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Abstract. Inter-agent variation is well-known in both the biology and
computer science communities as a mechanism for improving task selec-
tion and swarm performance for multi-agent systems. Response thresh-
old variation, the most commonly used form of inter-agent variation,
desynchronizes agent actions allowing for more targeted agent activation.
Recent research using a less common form of variation, termed dynamic
response intensity, demonstrates that modeling levels of agent experi-
ence or varying physical attributes and using these to allow some agents
to perform tasks more efficiently or vigorously, significantly improves
swarm goal achievement when used in conjunction with response thresh-
olds. Dynamic intensity values vary within a fixed range as agents acti-
vate for tasks. We extend previous work by demonstrating that adding
another layer of variation to response intensity, in the form of hetero-
geneous ranges for response intensity values, provides significant per-
formance improvements when response is probabilistic. Heterogeneous
intensity ranges break the coupling that occurs between response thresh-
olds and response intensities when the intensity range is homogeneous.
The decoupling allows for increased diversity in agent behavior.

1 Introduction

Swarms of artificial agents, which model, among other things, natural colonies of
insects, are comprised of some number of software or hardware agents working
in concert to achieve a goal. The agents accomplish the goal by completing,
usually repeatedly, one or more tasks. The swarms in this work are decentralized.
Thus, there is no leader or central control of the swarm and the agents do
not communicate. Each agent chooses which tasks to perform and when. Work
modeling natural swarms with artificial swarms dates back two decades [14].

Agents determine which tasks to undertake by considering environmental
stimuli. When agents respond to these stimuli in the same way, their actions
are synchronized. This synchrony often results in poor goal achievement. Swarm
performance can be improved via inter-agent variation: differences in how and
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when agents select and perform tasks. Common forms of inter-agent variation
include response thresholds [6,15] and response probabilities [15].

Response thresholds desynchronize agents’ actions by varying the stimulus
required for an agent to act. This models the non-determinism inherent in natural
swarms. Systems typically utilize response thresholds in one of two ways: proba-
bilistically or deterministically. Probabilistic response, introduced by Bonabeau,
et al. [1,2], uses a formula based on a task stimulus τ and an agent’s response
threshold θ to determine whether the agent activates for the task. The probabil-
ity of activation increases with τ , approaching 1.0 when τ � θ. When τ = θ, the
probability is 0.5. Deterministic response [7,13,20] activates an agent if τ ≥ θ.
Agent actions are desynchronized only if threshold values are heterogeneous.
In the biology literature, Weidenmüller [15] suggests that use of heterogeneous
response thresholds together with probabilistic response can further improve
diversity in agent behaviors. Wu, et al. studied this effect in artificial swarms,
confirming the benefit of non-determinism with heterogeneity [19].

Isolation of probabilistic response into a separate form of inter-agent varia-
tion, one that can be set and tuned independent of response thresholds, leads
to a form of inter-agent variation known as response probability [13,17–19]. A
first-order effect of decreased response probability is a decrease in the number
of agents that activate for a task. Perhaps more importantly, a second-order
effect is that inaction by frequent actors, agents with low response thresholds,
may allow other agents to gain experience with a task [15,19]. This results from
increased need due to the reduction in agents performing the task. Increased
need exceeds the response threshold for additional agents, allowing them to par-
ticipate. The experience gained by these agents may be important to the swarm
if, for example, an extinction eliminates frequent actors.

The need for redundancy in artificial swarms has been acknowledged for many
years as a way to mitigate the effects of agent failure or loss [4]. Similar effects
are common in natural swarms in which agents are lost due to age, predators,
or competitors. If these agents are frequent actors for a task, their loss may
create significant short-term difficulty for the swarm as less experienced agents
must fill the void. If, however, frequent actors sometimes remain idle due to
decreased response probability, agents with higher response thresholds would
gain experience with the task, making the swarm more tolerant of agent loss.

