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Abstract
In this paper, we investigate how response probability may be used to improve the robust-
ness of reactive, threshold-based robotic swarms. In swarms where agents have differing 
thresholds, adding a response probability is expected to distribute task experiences among 
more agents, which can increase the robustness of the swarm. If the lowest threshold agents 
for a task become unavailable, distributing task experience among more agents increases 
the chance that there are other agents in the swarm with experience on the task, which 
reduces performance decline due to the loss of experienced agents. We begin with a math-
ematical analysis of such a system and show that, for a given swarm and task demand, we 
can estimate the response probability values that ensure team formation and meet robust-
ness constraints. We then verify the expected behavior on an agent based model of a forag-
ing problem. Results indicate that response probability may be used to tune the tradeoff 
between system performance and system robustness.

Keywords Response probability · Response threshold · Redundancy · Robustness · 
Threshold-based systems · Decentralized task allocation · Swarm robotics · Multi-agent 
systems

1 Introduction

In this paper, we investigate how response probability may be used to improve the robust-
ness of reactive, threshold-based robotic swarms. One of the perceived advantages of 
swarm systems is robustness (Brambilla et al. 2013). If an agent or group of agents that 
are the primary actors for a task become unavailable, then the multi-agent composition 
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of a swarm means that there are potentially other agents that can take the place of the 
primary actors. The availability of replacement agents provides uninterrupted task perfor-
mance as long as the replacement agents have equal capability as the original actors. For 
tasks in which experience improves performance, however, maintaining task performance 
due to loss of agents is more challenging. If the replacement agents are less capable than 
the original agents, there can be a drop in task performance until the replacement agents 
gain enough experience to work as effectively as the original agents. In computational sys-
tems, experience often equates to information; thus, domains where this tradeoff is impor-
tant include problems in which agents must work to gain information, for example, on the 
environment in which they are working or on how their team members behave, that can 
improve their contribution to the overall swarm performance.

From a system performance perspective, it is desirable for agents with the most experi-
ence to act on a task because that results in the most effective performance. From a robust-
ness perspective, however, it may be beneficial for less experienced—and less effective—
agents to act on a task because it would increase the pool of agents with experience, which 
can potentially temper the drop in system performance should the more experienced agents 
ever become unavailable. The question, then, is how to maintain system performance while 
also generating a large enough pool of agents with experience such that the loss of primary 
actors does not significantly reduce system performance on a task. More specifically, how 
can we achieve such functionality in a decentralized system.

Biological studies on social insect societies suggest that response probability is a poten-
tial mechanism for balancing the goals of maintaining system performance and building an 
experience pool (Weidenmüller 2004). When agents in a threshold-based system respond 
deterministically, only those agents with the lowest threshold for a task will act. As a result, 
only the primary actors for a task will gain experience on that task. If agents respond prob-
abilistically instead of deterministically, then agents do not always act when a task stimu-
lus exceeds their threshold. When any of the primary (lowest threshold) actors for a task 
do not act, agents with higher thresholds get an opportunity to gain experience on that 
task, thus increasing the pool of agents with experience on the task. Such non-deterministic 
responses in biological swarms may be internal to the agent, or may be due to reasons such 
as agents being occupied by other tasks, being unable to sense or accurately sense the task 
stimulus, or being physically blocked or otherwise unable to reach the task.

We hypothesize that such a mechanism can be applied in robotic swarms to improve 
system robustness. Robustness is particularly important for swarms applied to extreme 
problem domains (Scerri et al. 2005), such as UAV coordination, interplanetary explora-
tion, and disaster rescue, where robust autonomy is crucial because human intervention is 
unavailable or difficult to access immediately. Many exploration and search-related appli-
cations have the property that experience improves performance because experience on 
such tasks accumulates information which can be used to generate more effective perfor-
mance on the task in the future (Brutschy et al. 2012; Krieger and Billeter 2000; Yamauchi 
1998). While such information is easily shared among all team members when a team is 
small, large-scale teams and difficult environments can make universal information sharing 
challenging. Such situations are likely to benefit from a response probability mechanism.

