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Abstract. We argue that heterogeneous threshold ranges allow agents
in a decentralized swarm to effectively adapt thresholds in response to
dynamic task demands while avoiding the pitfalls of positive feedback
sinks. Dynamic response thresholds allow agents to dynamically evolve
specializations which can improve the responsiveness and stability of a
swarm. Dynamic thresholds that adapt in response to previous experi-
ence, however, are vulnerable to getting stuck in sink states due to the
positive feedback nature of such systems. We show that heterogeneous
threshold ranges result in comparable task allocation and improved sta-
bility as compared to homogeneous threshold ranges, and that simple
static random thresholds should be considered in situations where agent
resources are plentiful.

1 Introduction

In this paper, we show that heterogeneous threshold ranges allow agents in a
decentralized swarm to effectively adapt thresholds in response to dynamic task
demands while avoiding the pitfalls of positive feedback sinks. Response thresh-
old based systems are a biologically inspired approach for generating division of
labor in decentralized swarms [1,2,30]. While static thresholds are able to achieve
effective task allocation [16,19,34], allowing agents to dynamically adapt their
task thresholds over time allows for dynamic specialization which is thought to
improve the responsiveness and stability of a swarm. Dynamic thresholds that
adapt in response to previous experience, however, are vulnerable to getting
stuck in sink states due to the positive feedback nature of such systems [17,30].
We show that varying the threshold ranges of each agent can effectively mitigate
the negative effects of sinks while retaining the benefits of dynamic thresholds.

The response threshold approach is an effective method for generating task
allocation in decentralized robotic swarms. Each agent possesses a threshold for
each task that the agent can potentially take on. An agent’s decision as to which
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task, if any, to take on is a function of the agent’s threshold for each task and
the observed task stimuli. This approach is effective in decentralized systems and
is not dependent on inter-agent communication which makes it scalable and use-
ful for problems where stealth is necessary or where agents carry limited power.
Response threshold approaches include both static [11,16,19,27,28,33,34] and
dynamic thresholds [5–10,12,13,17,18,28,30]. Dynamic thresholds are particu-
larly interesting because they allow a swarm to adjust the distribution of its agent
propensities over time. For problems where the distribution of work is not known
in advance or may change over time, this adaptability can potentially make the
swarm more effective. In addition, dynamic thresholds allow agents to specialize
on tasks which improves efficiency by reducing task switching [3,4].

In systems that use dynamic thresholds, agents may adjust their thresholds
in response to external1 [6,14,22–24] or internal factors [20,25,26]. The former
tends to be problem dependent and out of the scope of this paper. We study
the latter approach, specifically, systems modelled on the concept that previous
experience on a task makes an agent more likely to act on that task in the future
[12,21,29,30]. This concept is commonly implemented in the form of a learning
factor that, in each timestep, lowers the threshold of a task on which an agent
is working and a forgetting factor that increases that agent’s threshold for all
other tasks [5,8,28,30]. While agents in such systems can effectively converge
their thresholds into a distribution that meets a given set of task demands, once
converged, these systems often have difficulty undoing an expired distribution
and re-adjusting to new demands if task demands change [17,18]. The positive
feedback structure of this concept results in a tendency for thresholds to evolve
to extreme values which are sink states that are difficult to subsequently evolve
out of.

We hypothesize that heterogeneous threshold ranges can improve the per-
formance of dynamic response threshold systems by reducing the effects of sink
states while still allowing agents to adapt their thresholds and specialize on tasks.
Current dynamic response threshold systems assign the same threshold range to
all agents. This homogeneity means that once convergence occurs, all agents
that have converged will be equally unwilling to revise their thresholds when
task demands change. Heterogeneous threshold ranges would result in conver-
gence to different values, allowing some agents to be more willing to revise their
thresholds than others. In addition, should agents still get stuck in sink states,
the variability in sink states may allow the swarm greater ability to respond to
new task demands than if all agents are stuck in the same sink state.

2 Collective Tracking Problem

We test our hypothesis on a collective tracking problem [33,34] which attempts
to model a collective task allocation problem similar to that of honeybee ther-
moregulation [15,31,32]. Where thermoregulation works in a single dimension
1 External factors include but are not limited to task stimuli and observed actions of

other agents.
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with agents selecting from among two tasks, the tracking problem works in two
dimensions with agents selecting from among four tasks.