Response intensity is a less known form of inter-agent variation, particularly
for artificial swarms. Response intensity models differences in quantities such as
a natural agent’s physical size, strength or stamina, attributes that may allow the
agent to work more vigorously or more efficiently. Biologists have documented
variation in response intensity [3,11]. For example, in the natural world some
insects are known to change their response intensity as necessary to meet the
needs of their colony [5]. Response intensity may also model an agent’s experience
on a task. We are not aware of previous work, prior to this year, that attempts
to model this natural phenomenon in artificial swarms [10].

Experience is known to impact not only individual task efficiency but also
individual task selection as well as collective colony performance [9,12]. In
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Cerapachys biroi ants, individuals that find early success in foraging activities
choose to forage again, whereas those individuals that were unsuccessful are
more likely to choose to care for young in the nest [12]. In Leptothorax albipen-
nis ants, task repetition improved colony performance for emigration, the task
of moving the colony to a new nesting location [9]. Because the entire colony is
exposed during emigration, and therefore in danger, efficient emigration is highly
desirable.

In artificial agents, response intensity may model a decrease in output due
to wear and tear or the increase in the output of a new and improved device.
Importantly, heterogenous response intensities, when paired with heterogeneous
response thresholds, play a role in determining which agents undertake a task
and, therefore, gain experience and proficiency in that task.

Mathias et al. [10] demonstrated that dynamic, heterogeneous response inten-
sities significantly improve swarm task achievement when combined with het-
erogeneous response thresholds and result in increased agent specialization.
Dynamic response intensities vary within a specified range over the course of
a run, increasing when an agent activates for a task and decreasing when it
does not, modeling an agent’s experience with the task. The range within which
response intensities vary is homogeneous.

One consequence of combining heterogeneous response thresholds with
dynamic, heterogeneous response intensities is that the values couple. This occurs
because agents with low thresholds for a task activate more frequently for that
task. Each activation increases the response intensity for the task, within the
specified range. Thus, over time, an agent’s response threshold for a task corre-
lates with its response intensity for that task. Further, if the work performed by
frequent actors is sufficient to meet task demand, agents with higher thresholds
are denied the opportunity to gain experience for that task. This is potentially
harmful to the swarm.

In this work, we demonstrate that using dynamic, heterogeneous response
intensities that vary within heterogeneous ranges, rather than homogeneous
ranges, improves swarm performance as response probability decreases. This
occurs because heterogeneous intensity ranges and decreased response probabil-
ity serve to decouple response thresholds and response intensities. We show that
this makes the swarm more resistant to the effects of extinctions of experienced
agents.

2 Model and Testbed Problem

We extend previous work on response intensities in two significant ways. First,
we augment the dynamic, heterogeneous response intensities with heterogeneous
intensity ranges. Thus, rather than all agents sharing a common range within
which their intensities vary with experience, each agent has a unique intensity
range. Second, we incorporate response probability. Response probability allows
an agent to fail to undertake a task when the agent’s response threshold for that
task is met. The response probability values used here are homogeneous.
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Fig. 1. An example random target path (purple) and corresponding tracker movement
(blue) over 500 time steps. (Colour figure online)

Our testbed is a 2D tracking problem. This problem consists of a target object
that moves in the plane and a tracker object. A swarm controls the tracker,
pushing it to stay as close as possible to the target, which moves at random
or according to one of several predefined paths. The paths are unknown to the
agents. Each agent is capable of performing all tasks required of the swarm. The
tasks are: push N, push E, push S, or push W. Agents may also remain idle if
none of their response thresholds are met or due to the response probability. An
example random target path is illustrated in Fig. 1.

A simulation consists of a predefined number of time steps. The target moves
a fixed distance in each time step. The target’s direction of travel can change
as often as each time step, allowing frequently changing task demands. Agents
are aware of the distance from the tracker to the target, defined by: Δx =
target.x− tracker.x and Δy = target.y − tracker.y. In each time step, each agent
chooses a task to perform from among those tasks for which the agent’s response
thresholds are met.

Swarm goal achievement is measured according to two criteria:

Goal 1. Minimize the average positional difference, per time step, between the
target location and the tracker location.

