trace were continually compared to the same output variables in the 
corresponding agent-generated trace throughout the entire drives. We 
elected to use the agent’s (and the human’s) speed rather than their 
throttle/brake pedal pressure output because speed is a more reliable 
variable for post-hoc evaluation of the created agents trained in vehic-
ular simulations. The reason for this, as noted by Fernlund (2006), is that 
the automobile (or a simulation thereof) acts as a low-pass filter when 
converting throttle/brake pedal pressure into speed. Even though 
throttle/brake pedal pressure may experience much variance within 
short spans of time, only sustained pedal pressure will result in mean-
ingful and externally observable fluctuations in speed. 

In addition to speed, the angle of the steering wheel plays a crucial 
role in vehicular navigation. Unlike in straight driving, where one must 
simply keep the steering wheel straight and maintain speed, a turning 
maneuver requires coordination between the steering wheel and car 
speed. If a driver makes an adequate turn of the wheel but is going too 
fast, the car may flip over, or if the driver turns the wheel too slowly, the 
car may collide with other traffic. Therefore, comparing speed and 
steering angle combined was of primary interest in our research. 

The objective of comparing a human-generated trace to its corre-
sponding agent-generated trace was to determine whether the driving 
behaviors reflected therein were similar or divergent. Similar traces 
indicated that the human driver’s actions were generally correctly pre-
dicted by the agent, while divergent traces indicated the inability of the 
agent to predict the actions of the driver as reflected in his/her trace. As 
mentioned earlier, this drives to the crux of our research – determining 
whether a driver is driving normally or not. 

Which agent-generated and human-generated traces were used in 
these comparisons, of course, depended on what the specific comparison Fig. 6. Output of Traffic Simulator showing Drive #4 (mostly urban).  
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was intended to assess. This is where the difference between Horizontal 
and Vertical tests comes in. The former sought to determine differences 
between driving behaviors of the same driver in various health states. 
Specifically, if a driver’s agent modeling his/her normal behavior were 
to indicate divergence with his/her actual driving actions, it would 
indicate that he/she is being influenced by some factor. Therefore, 
Horizontal tests can be used to detect abnormal driving. Success in the 
Horizontal tests is defined as when the behavior of an agent compared to 
its corresponding test subject trace of the same state (i.e., co-comparison) 
is significantly more similar than when compared to the same test sub-
ject but in the opposite state (e.g., cross-comparison). In practice, this 
would imply that a driver’s medication state could be inferred by seeing 
how well her/his driving behavior matched that of its agent(s). 

Vertical tests, on the other hand, seek to determine uniformity 
among drivers and agents who are in the same state of health. This is 
important because if reasonable uniformity can be shown, then there 
would only be a need for a generic agent that could represent a large 
number of drivers in the same state of health, rather than one agent for 
each individual driver. Success in Vertical testing would occur when 
there is strong similarity among the several human traces compared to 
the generic agent that reflects the same state of medication. 

The terms “horizontal” and “vertical” came from the idea that if the 
agents and the human traces were to be listed in two side-by-side stacks, 
horizontal tests would only compare each agent to the trace directly 
across from it (pertaining to the same test subject), while vertical would 
compare the agents to several traces on the other stack, thus appearing 
more vertical. Fig. 7 displays the difference between Horizontal and 
Vertical tests. The solid arrows in the Horizontal tests on the left side of 
the figure reflect the co-comparisons while the dashed arrows represent 
the cross-comparisons. 

Fig. 8 displays a graphical depiction of the hierarchy of the tests 
conducted on the agents. 

The test used for all our assessments was the Learning Capabilities (LC) 
test, which compares the behavior of a trained agent against the trace 
used to train it and against the trace of the opposite medical state of the 
same test subject. So, it measures how well the agent learned from the 
human test subjects, and how different that is from the behavior of the 
subject in the opposite medication state. The results currently reflect the 
agents being trained on the five contexts mentioned above: USS, UCZ, 
UTL, RSS, and RCZ. 

The discussions above beg the questions: How do we determine 
similarity or divergence? What metrics do we use to make an informed 
judgment on similarity or divergence? The next section discusses these 
questions. 