We focus on reactive, threshold-based swarms in which agents decide when to act on 
tasks based on their thresholds for each task. We assume that the swarm is decentralized, 
each agent acts independently, and there is no communication between agents. These char-
acteristics maximize the potential for scalability in such systems. We study a single-task 
scenario in which a specified number of agents must act on a given task in order to satisfy 
the task demand. Each agent has a threshold for the task and agents consider acting on the 
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task when the task stimulus exceeds their threshold value. A response probability param-
eter indicates the probability that an agent will actually act on the task when its threshold 
is met. For this work, we assume that the response probability value applies to all agents in 
the swarm.

Probabilistic response in threshold-based systems is not new; however, to our knowl-
edge, our particular application of it is. We begin by explaining how probabilistic response 
has been used in the past and how it differs from the work in this paper. We then define an 
abstract model of a single-task scenario and show that this model can be used to estimate 
the range of response probability values that will allow a swarm of decentralized agents to 
satisfy task demand and to achieve a specified backup pool. Finally, we test the effects of 
response probability on an agent-based foraging problem. Results indicate that our theoret-
ical model can predict how response probability affects team and backup pool formation, 
that there are ranges of response probability values that achieve both, and that response 
probability may be tuned to emphasize swarm performance or robustness.

2  Background

The response threshold approach is one of several commonly studied methods for achiev-
ing decentralized task allocation and division of labor in swarms and multi-agent systems. 
Threshold-based systems are reactive systems in which agents dynamically decide what 
task to take on based on the task stimuli sensed at any given time. Each agent possesses 
a threshold for each task that it can take on. At any given time, an agent’s task choice is 
a function of the agent’s task thresholds and the corresponding task stimuli. The simplest 
such decision function is a direct comparison between an agent’s threshold, � , to the cor-
responding task stimulus, � , where 𝜏 > 𝜃 results in agent action on the task. More complex 
decision functions may include additional factors such as a probability factor, success rate, 
or perceived actions of other agents. If there is more than one task under consideration and 
if 𝜏 > 𝜃 may be true for more than one task at a time, system specifications will typically 
include a policy that describes how agents will select from among multiple tasks in need.

The response threshold approach has been used to generate division of labor in decen-
tralized systems for problems such as paintshop scheduling (Campos et al. 2000; Cicirello 
and Smith 2002; Kittithreerapronchai and Anderson 2003), mail processing (Goldingay 
and van Mourik 2013; Price and Tino 2004), foraging (Castello et al. 2013, 2016; Krieger 
and Billeter 2000; Krieger et al. 2000; Pang et al. 2017; Yang et al. 2010), job shop sched-
uling (Nouyan 2002), and tracking (Wu and Riggs 2018). In addition, a number of studies 
have demonstrated division of labor in abstract problem domains (Correll 2008; de Lope 
et al. 2013; dos Santos and Bazzan 2009; Kanakia et al. 2016; Kazakova and Wu 2018; 
Niccolini et al. 2010; Wu and Kazakova 2017). In the majority of the systems that use a 
response threshold approach, agent decisions to act on a task are probabilistic (Castello 
et al. 2013, 2016; Cicirello and Smith 2002; Correll 2008; dos Santos and Bazzan 2009; 
Goldingay and van Mourik 2013; Kazakova and Wu 2018; Niccolini et al. 2010; Nouyan 
2002; Nouyan et al. 2005; Pang et al. 2017; Price and Tino 2004; Yang et al. 2010), with 
the probability value typically calculated as a function of an agent’s threshold for the task, 
the current task stimulus value, and additional possible factors. This probabilistic decision-
making process occurs both in systems where all agents have the same threshold for a given 
task and in systems where different agents may have different thresholds for a given task.
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The reasons for focusing on probabilistic instead of deterministic decisions in these 
systems appear to be both historical and practical. Historically, this approach is based 
on a model division of labor in social insect societies (Bonabeau et  al. 1996, 1998), 
which models behaviors probabilistically because of the non-determinism of natural 
systems. Given a task stimulus, � , and an agent threshold, � , the probability that that 
agent will act on that task is calculated by