Goal 2. Minimize the difference between total distance traveled by target and
the total distance traveled by the tracker.

We note that neither criterion alone is sufficient to gauge the swarm’s success.
Consider using only Goal 1. The tracker could remain close to the target while
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alternately racing ahead or falling behind. This would result in a good average
difference but a path length that is significantly greater than that traveled by
the target. Alternately, the tracker could travel a path that is the same length
as that of the tracker while straying quite far, taking a very different path.

Swarm efficiency is measured by the number of times agents switch from one
task to another and the number of agents that activate for a task in a time step.
Both task switches and activations may have costs in real-world applications,
thus, a swarm is more efficient when these quantities are reduced. For example,
undertaking a new task might require an agent to move to a new location,
incurring costs in time and fuel.

Here we define the forms of inter-agent variation used in this work. Let ai, i ∈
{1, . . . , n} be an agent.

– Response threshold: A value θi,D (D ∈ {N,E, S,W}) for each task that
represents the maximum acceptable ΔD between the target and tracker for
that task. If ΔD exceeds θi,D, agent ai may activate for that push D. These
values are heterogeneous. Response thresholds are assigned uniformly at ran-
dom in [0.0..1.0], a choice supported in the literature [7,8,16].

– Response intensity: A multiplier γi,D for each task. It represents the factor
by which the experience of ai for task push D differs from the default value
of 1.0. This manifests as increased/decreased pushing power, equal to γi,D.
These values are dynamic and heterogeneous. They are initialized uniformly
at random within the agent’s response intensity range for that task.

– Response intensity range: Intensity multipliers increase or decrease with
an agent’s experience for a task. The values for task push D for agent ai are
bounded within a range [γi,Dmin, γi,Dmax]. Ranges may be homogeneous or
heterogeneous. See Sect. 3 for a more detailed discussion.

– Response probability: A value p that represents the probability that an
agent activates for a task. This value is homogeneous across all agents and
tasks. It is a parameter to our system and is varied between runs.

3 Experimental Design

As response intensity and response probability are the focus of this work, we
run experiments with two different types of intensity ranges – homogeneous and
heterogeneous – and 7 response probability values, [0.4..1.0] in increments of 0.1.

To model the loss of agents and our system’s ability to recover from such
events, we implement three different forms of agent extinction. kill-0, in which
no agents are killed; kill-20-100-0, in which 20 agents are killed at time step
100; and kill-20-100-100, in which 20 agents are killed every 100 time steps
beginning at time step 100. In each case, the agents chosen for extinction are
those that were idle in the fewest time steps. This means that we kill those agents
with the most experience and examine how well the swarm is able to recover.

Homogeneous intensity ranges are fixed at [0.5, 2.0]. Heterogeneous intensity
range for agent ai and task push D is assigned by first choosing a size d uniformly
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Fig. 2. A tracker performance comparison for four representative runs on path s-curve.
The rows differ in response probability with 1.0 above 0.6. The columns are different
response intensity ranges with homogeneous followed by heterogeneous. With response
probability 0.6, the tracker performs substantially better with heterogeneous ranges.
(Color figure online)

at random in [0.6, 1.6]. Offset γi,Dmin is then chosen uniformly at random in
[0.3, (2.4 − d)]. γi,Dmax = γi,Dmin + d yielding range [γi,Dmin, γi,Dmax] ⊂
[0.3, 2.4]. These values are also determined empirically under the same condi-
tions listed above. We note that the upper and lower endpoint values for both
homogeneous and heterogeneous ranges are empirically determined to optimize
behavior for the respective intensity range type for runs in which the response
probability is 1.0 and no agent extinctions occur.

We test our system on three target paths: random, s-curve, and sharp. Ran-
dom paths are generated by calculating an angle change, in radians, at every
time step. The change is Gaussian N (0.0, 1.0). S-curve is a periodic curve seen
in Fig. 2. Sharp is a randomized path in which a new heading and probability
q of changing direction are chosen in every time step. The heading is chosen
uniformly in [0, 2π] and q is uniform in [0.2, 0.6]. Thus, turns are sharper than in
the random path. All three paths create changing task demands though, random
and sharp change more dramatically.