4.8. Metrics used in the assessments 

We considered several possible metrics for our assessment. We 
elected to use the Pearson Correlation Coefficient as a good way to 
measure similarity in terms of correlation of variables over entire road 
segments that were partitioned according to the contexts involved in 
each segment. While other metrics could have also been suitable, we 
thought that having one single number – the Pearson coefficient – that 
could provide indication of overall similarity or divergence would best 
suit our objectives. 

Formally speaking, the Pearson Correlation Coefficient (PCC) is a 
measure of the linear correlation between two variables over several 
points, in our case, time. We used this method to measure the linear 
correlation between two variables in two traces – in our case the speed 
and steering angle of the cars in the human-generated trace were 
compared to the same variables in the agent-generated trace. The 
Pearson correlation coefficient assesses how well variables in these two 
traces correlate with each other over the entire duration of the drives. 
The PCC is in the range [− 1, +1], where values close to +1 indicate high 
positive correlation, values close to 0 indicate no correlation, and values 
close to − 1 indicate high negative correlation (doing the opposite 
thing). The formula for the Pearson Correlation factor is: 

r =

∑n
i=1(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xi − X)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Yi − y)2

√

where X and Y represent the time steps of the human-generated trace 
and of the agent-generated trace for the same drive, respectively. 

Because of our two-output Speed + Angle tests, the Pearson Coeffi-
cient computation had to be handled somewhat differently; this is 
instead of just one set of two variables as in the classical Pearson cor-
relation equation above. Thus, the computation had to incorporate the 
differences between the time-varying values of the speed (human- 
generated vs. agent-generated) with their respective means, and the 
differences between time-varying values of the steering wheel angle 
(human-generated vs. agent-generated) with their respective means. We 
took the sum of these differences to represent the Xi − X and Yi − Y terms 
in the equation above. Keep in mind that the values outputted by 
Falconet are already scaled from − 1.0 to 1.0, thus avoiding any 
swamping by one variable over the other. 

Once we have generated a value indicative of the degree of similarity 
between two behaviors, we now need to be able to identify similarity vs. 
divergence in the overall traces. The classification accuracy is an indi-
cation of this most important outcome of the tests - the overall correct 
identification percentage rate for each test subject/agent combination in 
each context. In other words, how often did the comparison between an 

Fig. 7. Horizontal and Vertical Tests.  
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agent and its corresponding two test subject traces result in correctly 
identifying the state of the test subject as reflected in her/his trace? This 
measure represents the bottom line of our work. The definition for a 
successful test result (a “win”) is:  

a. The agent correlated better with the human trace of the same 
medication condition than with the trace reflecting the opposite 
condition. We refer to these as “positive comparisons”  

b. Only those positive comparisons deemed statistically significantly 
different were counted as wins. The p-value was computed for a 95% 
confidence factor to determine the statistical significance of any 
computed differences.  

c. Furthermore, the absolute correlation coefficient for an agent must 
be greater than or equal to + 0.10 when compared to its human- 
generated trace of the similar medical condition. Otherwise, it is 
not counted as a win in our scoring, even if the correlation is 
significantly higher than that of the trace of the opposite medical 
state. This was done to avoid rewarding particularly poor 
correlations. 

Conversely, unsuccessful test results (“losses”) were those that: 

d. Did not indicate better correlation with the trace of similar medi-
cation condition (i.e., “divergent comparisons”).  

e. Reflected a positive comparison but with a statistically-insignificant 
difference.  

f. Were otherwise positive comparisons but the absolute correlation of 
the higher one did not reach the + 0.10 threshold correlation as 
described above. 

The composite average of each agent over the twelve test subject 
traces was also computed on a context-by-context basis. While not as 

granular as the correctness metric above, it can serve to validate the 
overall correctness. 

For vertical tests, we created a Generic Agent trained with a trace 
composed of a combination of the traces of three human test subjects in 
similar medication conditions. Therefore, there were two Generic 
Agents – one medicated and one un-medicated. The Generic Agent was 
compared to the three traces that composed its training data as well as to 
the other nine that did not. Success in these tests would be to show high 
correlation with all test subject traces. This would indicate that humans 
drive similarly while in the same medicated state. The implication of this 
is that generic agents can be built for this application rather than having 
to create two individual agents for each driver (medicated and un- 
medicated). 