This model is designed such that: when 𝜏 ≪ 𝜃 , the probability that an agent will act on 
the task is close to zero; when 𝜏 ≫ 𝜃 , the probability of action is close to one hundred 
percent; and when � = � , the probability of action is fifty percent. Many of the compu-
tational swarm approaches directly or in part use this biological model (Campos et  al. 
2000; Castello et al. 2013, 2016; Cicirello and Smith 2002; Correll 2008; de Lope et al. 
2013; dos Santos and Bazzan 2009; Goldingay and van Mourik 2013; Kittithreerapronchai 
and Anderson 2003; Merkle and Middendorf 2004; Niccolini et  al. 2010; Nouyan et  al. 
2005; Pang et  al. 2017; Price and Tino 2004; Yang et  al. 2010). Practically, a probabil-
istic decision-making process increases the diversity of agent behaviors in the swarm. If 
all agents in a decentralized system have the same threshold or thresholds, deterministic 
decision making means that all agents that detect the same stimuli will react in the same 
way. Probabilistic decision making causes some agents to not act when their task threshold 
indicates that they should. This added diversity in agent behavior increases the repertoire 
of responses that the swarm as a whole can offer (Ashby 1958), which makes it more likely 
that a swarm can appropriately cover all tasks that need attendance.

Systems that do not use probabilistic decision making can alternately achieve diver-
sity in how agents respond to stimuli by assigning different threshold values to different 
agents for the same task (Krieger and Billeter 2000; Krieger et al. 2000; Wu and Riggs 
2018). Agents respond to increasing task stimuli in order of increasing threshold value. 
Heterogeneous threshold values have an added benefit of allowing for division of labor 
which can improve system efficiency through reduced task switching and increased 
effectiveness. Because the lowest threshold individuals for a given task are the first to 
be triggered, they are the most likely to respond to that task. High threshold individu-
als may not ever be triggered if the lower threshold individuals can sufficiently address 
a task’s demand. Thus, the same individuals are likely to respond to a given task which 
reduces task switching and, for tasks where experience improves performance, increases 
the effectiveness of those individuals on performing that task.

Biological studies on social insect societies suggest that, in systems where agents 
have different thresholds, probabilistic decision making can make a greater contribu-
tion beyond simply increasing the diversity in how agents respond to stimuli (Weiden-
müller 2004). Instead of the lowest threshold agents always being the ones to respond, 
a probabilistic response means that some low threshold agents may not respond every 
time which gives some higher threshold agents an opportunity to act and gain experi-
ence. Thus, a non-deterministic response probability can enhance the robustness of the 
system as a whole by creating backup pools of agents with experience on each task. 
In decentralized systems where experience improves performance, response probability 
potentially provides a simple but effective mechanism for balancing the exploitation of 
experienced agents with providing learning opportunities for less experienced agents.

(1)P =
�2

�2 + �2



237Swarm Intelligence (2020) 14:233–258 

1 3

The work presented here extends previous work in the following ways. This work 
focuses on examining this potential new role for response probability rather than on illus-
trating the ability to achieve division of labor on a particular problem. We investigate how 
response probability, when added to a system in which agents have differing thresholds for 
a task, affects agent decisions to act and the number of agents that gain experience. To do 
this, we extend a system structured like that studied by Krieger and Billeter (2000) and Wu 
and Riggs (2018), in which agents have heterogeneous thresholds and use a simple direct 
comparison decision function, by adding a response probability that is applied after the 
result of the direct comparison. This approach allows us to model the system mathemati-
cally while, we expect, still generating subjectively similar behavior as a system based on 
Eq. 1.

3  Analysis of response probability in robotic swarms

We begin by defining a mathematical model of our system that consists of a decentralized 
swarm of agents in a single-task scenario. Using this model, we can analyze the system1 
from two perspectives: how response probability affects the swarm’s ability to meet task 
demand and how response probability affects the formation of a backup pool.