The variations discussed in this section produce 126 experiments for testing,
42 for each of the target paths. For each experiment we perform 100 runs. Each
run lasts 500 time steps. In each time step, the target moves 3 distance units for
a total path length of 1500. The swarm consists of 200 agents each of which is
capable of performing all four tasks.

At each time step, we record the tracker’s distance from the target. In addi-
tion, we record the total distance traveled by the target, total distance traveled
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by the tracker, the number of time steps in which each agent pushes in each
direction, the number of times an agent does not perform a task (remains idle),
and the number of times an agent switches from one task to another.

Fig. 3. Average positional difference and tracker path length for homogeneous and
heterogeneous intensity ranges for target path random for 100 runs. Error bars are
shown in red. Both quantities are improved for heterogeneous ranges. (Color figure
online)

4 Experimental Results

In this section, we report the results of the experiments described in the previ-
ous section. These results support our central argument: Heterogeneous response
intensity ranges improve swarm performance, when agents respond probabilis-
tically, due to increased inter-agent variability and the decoupling of response
threshold values and response intensity values. In addition, our results support
those of previous work in demonstrating that response probabilities p < 1.0 allow
swarms to recover more quickly from agent extinctions.

The data support the following performance improvements for heterogeneous
intensity ranges, relative to homogeneous intensity ranges, for lower response
probabilities and paths with frequently changing task demands:

– reduced average positional difference between the target and the tracker
– reduced variability, within a run, in average positional difference between the

target and the tracker
– reduced difference between the target and tracker path lengths
– more accurate target path tracking
– reduced task switching

Figure 2 illustrates the effect of heterogeneous intensity ranges on target
tracking when response probability is reduced. The top row shows that when
response probability p = 1.0, homogeneous and heterogeneous intensity ranges
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Fig. 4. Average positional difference and tracker path length for homogeneous and
heterogeneous intensity ranges for target path s-curve for 100 runs. Error bars are
shown in red. Both quantities are improved for heterogeneous ranges. (Color figure
online)

Fig. 5. Average positional difference and tracker path length for homogeneous and
heterogeneous intensity ranges for target path sharp. Error bars are shown in red.
Both quantities are improved for heterogeneous ranges. (Colour figure online)

produce similar results, with the tracker (red) staying close to the target (blue)
throughout the run. Note that there is minimal degradation of performance
as agents are killed at 100 time step intervals. In the bottom row, the response
probability p = 0.6. Thus, there is probability 0.4 that an agent fails to act when
its response threshold is met. As a consequence, system performance suffers –
recall that parameter values are optimized for p = 1.0. We note that tracking
is significantly better for heterogeneous intensity ranges than for homogeneous
ranges when p = 0.6.

Figures 3, 4, and 5 provide data for the tracking effects observed in Fig. 2 for
paths random, s-curve, and sharp, respectively. In each figure, the left plot shows
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Fig. 6. Average task switches, per agent, for homogeneous and heterogeneous intensity
ranges, for target paths random and sharp. These paths have frequently changing task
demands. In both cases, heterogeneous ranges reduce the number of switches.

average positional difference between target and tracker for response probabil-
ities p ∈ [0.4, 1.0] for both homogeneous and heterogeneous response intensity
ranges. The right plot shows average tracker path length for the same response
probabilities and response intensity ranges. Recall that target path length is
1500. Each data point represents 100 runs. 95% confidence intervals, though
quite small in most cases, are shown in red. The data show that at lower response
probabilities, the average difference is lower and tracker path length is closer to
target path length for runs with heterogeneous response intensity ranges than
for runs with homogeneous response intensity ranges.

Figure 6 illustrates the effect of heterogeneous intensity ranges on the average
number of switches per agent for paths random (left) and sharp (right). Hetero-
geneous intensity ranges allow the swarm to perform fewer task switches, par-
ticularly when agents respond probabilistically. At response probability p = 0.6,
the difference is approximately 15 fewer task switches per agent or 3000 fewer
switches during a run for a population of 200 agents. Because task switches can
incur a cost in real-world applications, this is a significant improvement.