5. Description of Falconet 

In this section, we provide a closer look at the Falconet system whose 
use was the central focus of our approach. However, to not repeat what 
has already been extensively published, we refer interested readers to 
(Stein & Gonzalez, 2011) (Stein & Gonzalez, 2014) (Stein et al., 2015) 
and especially the source document (Stein, 2009) for an in-depth 
description of Falconet and its various applications. 

The heart of the Falconet system is the Pigeon-Alternate algorithm 
developed by Stein as part of his doctoral dissertation (Stein, 2009). It 
combines Neuro-evolution (Stanley & Miikkulainen, 2002) and Particle 
Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) to build agents. 
Both processes are rather complex in their own right. Neuro-evolution 
involves its own combination of Genetic Algorithms (GA) and Artifi-
cial Neural Networks (ANN). While the literature contains many reports 
about the use of GAs to set the weights in ANNs, Neuro-evolution uses 
GAs to set the weights and the structure of the neural networks. An 
initially random population of relatively simple neural network 

Fig. 8. Graphical Depiction of the Assessments Executed on the various agents.  
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individuals is created and each individual network is trained with a 
subset of the examples available. It is then evaluated for its fitness as to 
how well it solves the problem at hand (or more specifically, how well it 
produces the desired outputs for the examples). 

The fitness of each individual neural network solution (or just “in-
dividual”) in the population is computed by executing its neural network 
and determining the success of the action taken by that individual in a 
brief simulation. Then, parts of those individual solutions judged to be 
more “fit” are combined or mated to form new solutions that are hope-
fully better. This process is called crossover. Finally, the individuals in 
the new population of solutions are randomly modified or mutated to 
introduce potentially beneficial solutions into the population. The mu-
tation and crossover processes in Neuro-evolution systems are rather 
complex and their description is beyond the scope of this paper. The 
interested reader is referred to Stanley and Miikkulainen (2002). 

The crossover and mutation processes are performed on some indi-
vidual neural networks in the population, and the fitness is computed 
again. Only the better performing individuals are carried over into the 
next generation, thus implementing the survival of the fittest concept 
upon which genetic algorithms are generally based. As the ANN in-
dividuals are modified by the mutation and/or crossover processes, their 
structure becomes more complex, with additional levels, nodes and 
connections. This process is called the complexification of the individual 
neural networks, and is a central feature of Neuro-evolution. As more 
complex ANNs evolve, the complexification process adds new examples 
to the set used to train the ANNs, thus provoking the complexification. 

The Particle Swarm Optimization technique is a non-linear stochastic 
optimization process. It is a variation of GAs that treats the particles “… 
like social groups with attractors, and the combination of individual 
agents can produce complex emergent behavior.” (Stein, 2009, p. 75). At 
its most basic level, each of the particles is placed in a location in n- 
dimensional space. Initially at random, this location reflects the output 
values that serve to solve the problem, and are used to compute the 
fitness of the individual. Each particle has a small amount of memory in 
which it stores the fitness and state of the best that it (itself) has ever 
been in terms of these locations in the problem space. The particles seek 
to move toward the location that represents the best they have ever been 
but they also want to move toward the location of the best particle in the 
group. So, the particle computes a vector comprising these two locations 
and moves in this direction with a certain speed. The fitness of each 
individual is recalculated and the process begins again after it has moved 
along the computed vector in the previous generation. 

The Pigeon algorithm works by executing Neuro-evolution for 
several generations, then interrupts the Neuro-evolution and applies 
PSO for several more generations to optimize the weights in each indi-
vidual ANN. Pigeon resumes the Neuro-evolution process to begin the 
next cycle of neural network complexification. Pigeon continues to 
alternate (and thus its full name, Pigeon-Alternate) between several 
generations of Neuro-evolution and PSO until the objective is reached, 
there is no further improvement in the fitness of the best ANN individ-
ual, or it reaches a maximum number of generations. Upon completion 
of the execution, the individual with the best fitness value becomes the 
trained agent. 