The collective tracking problem consists of a target that moves in a two
dimensional space and a tracker that is collectively controlled by the swarm.
The goal of the swarm is to push the tracker such that its movement tracks the
target as closely as possible. In each timestep, the individual agents in the swarm
select from one of four tasks – PUSH NORTH, PUSH EAST, PUSH SOUTH,
PUSH WEST – or remain idle. A positive difference between the target and
tracker locations in any direction signifies a task demand in that direction. Each
agent can select to push in, at most, one direction in each timestep. The tracker
movement in each timestep is calculated by aggregating the decisions of all active
agents in that timestep.

The path on which a target moves determines the task demands and how they
change over time. For example, constant movement in the northeast direction
results in constant equal task demands to the north and east in each timestep.
A zigzag path represents task demands that remain stable for a period of time,
but occasionally change significantly and abruptly. Serpentine or circular paths,
on the other hand, represent constant gradual changes in task demands.

The authors acknowledge that there are more effective and efficient methods
to accomplish tracking. We use this collective tracking problem as a testbed
because it is a useful example of a decentralized task allocation problem. As the
target moves through space, positive difference between the target and tracker
in any direction represents a task demand in that direction. The relative number
of agents that select to push in each direction determines the aggregate tracker
movement; hence, accurate self-allocation of agents to tasks is required to meet
task demands. The specification of a target path allows us a systematic way
to define dynamic task demands with specific characteristics. The problem is
designed such that we are able to quantitatively measure the satisfaction of each
task demand individually as well as visually assess the overall performance of
the system by comparing the actual target and tracker paths.

3 System Details

We compare the performance of a dynamic response threshold swarm using
heterogeneous threshold ranges, termed Dynamic-Heterogeneous, against the
performance of two baseline systems. The first baseline system, Dynamic-
Homogeneous, is a dynamic response threshold swarm using homogeneous
threshold ranges. Dynamic-Homogeneous is representative of how most current
dynamic threshold systems work. The second baseline system, Static, is a swarm
with static thresholds.

All three systems consist of a population of n decentralized agents, ai, i =
0, ..., n. Each agent has a separate threshold for each task or direction, {θi,N , θi,E ,
θi,S , θi,W }. These thresholds represent the tolerance of that agent for the corre-
sponding differences, {ΔN ,ΔE ,ΔS ,ΔW }, between target and tracker position.
In a given timestep, if the difference in a direction exceeds the agent’s threshold
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for that direction (if Δj > θi,j), the agent will consider pushing in that direction
for that timestep. If more than one task is triggered for an agent, the agent
randomly selects one of the triggered tasks on which to act. Note that for this
problem, because ΔN = −ΔS and ΔE = −ΔW are always true, not more than
two tasks will ever be triggered at the same time.

Agent thresholds work as follows in the three systems tested. All thresholds
are floating point values. In the two dynamic systems, each threshold, θi,j , has
a range within which it can vary. This range is defined by a minimum, θi,jmin,
and maximum, θi,jmax, value. In the Static system, thresholds are static and
are initialized uniformly randomly to a value between 0 and R, where R is a
user specified parameter indicating the maximum allowed threshold value. In
the Dynamic-Homogeneous system, thresholds are dynamic and all thresholds
can vary within the range specified by θi,jmin = 0 and θi,jmax = R. The initial
value of each threshold is a random value drawn from a uniform distribution
between 0 and R. In the proposed Dynamic-Heterogeneous system, thresholds
are dynamic and all thresholds vary within a unique range. The lower bound of
the range, θi,jmin, is a random value drawn from a uniform distribution between
0 and R

2 . The upper bound of the range, θi,jmax, is a random value drawn from
a uniform distribution between R

2 and R. The initial value of each threshold is a
random value drawn from a uniform distribution between θi,jmin and θi,jmax.

For the two dynamic threshold systems, threshold variation occurs the same
way as seen in previous work [30]. In each timestep, if an agent is working on a
task j, its threshold for that task is decreased by a learning factor ε such that
θi,j = θi,j − ε, and its thresholds for all other tasks are increased by a forgetting
factor ψ such that θi,j = θi,j + ψ, where ε and ψ are user specified parameters.

The tracker movement in each timestep is determined by the number of
agents pushing in each direction in that timestep. Let nj , j ∈ {N,E, S,W} be
the number of agents pushing in direction j in a given timestep. The distance,
dj , that the tracker moves in direction j is given by dj = nj

n × ρ, where ρ is the
step ratio. The step ratio specifies the maximum distance that the tracker can
move relative to the target in one timestep. Thus, if ρ = 2.0, the tracker can
move twice as far as the target in one timestep. If ρ = 0.75, the tracker can move
75% of the distance that the target can move in one time step.