3.1  Model

The basic elements of our model are a robotic swarm consisting of n decentralized agents 
and a task that requires x agents in attendance in order to fully satisfy the task demand, 
where x ≤ n . Each agent is assigned a threshold value within the range (0.0, 1.0]. The 
task has an associated stimulus value that grows with increasing need and decreases when 
agents act on the task. When the task stimulus exceeds an agent’s threshold, that agent will 
respond to the task. As a result, agents with lower thresholds are the first to act on a task; 
agents with higher thresholds are the last to act on a task. If we implicitly sort the agents 
by threshold from lowest to highest threshold as shown in Fig. 1, the resulting permuta-
tion gives the order in which the agents’ thresholds will be exceeded as task stimulus rises, 
which defines the order in which agents are expected to respond to the task. This implicit 

Fig. 1  The order in which agents in a swarm are expected to respond to the task stimulus is defined by their 
relative threshold values. Let �i denote the threshold of agent ai where i = 0, 1,… , n − 1 . The ordering in 
this example means that �i ≤ �i+1 for all i 

1 Parts of the analysis were presented earlier (Wu et al. 2012, 2016) and are included here for completeness 
with permission from AAAI.
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ordering means that the likelihood that an agent will act on the task depends on its relative 
position in the ordering (Pradhan and Wu 2011). Note that the ordering we use below is 
just a construct for the mathematical analysis; the probabilistic decentralized task alloca-
tion method we describe does not explicitly order agents. We can use this construct without 
loss of generality since there exists an implicit ordering based on the response threshold.

The response probability, s ∶ 0.0 ≤ s ≤ 1.0 , is defined as the probability that an agent 
will act when the task stimulus exceeds the agent’s response threshold. Our model assumes 
a single response probability value that applies to all agents in the swarm. If s = 1.0 , the 
agents are deterministic and only the first x agents will ever act on the task. If s < 1.0 , there 
is nonzero chance that agents may not act when the task stimulus exceeds their threshold. 
If any of the first x agents do not act, then one or more of the agents beyond the first x will 
have the opportunity to act and gain experience on the task. If s is too low, then there is the 
chance that not enough agents from the swarm will act to meet the task demand.

We define a trial to be one instance in which the swarm attempts to meet the task 
demand and a team to be the group of agents that act in one trial. A complete team is a 
team of size x; that is, a team that fully meets the task demand in a trial. During a trial, 
each agent may be in one of three states.

• Candidate: An agent that receives an opportunity to act because the task stimulus 
exceeds the agent’s threshold. This state is a temporary state that immediately transi-
tions to one of the other two states.

• Actor: A candidate that decides to act on the task. A candidate becomes an actor with 
probability s.

• Inactive: An agent that does not receive an opportunity to act or a candidate that 
chooses not to act.

During a trial, agents become candidates in order of increasing threshold values (in the 
order defined by the implicit ordering). Each candidate then decides whether to become 
an actor or remain inactive. A trial ends when either a complete team has been achieved or 
when all agents have become candidates.

Let z be the total number of agents in the swarm that gain experience (acts on the task at 
least once) over multiple trials. Figure 2 illustrates how the response probability, s, affects 
z. This example shows a swarm of size n = 8 , a task that requires x = 3 agent to satisfy the 
demand, and a series of three trials. Although a maximum of x agents become actors in 
each trial, over multiple trials, when s = 1.0 , z = x is always true and when 0.0 < s < 1.0 , 
the value of z may vary but z ≥ x is true. Over multiple trials, as the value of s decreases, 
the value of z increases.

3.2  Meeting task demand

In order for a swarm to be useful, it must be able to meet the task demand by forming a 
complete team (a team of size x). While we can ensure that all agents in a swarm will gain 
experience on a task over multiple trials by setting s to a low value, having a swarm full 
of “experienced” agents is pointless if the swarm is unable to form a full response team. 
As a result, the first question that we ask is, given that we have n agents and a task that 
requires x ∶ x < n agents, can we determine what s values will allow the swarm to success-
fully form a complete team?
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We begin by traversing all n agents and marking each agent with probability s. If an 
agent is marked then it will choose to act if given the opportunity. Of course, there may 
be marked agents that never receive the opportunity, but this will not affect the analy-
sis below. Let M be a random variable specifying the total number of marked agents, 
regardless of whether the agents participate in the team or not.

We use �(g(n)) to denote the set of functions that asymptotically bound g(n) from 
below. Formally:

For those less familiar with this notation, it may be helpful for our discussion to point out 
that the class of functions e−�(g(n)) is the set of functions that drop toward zero as an expo-
nential function of g(n) or faster.

The following lemma provides the baseline bounds and bounding techniques that we 
will be using. The proof for the lemma originally appeared in (Wu et al. 2012). We pro-
vide the full proof here, as well, since it is needed for context and also corrects a couple 
of minor typographical errors in the original publication.