When Falconet begins training agents, it loads the test subject’s 
trace, information about road scenarios, and the training set XML files. 
For each training segment for the context on which the agent is being 
trained, the appropriate portion of the trace is loaded as determined by 
the training segment definition in the XML file. Each individual in the 
population during a given neuro-evolution generation is simulated over 
all training segments via a Micro Simulator, which is a lower-grade 
approximation of the Traffic Simulator. The Micro Simulator was 
created to only approximate certain aspects of the Traffic Simulator that 
are inconsequential over a short time period in order to allow faster 
evaluation of individuals during training. The individual’s state in the 
simulator is synchronized with that of the human at the start of the 
training segment, and then the individual is allowed to progress for a 

few time steps in the Micro Simulator (0.2 to 2.0 s, depending on the 
training segment). When the execution of an individual reaches a 
comparison point, its deviation from the human at the same point in the 
training segment is computed and the deviation is added to the in-
dividual’s fitness. The individual is resynchronized with the human- 
generated trace and the process repeats until the end of the training 
segment. An individual’s fitness is equal to its average deviation from its 
human “trainer” over all training segments; a lower fitness value means 
better learning performance by the individual. 

6. Test results and findings 

We are particularly interested in executing and analyzing the Hori-
zontal tests, as these are the ones that will indicate (“prove” may be too 
strong a word in this case) whether our concept is scientifically feasible 
or not. In section 6.1 we describe the results of the Horizontal evaluation 
while the vertical test results are included in section 6.2. 

6.1. Results for Horizontal Testing. 

Table 2 shows the results of the best performing agent (Agent 627) 
while Table 3 shows the results of the worst performing agent (Agent 
612) in the Horizontal Tests. 

Wins and losses are evaluated for the performance of the agents over 
each of the five contexts. Wins are reflected by placing the Pearson 
Coefficient in bold-faced blue-colored font. Coefficients that are not so 
highlighted represent a loss for that particular agent in the context 
indicated for that row. Moreover, the total win/loss tally is assisted with 
either a checkmark (√) for a win or an x for a loss. The number of wins 
for each agent over the five contexts is tallied on the last row of each 
agent, with the percentage of wins also indicated. 

Table 4 shows the total correct output percentage over all 12 test 
subjects, 24 traces and five contexts. Table 5 depicts the average correct 
and incorrect outputs over all test subjects. 

Table 6 summarizes the composite average Pearson Correlations 
obtained for each context over all 24 agents over the five contexts. The 
results roughly mirror the overall correct rates in Table 4. The relatively 
low standard deviations indicate consistent results over all the test 
subjects/agents. 

Table 7 contains the results from computing the average Pearson 
Correlation factors for each context over the 24 agents and five contexts. 
This table shows that some contexts performed better than others. This is 
important to know, as the predictions from those contexts in which the 
agents performed better could be given greater confidence than those 
from the ones on which the agents did not perform as well. In a real- 
world application, the system would know the context the driver is in, 
and based on the cumulative history of performances under different 
contexts, could assign more or less weight to identifications made 
depending on the contexts where they were made. The agents performed 
best when in the Urban Construction Zone and the Urban Stop Sign 
contexts. We note that there is only one instance of an UCZ context in the 
four drives taken by the test subjects. It is possible that the networks 
over-trained in this context. Given the limited sample size, generaliza-
tion was not necessary and the over-training yielded good results. The 
fact that the RCZ, which also has one instance across all four drives, also 
performed respectably, lends some credibility to this explanation. 
However, there is no context in which all agents performed well. 

As can be seen from Table 8, the results for the Falconet Horizontal 
Tests were quite good, bordering on exceptional results for the medi-
cated agents. 

The correct rate of 81.7% for medicated and 71.7% for un-medicated 
were roughly validated by the Composite Average scores, which were 4/ 
5 for each (80%). 