4 Experimental Details

We compare the performance of the three swarm configurations on four problem
scenarios. Each problem scenario is represented as a target path.

– zigzag: Target alternates between moving approximately northeast and mov-
ing approximately southeast.

– scurve: Target moves from west to east in a serpentine pattern.
– sharp: Target direction is randomly initialized. In each timestep, target has

a 5–10% chance of changing to a random new direction; otherwise, target
continues in current direction.
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– random: Target direction is randomly initialized. In each timestep, target
direction is changed by an angle drawn from a Gaussian distribution.

Table 1. Fixed parameter settings.

Parameter Value

Population size, n 50

Number of timesteps 500

Maximum threshold range, R 10

Threshold decrease, ε (learning factor) 0.1

Threshold increase, ψ (forgetting factor) 0.033

The zigzag and sharp paths produce significant periods of constant task
demands punctuated by occasional abrupt changes. The scurve and random
paths produce gradually changing task demands. Because of the randomness in
the test problems and system behavior, each experiment is composed of 100 runs.
Unless otherwise specified, the results for each experiment are averaged over all
100 runs.

Table 1 gives the parameter settings that remain fixed throughout all exper-
iments reported here. The threshold decrease, ε, and increase, ψ, values are set
such that total adjusted threshold is conserved; given four tasks, when an agent’s
threshold decreases for one task, it increases by one third of that amount for the
three other tasks. We examine multiple values of step ratio, from ρ = 0.75 to
ρ = 3.0 in increments of 0.25, to examine the impact of agent availability on
system performance.

We evaluate system performance based on three evaluation metrics.

1. Tracker path length: The tracker path length provides a measure of how well
the tracker followed the target path. The target path length in all experiments
reported here is 500. The optimum value for this measure is 500.

2. Average difference: The average difference is the average of the difference
between the target and tracker positions in each timestep of a run. This
measures the average deviation of the target and tracker paths over a run.
The optimum value for this measure is zero.

3. Number of task switches: The number of task switches is the average number
of times that agents change tasks during a run, averaged over all agents in
the swarm. A task switch is defined as switching from one task to another
as well as switching between idle and acting on a task. One of the expected
advantages of dynamic thresholds is that they allow agents to dynamically
specialize to one or fewer tasks. Thus, specialization should result in agents
focusing on a single or fewer tasks, and reduction in the frequency of task
switching. The optimum value for this measure is zero.
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4.1 Results

Figure 1 compares the performance of the three swarm systems with respect to
tracker path length. The top row of plots give the results for the two regular
paths, zigzag and scurve. The bottom row of plots give the results for the two
random or irregular paths, sharp and random. The x-axis of each plot indicates
the step ratio, ρ. The y-axis of each plot indicates tracker path length. The
optimum path length is 500, as indicated by the dashed line.
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Fig. 1. Average and 95% confidence interval of the tracker path length, averaged over
100 runs. The optimal path length is 500, as indicated by the dashed line. The confidence
intervals are extremely tight but they are plotted. (Color figure online)

Comparing the two dynamic systems, the red line and the aqua line, we see
that the Dynamic-Homogeneous tracker tends to travel longer paths than the
Dynamic-Heterogeneous tracker. As the step ratio increases (as we have more
extra agents) this difference increases. On the two regular paths, zigzag and
scurve, Dynamic-Homogeneous overshoots more and more as the step ratio
increases. This indicates that more agents than necessary are specializing on
tasks and the swarm is likely repeatedly over-shooting and over-correcting the
tracker path. Once there are sufficient agents to meet task demands, Dynamic-
Heterogeneous and Static both converge gradually toward the optimum path
length without over-shooting as extra agent resources increase. On the irreg-
ular paths, sharp and random, Dynamic-Homogeneous generates path lengths
closer to the optimum path length than Dynamic-Heterogeneous. Examination
of actual paths, however, reveals that both systems generate similar quality
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solutions. Figure 2 shows example sharp runs for step ratio 3.0, the value at
which Dynamic-Homogeneous shows the greatest improvement over Dynamic-
Heterogeneous. Both systems track the target similarly well and the extra length
of the Dynamic-Homogeneous path is actually due to over-correction choppiness.
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Fig. 2. Target and tracker paths. The left plot is an example Dynamic-Homogeneous
run. The right plot is an example Dynamic-Heterogeneous run. Both runs are on the
sharp path and have a step ratio of 3.0.