Lemma 1 A single trial of the task allocation process will result in M ≤ x − 1 with proba-
bility 1 − e−�(n) when s < x−1

en
 . It will result in M ≥ x with probability 1 − e−�(n) when s > x

n
.

Proof To complete this proof, we use Chernoff bounds (Motwani and Raghavan 1995), 
which provides ways of bounding the probability of deviating from the expected value of a 
Poisson process by a small factor. We will use both bounds. For the first bound, we use the 
fact that for some random variable X governed by a Poisson process:

For the second bound, we use that fact that for some random variable X governed by a 
Poisson process:

Note that e is Euler’s number ( e ≈ 2.71828 ), not a variable.

�(g(n)) =

⎧
⎪⎨⎪⎩

f (n) ∶ there exist positive constants c

and n0 such that 0 ≤ cg(n) ≤ f (n)

for all n ≥ n0

⎫⎪⎬⎪⎭

(2)Pr [X > (1 + 𝛿) E [X]] <

[
e𝛿

(1 + 𝛿)1+𝛿

]E[X]

(3)Pr [X < (1 − 𝛿) E [X]] < e−𝛿
2E[M]∕2

Fig. 2  Example of effects of response probability, s, on a swarm of size n = 8 and task demand of x = 3 . 
Over multiple trials, when s = 1.0 only z = x agents gain experience; when 0.0 < s < 1.0 , z ≥ x agents gain 
experience
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The expected number of marked agents is n ⋅ s , E [M] = ns , since there are n agents 
to be marked and each is marked with independent probability s. For the first bound, we 
choose a convenient factor � to affect the expected number of marks. The objective of our 
choice is to simplify the bound algebraically. Since the first Chernoff bound presented 
above has a term of the form (1 + �) E [M] , we would like to construct a � that will both 
simplify the bound and also give us a useful final bound. Specifically, we choose to let

and this allows us to simplify (1 + �) E [M] as follows: 

Substituting into Eq. 2, we get

If x − 1 > ens , this converges to 0 exponentially fast as n grows. Thus, s < x−1

en
 implies 

Pr [M < x] = 1 − e−𝛺(n) , which bounds s from above.
For the second bound, consider the convenient factor � = 1 −

x

ns
 and note that

We use the second Chernoff inequality presented above to bound the probability that there 
are fewer than x marks. Substituting into equation 3, we get

If x < ns , this converges to 0 exponentially fast as n grows. Thus, s > x

n
 implies 

Pr [M ≥ x] = 1 − e−�(n) , which bounds s from below.   ◻

Theorem 1 With probability growing exponentially in n, 1 − e−�(n) , a complete team will 
be formed when s > x

n
 and will not be formed when s < x−1

en
.

Proof If there are fewer than x marks over all n agents, a complete team of x agents will not 
be formed, and a complete team can only be formed if there are x or more marks. Noting 
this, the conclusion follows from the marking-probability bounds proved in Lemma 1.  
 ◻

� =
x − 1

ns
− 1

(1 + �)ns =
(
1 +

x − 1

ns
− 1

)
ns = x − 1

Pr [M > x − 1] <

�
e𝛿

(1 + 𝛿)1+𝛿

�E[M]

=

⎡⎢⎢⎣
e

x−1

ns
−1

(
x−1

ns
)
x−1

ns

⎤⎥⎥⎦

ns

=
1

ens

��
ens

x − 1

� x−1

ns

�ns

(1 − �)ns =
(
1 − 1 +

x

ns

)
ns = x

Pr [M < x] = Pr [M < (1 − 𝛿) E [M]]

<e−𝛿
2E[M]∕2

=e
−
(
1−

x

ns

)2

ns∕2

=e−
1

2ns
(ns−x)2
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Asymptotic analysis gives us general bounds for the response probability as n grows; 
however, it is constructive to see how this practically relates to a specific scenario. Con-
sider a system with n = 100 agents and a task that requires x = 20 agents. If s1 equals the 
value of s for which a team is likely to be formed in a single trial, then

If s2 equals the value of s for which a team is almost surely not be formed in a single trial, 
then

We compare the predicted values of s1 and s2 with empirical results from a simulation of 
team formation by decentralized threshold-based agents. In the simulation, each agent has 
a threshold for a task; lower thresholds indicate quicker response. Recall that one trial is 
defined to be one instance of the task. In each trial, agents, in order of increasing thresh-
olds, decide whether or not to act with a probability s. The trial ends when either a com-
plete team is formed or when all agents have passed through the candidate state. Each run 
of the simulation consists of 100 trials, and we record the number of trials out of 100 in 
which a team is formed.