In summary, we feel confident in declaring the Horizontal tests were 
successful in meeting our objectives. 
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6.2. Vertical test results 

In this section, we describe the results of the Vertical tests performed. 
Two Generic agents were created – one medicated and the other un- 

medicated. These Generic agents were built by combining the 
observed human driving data on traces from test subjects #607, #608 
and #613 for the medicated Generic agent, and Test Subjects #602, 
#608 and #620 for the un-medicated Generic agent. These subjects 
were chosen because they were the most similar to each other. The 
contexts selected for these experiments were the Rural Construction 
Zone (RCZ), the Rural Stop Sign (RSS) and the Urban Traffic Light (UTL). 
These were selected to provide a range of contexts that differed in how 
well the individual agents performed in them. The Generic Agent was 
then compared to each of the three traces that were used to train it, as 
well as to the other nine traces that were not. The Pearson Correlation 
method was used to assess similarity. 

Table 9 summarizes the Vertical test results. The sub-column on the 
left under each context heading is the average Pearson correlation factor 
of the corresponding Generic Agent with each of the three human traces 
used to train it. The right sub-column is the average correlation with the 
other nine traces not used in training. Note that all comparisons are for 
the same medical condition (i.e., all are medicated or all are un- 
medicated) as this is Vertical testing and not Horizontal. The results 
are generally good across all three contexts measured. This suggests that 

Table 2 
Horizontal Test – Pearson Correlation – Agent 627 (Best).  

Table 3 
Horizontal Test – Pearson Correlation – Agent 612 (Worst).  

Table 4 
Total Wins and Losses – Horizontal Tests.  

Table 5 
Pearson Correlation - Average No. of Wins – Horizontal Tests.  
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a generic agent seems to be a viable proposition. While this clearly re-
quires further investigation, these results are promising. 

6.3. Capstone experiment - Horizontal tests with Generic agents 

As a capstone experiment with the Generic agents created for the 
Vertical tests, it would be useful to see what differences it would make if 
the Horizontal tests were performed with the Generic agents created 
above, rather than with the individual agents being compared only to 
the traces of the corresponding test subject, as was done in the main 
Horizontal tests described in Section 6.1 above. The Generic agent now 
takes the place of the individual agents for each trace – that is, the same 
Generic agent is horizontally compared to traces of each of the 12 test 

subjects individually and independently. This is done for a Generic agent 
that represents a medicated state and another that represents an un- 
medicated state of the test subjects. The results are shown in 
Tables 10a and 10b for a medicated Generic agent and in Tables 11a and 
11b for an un-medicated Generic agent. Table 10b is a continuation of 
10a and Table 11b is a continuation of 11a. 

Tables 10a and 10b show the correlation of the medicated Generic 
Agent (the same one used in the Vertical tests described above) with 
each of the test subject traces, both medicated and un-medicated. The 
correlation with the medicated traces is shown on the left half of each 
test subject column while the correlation with the un-medicated trace is 
on the right half of the test subject columns. Ideally, the correlation in 
the left half of the column should be higher than that on the right half of 
each test subject column. If such is the case, the higher left side value is 
highlighted in bold-face blue-colored font, indicating a win. Otherwise, 
there is no highlighting, indicating a loss. Note that a p-value to test for 
statistical significance was not calculated, so the decision of whether the 
comparison is a win or a loss was done on a strictly arithmetic 
comparison. 

The total number of correct medical state identifications for the 
medicated Generic agent over 36 opportunities (12 test subjects x three 
contexts each = 36) was 28, for a 77.8% accuracy – significantly better 
than random selections, and close to the overall correctness of 81.7% in 
the Horizontals tests of section 6.1 for the individual medicated agents. 
The Generic medicated agent correctly selected 10 of 12 (83.3%) while 
in the RCZ context; 10 of 12 (83.3%) in RSS and 8 of 12 (66.7%) in the 
UTL context. The good performance in RCZ could be the result of over- 
training as we discussed above. Therefore, as indicated by the results for 
the individual medicated agents for each test subject, the Generic agent 
in this experiment can be said to have worked successfully. 

Similarly, Tables 11a and 11b depict the equivalent results of 
Tables 10a and 10b but for the un-medicated Generic agent used in the 

Table 6 
Composite Average Pearson Correlation – Horizontal Tests.  

Table 7 
Pearson Correlation – Win Percentage by Context – Horizontal Tests.  

Table 8 
Summary of Results for Horizontal Tests.  