Figure 3 compares the performance of the three swarm systems with respect
to the average distance between the target and tracker throughout a run. The
x-axis of each plot indicates the step ratio, ρ. The y-axis of each plot indicates
distance. Comparing the two dynamic systems, we see that when the step ratio is
low (there are little or no extra agents), Dynamic-Heterogeneous performs better
than Dynamic-Homogeneous, keeping the tracker closer to the target during the
run. As step ratio increases (the number of extra agents increase), Dynamic-
Homogeneous becomes the better performer. Static continues to perform well
relative to the dynamic systems, achieving the best or close to best performance
of the three. All three systems performed similarly overall; on a path of length
500 units, all three systems maintained average distances within two units or
less of each other for each step ratio value.

Figure 4 compares the performance of the three swarm systems with respect
to the average number of task switches per agent per run. The x-axis of each plot
indicates the step ratio, ρ. The y-axis of each plot indicates number of switches.
In all paths except for zigzag, Dynamic-Homogeneous performs significantly
worse than either Dynamic-Heterogeneous or Static. In the zigzag path, the
performance of the two dynamic systems is similar when the step ratio is low,
and Dynamic-Heterogeneous becomes significantly better as step ratio increases.
Static performs significantly better than either dynamic system on the regular
paths. Static’s advantage is less consistent on the irregular paths where Dynamic-
Heterogeneous outperforms it (undergoes significantly fewer task switches) on
the random path.
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Fig. 3. Average and 95% confidence interval of the average distance between target and
tracker during a run, averaged over 100 runs. The confidence intervals are extremely
tight but they are plotted.
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Fig. 4. Average and 95% confidence interval of the average number of task switches
per agent during a run, averaged over 100 runs. The confidence intervals are extremely
tight but they are plotted.
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4.2 Agent Thresholds and Actions

The previous results suggest that Dynamic-Homogeneous and Dynamic-
Heterogeneous are able to track the target with similar skill, with Dynamic-
Heterogeneous forming more stable specializations. To verify this conclusion, we
need to examine how agents act and adapt their thresholds over the course of a
run.
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Fig. 5. Threshold values for θi,N for all agents over the course of a run. The left plot
is an example Dynamic-Homogeneous run. The right plot is an example Dynamic-
Heterogeneous run. Both runs are on the zigzag path and have a step ratio of 1.5.
(Color figure online)

Figure 5 shows how the θi,N threshold of all agents in the swarm change over
time in two example runs. The left plot is an example Dynamic-Homogeneous
run. The right plot is an example Dynamic-Heterogeneous run. Both runs are on
the zigzag path and have a step ratio of 1.5. The x-axis of both plots indicates
agent number, i. The y-axis of both plots indicates timestep. Each column shows
the values for one agent’s θi,N (threshold for pushing north) and how they change
over time. Green indicates low threshold (quick to act) and red indicates high
threshold (unlikely to act).

Recall that initial thresholds are randomly generated in both systems.
Accordingly, there is a mix of colors in the top rows of both plots. As the
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runs proceed, the Dynamic-Homogeneous agents shown in the left plot clearly
converge to extreme threshold values as indicated by the bright red and green
values in the second half of the plot. Although early on (top half of the plot),
color changes within a column indicates that there are agents that are adapting
their thresholds, instances of color changes diminish as the run proceeds and the
bottom half of the plot shows much less evidence of threshold adaptation. Once
converged to red or green, most agents stay on that color, indicating that their
thresholds have become stuck in a sink state.

The Dynamic-Heterogeneous agents shown in the right plot maintain a much
more diverse distribution of values throughout the run. Evidence of agents
adapting their threshold (color changes within a column) exist throughout the
run. When agents converge, the values (colors) to which they converge are less
extreme, which allows for a greater possibility of future change. Evidence of the
agents reacting to the regular zigzag path remains throughout the run in the
periodic color shifts.
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Fig. 6. Target and tracker paths corresponding to the runs from Fig. 5. The left plot
is an example Dynamic-Homogeneous run. The right plot is an example Dynamic-
Heterogeneous run. Both runs are on the zigzag path and have a step ratio of 1.5.