Figure 3 compares the predicted values for s1 and s2 for two scenarios with the corre-
sponding team formation data from the simulation. The x-axis in both figures plots the s 
values where 0.01 ≤ s ≤ 1.0 . The y-axis shows the percentage of trials in a run in which a 
team is formed, averaged over 20 runs, with 95% confidence intervals. The s1 and s2 values 
calculated above are indicated by two vertical lines. The left plot shows the results from a 
simulation consisting of 100 agents ( n = 100 ) and a task that requires 20 agents ( x = 20 ). 
The right plot shows results from a simulation consisting of 500 agents ( n = 500 ) and a 
task that requires 300 agents ( x = 300 ). Simulations using other n and x values yield com-
parable results.

In both examples, the calculated value for s1 , which indicates the threshold above which 
a team is likely to be formed in a single trial, falls on s values where the team formation 
percentage is fifty percent or above. The calculated value for s2 , which indicates the thresh-
old below which a team is unlikely to be formed in a single trial, falls on s values where 
team formation percentage is zero. It is likely that the x

n
 bound is tight and that x−1

en
 is overly 

cautious.

3.3  Forming a backup pool

For tasks where experience improves performance, system robustness can be improved by 
generating and maintaining a pool of agents beyond primary actors that have experience 
on the task. Because, in each trial, a maximum of x agents can act and gain experience, 
this redundancy can only be generated over multiple trials. The second question we ask is 
whether we can determine the appropriate value of s to use in a system when a specified 
level of redundancy is desired. To do so, we first look at what happens in a single trial and 
ignore the possibility of failing to make a team, then examine the combination of these 
results with the recommendations on team formation from the previous section.

We define c > 1 to be the desired level of redundancy where cx is the desired number of 
agents with experience (and the size of the backup pool is cx − x ). Our goal is to determine 

s1 >
x

n
=

20

100
= 0.2

s2 <
x − 1

en
=

19

e ⋅ 100
≈ 0.069897 ≈ 0.07
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the s values for which the cxth agent is highly likely to have gained experience and be part 
of the pool. The probability of the ith agent acting and therefore gaining experience ( Pi ) is 
no smaller for agents preceding the cxth in the ordering (i.e., Pi ≥ Pcx if i ≤ cx ) since those 
will be given the opportunity to act sooner and all agents have the same s. Here, we show 
formally that if s ≤ 1

ec
 , there is a constant probability that the cxth agent will gain experi-

ence and if s > 1

c
 , then it will almost certainly fail to gain experience. After deriving these 

bounds, we present an empirical case to show that the real system is consistent with our 
formal advice.

The proof for this follows a similar structure as the above proof, and we begin by 
traversing all n agents and marking each agent with probability s. Let K be a random 
variable specifying the number of marks in the first cx agents. We first describe a bound 
on s that is sufficient to assure a reasonable Pi , then we describe a looser bound that is 
required if we do not want Pi to converge to 0 with team size. Once again, we replicate 
the proof from (Wu et al. 2012) for context.

Theorem 2 In a single trial of the task allocation process, if s ≤ 1

ec
 , then Pcx = 1 − e−�(1).

Proof The expected number of marks in the first cx agents is c ⋅ x ⋅ s , E [K] = cxs . We 
again start with a convenient factor,

and note that

We use Chernoff inequality to bound the probability that there are at least x marks in the 
first cx agents:

So when s < 1

ec
 , this approaches 0 exponentially fast with x. Thus, the cxth agent almost 

surely is given the opportunity to act and Pcx = s ⋅
(
1 − e−�(x)

)
≈ s = 1 − e−�(1) .   ◻

Theorem 2 gives us a bound for sufficient values of s for the cxth agent to gain expe-
rience. If the cxth agent has a constant probability of gaining experience in a single 
trial, then a constant number of repeated trials will ensure the agent eventually gains 
experience. As stated, agents that precede the cxth agent in the ordering will have no 
worse probability of gaining experience, so the same logic applies to all of them. The 
question of how many trials are necessary to ensure this experience is a different one 
which is addressed by (Wu et al. 2012). Now that we have seen what sufficient values of 
s are to ensure experience, let us examine what values of s are so large that they prevent 
the cxth agent from even being given the opportunity to gain experience.