Table 9 
Summary of Vertical Results.  
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Vertical tests. Ideally, the right side of each column would be higher 
than the left side in Tables 11a and 11b. The same highlighting in blue 
bold font is done in 11a and 11b to indicate correct comparisons. There 
is no highlighting of incorrect comparisons and no p-values were 
computed. 

As can be gleaned from the above tables, the results for the un- 
medicated Generic agent are quite similar to those of the medicated 
Generic agent. The overall number of correct identifications was 27 of 
36, which computes to a 75.0% rate of correctness – slightly lower than 
that of the medicated agent but still good, and even better than that 
achieved by the individual un-medicated agents of the primary Hori-
zontal tests of Section 6.1. The context-by-context breakdown was: 8 of 
12 for RCZ (66.7%); 9 of 12 (75%) for RSS; and 10 of 12 (83.3%) for 
UTL – very similar to those of the medicated Generic agent. Therefore, 
same conclusion of success applies to the un-medicated Generic agent. 

While the overall rates of correctness for the Generic agents were 
near to or better than those for the individual agents, this is not an 
apples-to-apples comparison, as not all contexts were used in this eval-
uation, and the p-values were not computed. Nevertheless, their close 
proximity gives us cause for optimism. 

6.4. Discussion of results 

Overall, our experiments produced very good results. Horizontal 
testing resulted in 81.7% correct prediction for medicated agents and 
71.7% correct prediction for un-medicated agents. Vertical testing 
produced 80% correct prediction for each agent using the Composite 
Average metric. Our data set was relatively small and we believe that a 
larger study would strengthen the results presented here. Nevertheless, 
our results suggest proof of concept that non-invasive methods could be 
used to monitor and detect abnormal driving behavior. 

We believe that as part of further research, these numbers could be 
improved by making some relatively minor enhancements to Falconet, 
namely, further experimentation with values for its user-determined 
parameters. The values used here were those used by its creator, Gary 
Stein. Nevertheless, there are some potential threats to validity for our 
concept that merit discussion. 

The first and most obvious threat to validity comes when making the 
ultimately necessary transition between a simulation and the physical 
world. In a simulation, everything is known or can be calculated without 
noise in the data. However, relying on sensors in the physical world 
introduces inaccuracies, noise and difficulty in interpreting the data 

Table 10a 
Horizontal Test Results with Medicated Generic Agent.  

Table 10b 
Continuation of Table 10a (Medicated Generic Agent).  

Table 11a 
Horizontal Test Results with Un-medicated Generic Agent.  

Table 11b 
Continuation of Table 11a (un-medicated Generic Agent).  
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perceived. This issue has come to light in recent troubles with self- 
driving automobiles. There are two parts to this threat. The first is 
that the agents will not be able to perceive the physical environment as 
well as the human, and therefore introduce a divergence that may be 
unwarranted. However, more importantly, if the traces to be used for 
training are to come from actual driving experience, then collecting 
those data may be difficult, given the cost to instrument automobiles. 
We mentioned earlier that a sensor suite may become less costly as self- 
driving cars become more accepted, but that could be considered a bold 
prediction at this time. Of course, one could build the agents from traces 
gathered in simulators, as we did here, but how representative the 
simulated drives are of actual driving experiences is still a question. It is 
true that simulators have been extensively and effectively used in 
training for aircraft pilots since the 1960 s; however, they are always 
accompanied by live training in actual airplanes. 

Another threat is how an agent would react when facing a situation 
that has never been faced before. This is also a problem in self-driving 
automobiles. The machine learning process used must be able to show 
a non-trivial level of generalization ability in order to successfully 
manage such contexts. In fact, testing for and improving generalization 
is one of our main objectives in future research. Stein found that 
Falconet displayed a good ability to generalize, but that needs to be 
shown in this type of application. 

7. Summary, conclusions and future research 

To summarize, we investigated an approach based on the use of 
Machine Learning from Observation to discriminate between an ADHD- 
afflicted driver driving when medicated or when un-medicated. The 
approach involved a tool for LfO called Falconet that used Neuro- 
evolution, Particle Swarm Optimization and Context-based Reasoning 
to build agents that reflect the driving behavior of the observed human. 