Figure 6 shows the corresponding paths traveled by the target and tracker in
the runs from Fig. 5. The left plot is the Dynamic-Homogeneous run. The right
plot is the Dynamic-Heterogeneous run. Both runs are on the zigzag path and
have a step ratio of 1.5. While both systems track the target well, we can see
in the left plot that, as Dynamic-Homogeneous agent thresholds converge, the
system’s tracking ability declines. Notably, Dynamic-Homogeneous continues to
track well when travelling northeast, the direction for which its thresholds first
begin to adapt. Its ability to track in the southeast direction declines over time,
likely due to agent threshold having converged to a distribution optimized for
the first set of tasks it encountered. Dynamic-Heterogeneous agents, on the other
hand, track the target well throughout the run in both directions while also
generating fewer task switches (as indicated in Fig. 4).

5 Conclusions

In this paper, we test the hypothesis that using heterogeneous threshold ranges
instead of homogeneous threshold ranges will allow dynamic response threshold
swarms to adapt agent thresholds in response to changing task demands while
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mitigating the problem of convergence to and inability to leave sink states that
occurs with homogeneous threshold ranges. We compare the performance of
the proposed Dynamic-Heterogeneous approach with two baseline approaches:
the existing Dynamic-Homogeneous approach where all agents have the same
threshold ranges and the basic Static approach where all agents are assigned
uniformly random static thresholds that do not change.

We test these three systems on a collective tracking problem that is mod-
elled after a honeybee thermoregulation task allocation problem. We test four
instances of this problem. Two instances generate regular repeated task demands
over time. Two instances generate irregular, somewhat random, task demands
over time. In each pair of instances, one illustrates periods of stable task demand
punctuated by occasional abrupt change, the other illustrates constant gradual
change in task demands.

Our results indicate that, in most situations, Dynamic-Heterogeneous per-
forms as well or better than Dynamic-Homogeneous in terms of allocating
appropriate numbers of agents to each task demand over time. The Dynamic-
Heterogeneous approach results in a significantly more stable swarm in that
it significantly reduces the number of times agents switch tasks. This stability
is due in part to the fact that the Dynamic-Heterogeneous approach reduces
the likelihood of agent thresholds converging and becoming stuck in extreme
values or sink states. Avoidance of those sink states allows agents greater abil-
ity to re-adapt their thresholds if task demands change. Examination of how
agent thresholds adapt over the course of an example run finds that Dynamic-
Heterogeneous maintains a more diverse and more adaptable distribution of
thresholds than Dynamic-Homogeneous. As seen in previous work, Dynamic-
Homogeneous thresholds tend to converge in response to the first set of task
demands encountered and have difficulty re-adapting to new task demands.
Dynamic-Heterogeneous threshold remain responsive to changes in task demand
while converging enough to lower task switching and increase stability.

An interesting and unexpected result that we have not yet discussed is the
fact that swarms in which agents are assigned static uniformly distributed thresh-
olds matches or outperforms both dynamic threshold approaches in a large num-
ber of the scenarios that we tested. It is this result that prompted us to examine
a range of step ratio values. In trying to understand when dynamic thresholds
are necessary, we hypothesize that dynamic thresholds are more crucial in sys-
tems without extra agent resources. In such systems, an appropriate distribution
of thresholds is necessary in order for the swarm to address all task demands
in a timely manner. In systems that do have excess agents, inappropriate dis-
tributions of thresholds (and agents that stubbornly refuse to leave tasks that
do not need attending) have less of an effect because there are plenty of extra
agents to take on unaddressed task demands. This hypothesis is borne out in
the data from Figs. 1, 3, and 4 that show that Static’s performance advantage
over Dynamic-Heterogeneous and Dynamic-Homogeneous is always significantly
reduced at lower step ratio values where the systems have few to no extra agents.
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In summary, our results suggest two general conclusions with respect to
swarms that use dynamic response thresholds. First, heterogeneous threshold
ranges effectively mitigate the problem of convergence to sink states that occurs
with homogeneous threshold ranges, while still retaining the benefits of threshold
adaptation. Second, if a swarm is expected to have excess agents, static uniformly
distributed thresholds are a simple and effective approach that deserve serious
consideration.
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in a swarm of foraging robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.)
SR 2006. LNCS, vol. 4433, pp. 14–26. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-71541-2 2

26. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Towards energy optimisation:
Emergent task allocation in a swarm of foraging robots. Adapt. Behav. 15, 289–
305 (2007)

27. Meyer, B., Weidenmuller, A., Chen, R., Garcia, J.: Collective homeostasis and
time-resolved models of self-organised task allocation. In: Proceedings of the 9th
EIA International Conference on Bio-inspired Information and Communication
Technologies, pp. 469–478 (2015)
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