The observed trends are explained as follows. With homogeneous intensity
ranges, all frequent actors for a task have similar response intensity values due to
the common maximum value. As frequent activation results from low response
thresholds, this results in a coupling of the two values: small θ → large γ. In
contrast, heterogeneous intensity ranges have different sizes and different min-
imum and maximum values. The smallest range size d = 0.6 and the smallest
possible γi,Dmin = 0.3 resulting in a minimum intensity range of [0.3, 0.9]. The
largest possible γi,Dmax = 2.4. As with homogeneous intensity ranges, frequent
actors may reach the maximum intensity value in their range, however, these
maximum values vary considerably making the swarm in general, and the group
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of frequent actors in particular, more diverse. In this way, γi,D is far less depen-
dent on θi,D. Thus, heterogeneous intensity ranges decouple response intensity
values from response threshold values.

This decoupling has multiple effects. First, it allows the swarm to better
adapt to frequently changing task demands. This occurs because when task
demands change frequently, agents are unlikely to maximize their intensity values
through activation. This may result in insufficient intensities, for those agents
that activate due to low thresholds, to maintain a small positional difference with
the target. The greater diversity of intensity ranges can mitigate this. Second,
it helps regulate swarm behavior, in the short-term, after an agent extinction
because survivors – agents with higher response thresholds – may have higher
response intensities than is possible with homogeneous intensity ranges. Thus,
the swarm is better able to meet task demand. Of course, the random nature of
intensity range creation could result in a swarm with too few agents with high
intensity ranges but due to the population size used, this is unlikely.

Fig. 7. Average positional difference heterogeneous intensity ranges with each agent
extinction implementation for target path random. This demonstrates that extinction
type does not significantly affect the swarm’s ability to track the target.

The results presented above are for runs using extinction kill-20-100-100
in which 20 agents are killed every 100 time steps. Extinction types kill-0 and
kill-20-100-0 are also used in our experiments. Figure 7 illustrates why we
focus the discussion on a single extinction type. The figure shows that average
positional difference does not vary significantly with changes in extinction. The
same trend is observed for average path length. Therefore, we choose to concen-
trate the analysis on kill-20-100-100 to simplify the presentation. The y-axis
range in Fig. 7 is the same as in Figs. 3, 4, and 5 to facilitate comparison.
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response probability 0.6, heterogeneous intensity ranges result in an increase in idle
agents, reducing costs for the swarm. (Color figure online)

Figure 8 shows an additional effect of heterogeneous intensity ranges. With
reduced response probability, the number of idle agents (blue line) is greater
than when intensity ranges are homogeneous (purple line). Recall that agent
activation has costs that can include fuel and wear on the agents. Thus, a higher
number of idle agents is desirable. Note that the number of idle agents decreased
through the runs represented in the figure due to the reduction in the number
of agents through extinctions.

5 Conclusions and Future Work

In this work we explore the effects of a little-studied and promising form of inter-
agent variation: response intensity. Expanding on previous work that shows the
benefit of heterogeneous response intensity values that vary within a homoge-
neous range, we implement response intensity values that vary within hetero-
geneous response intensity ranges. Our system also uses homogeneous response
probability and heterogeneous response thresholds.

We find that heterogeneous response intensity ranges provide significant
improvement over homogeneous response intensity ranges for decreased response
probabilities and problems with frequently changing task demands for a 2-D
tracking problem. The improvement is seen in all measures of swarm perfor-
mance: average positional difference, average tracker path length, and average
number of task switches. The observed improvements are due to the decoupling
effect that heterogeneous intensity ranges have on response intensity values and
response probability values. This results in far more diversity among frequent
actors and the backup agents that replace them when agent extinctions occur.
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In future work, we will test our model on a more complex task allocation prob-
lem and explore additional forms of inter-agent variation. In addition, we plan
to investigate heuristic methods for initializing the values of response thresholds
and response intensities.
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