The resulting agents were created from observation of 12 human test 
subjects driving automobiles in simulations. By comparing the actions 
predicted with the actual actions taken by the driver, we can infer his/ 
her medication state. In the future, these models can be installed on the 
automobiles that afflicted drivers would drive in the real world to pro-
vide a real time identification of dangerous driving conditions on the 
part of the driver. This can make a transformational improvement in 
road safety without intrusive physical monitoring of the driver. 

In conclusion, we believe that the major outcome of our work has 
been that our results verify our hypothesis stated in Section 2 above and 
re-printed below for the benefit of the reader. 

Models of human driving behavior, built through machine learning 
from observation of human drivers afflicted with ADHD, could be 
compared to their actual driving behavior to identify when these 
drivers are operating a motor vehicle while suffering from un- 
controlled ADHD conditions. 

Driving models built with the Falconet architecture seem to be 
capable of detecting the nuanced differences between medicated and un- 
medicated behaviors. Our Horizontal test results strongly suggest the 
scientific feasibility of using a model of driving behavior of individuals 
who are afflicted with ADHD to detect whether they are driving while in 
an un-medicated condition. However, we stop short of asserting that our 
work here is proof of such feasibility, as the sample size used was too 
small for such an assertion. Moreover, we believe that our experiments 
should be expanded, as we discuss below. We hope to undertake those 
tests in future research. 

The Vertical tests suggest that the concept of building generic agents 
can work. This would be a significant advantage over the need to create 
individual agents for each person to be monitored in the context of a 
commercial application of this concept. Nevertheless, we do not believe 
that the latter is necessarily a showstopper if this technique were to be 
applied to high risk drivers, whose health is such that individualized 

modeling of his/her behavior is warranted. 
Our results were achieved with a relatively small amount of data. In 

this era when Big Data is the in-fashion application, the ability to use 
“small data” could be advantageous, as positive outcomes could be 
achieved in situations where collecting these data is expensive and/or 
difficult to obtain, as was certainly the case in our work. Recruiting test 
subjects was not easy and the test subjects that were recruited had to be 
handled carefully and thoughtfully because of the sensitive nature of the 
data we sought to collect. 

Nevertheless, our work is a long way away from technical and 
commercial feasibility. There were several assessments that we did not 
perform as a result of lack of resources, lack of data, lack of time or all of 
the above. The first one to come to mind is the acquisition and use of 
context transition rules. In our context-centric approach, identification 
of the context being faced by the driver is essential, and it must be done 
correctly. We regrettably must leave that for future research. 

Also regrettably left for future research is determining how to assess 
the generality of the agents being built. In other words, do they learn to 
handle all stop signs? Or just the ones used in training? A measure of this 
was implicit in our testing, as there were several instances of stop signs 
and traffic lights, as well as in the concept of a generic agent, but it 
would be beneficial to do this explicitly and more rigorously. 

Another item for future research is to automate the decomposition of 
the traces into context instances for training the agents. This would 
facilitate the contextualization of observational data (traces) and make 
it easier to train the agents. Trinh (Trinh & Gonzalez, 2013) addressed 
this problem and developed a tool called COPAC (COntext Partitioning 
And Clustering) as part of his doctoral dissertation, and obtained good 
results. However, we chose to not use it in order to maintain the focus of 
our limited resources on assessing the scientific feasibility of the overall 
concept. 

Other issues still to be addressed include how to incorporate this 
concept into a real-time tool used in the physical world, with the 
assorted difficulties such an undertaking brings. Certainly the thought of 
creating test cars with the appropriate sensors comes to mind first. The 
instrumentation required in the car would be our second thought to 
arise. Even beyond that, however, would be how to continuously 
compare the output of the agent with the actions being performed by the 
driver in real time, and when is there enough evidence of serious dis-
crepancies to yell out “Bingo”, so to speak. 

One final area of further research involves how well will agents built 
with data from simulations work when placed in the physical world. 
While data to train agents can be obtained from driving an actual 
automobile in real traffic, it could only be done when the human subject 
is medicated, as it would present too much risk to have an un-medicated 
driver purposely driving public roads. 
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