� =
1

cs
− 1

(1 + �)cxs =
(
1 +

1

cs
− 1

)
cxs = x

Pr [K ≥ x] = Pr [K > (1 + 𝛿) E [K]]

<

[
e𝛿

(1 + 𝛿)1+𝛿

]E[K]

=e−csx ⋅ (ecs)x



243Swarm Intelligence (2020) 14:233–258 

1 3

Theorem 3 In a single trial of the task allocation process, if s > 1

c
 , then Pcx = e−�(x).

Proof Again E [K] = cxs . Now let

and note that

We use Chernoff inequality to bound the probability that there are fewer than x marks in 
the first cx agents:

So when s > 1

c
 , this approaches 0 exponentially fast with x. Thus, the probability that the 

cxth agent is even given the opportunity to act is exponentially small for constant s.   ◻

Theorem 3 tells us that when s > 1

c
 , later agents will very probably be starved of the 

opportunity to gain experience by the agents before them in the ordering. This expectation 
means that unless there are an exponential number of trials, it is unlikely that repeated trials 
will allow us to build up a redundancy of cx agents with experience. Of course, these are 
asymptotic results that become more correct as team size and redundancy factor increase. 
Therefore, it is instructive to consider empirical results for specific values.

� = 1 −
1

cs

(1 − �)cxs =
(
1 − 1 +

1

cs

)
cxs = x

Pr [K < x] = Pr [K < (1 − 𝛿) E [K]]

<e𝛿
2E[K]∕2

=e
−

x

2cs

(
1−

1

cs

)2

(a) (b)

Fig. 3  Comparison of calculated values for s1 and s2 with empirical data on the percentage of trials in a 
run in which a complete team is formed, averaged over 20 runs, as s varies from 0.0 to 1.0: two exam-
ple scenarios with n = 100 and x = 20 (a) and n = 500 and x = 300 (b). The x-axis in both figures indi-
cates the response probability, s. The y-axis indicates the percentage of trials in a run in which a team is 
formed, averaged over 20 runs. When n = 100 and x = 20 (a), s1 = 0.2 is the response probability value 
above which a team is likely to be formed in a single trial and s2 ≈ 0.07 is the response probability value 
below which a team is unlikely to be formed in a single trial. When n = 500 and x = 300 (b), s1 = 0.6 is the 
response probability value above which a team is likely to be formed in a single trial and s2 ≈ 0.22 is the 
response probability value below which a team is unlikely to be formed in a single trial
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We compare the predicted values to empirical data from the simulation from the previ-
ous section. Consider again the scenario in which there are 100 agents ( n = 100 ) and we 
face a task that requires 20 agents ( x = 20 ). We would like a redundancy factor of 2 ( c = 2 ) 
which means that we would like the first 40 agents to gain experience on that task over 
multiple trials.

Figure 4 shows the influence of s on the formation of backup pool of agents. Again, the 
x-axis plots s values, but now the y-axis measures the average number of actors. The plot 
shows the average number of actors and 95% confidence intervals over 20 simulations. Fig-
ure 4 shows that, for the s value when the cxth agent is likely to act ( s ≈ 0.18) , the maxi-
mum average number of actors obtained is around 85, which means the cxth or 40th agent 
has acted and is in the backup pool and the desired redundancy is achieved. At the s value 
above which the cxth agent is unlikely to act ( s = 0.5 ), the maximum number of actors 
obtained is around 48. Again, the cxth or 40th agent makes it into the backup pool and the 
desired redundancy is achieved.    These empirical results are consistent with our formal 
predictions even though the values for n, x, and c are relatively small. Moreover, for large c, 
the difference between 1

c
 and 1

ec
 becomes smaller, making the advice more specific as more 

redundancy is required.
Note that the average number of actors again drops when s is too small, even though 

s <
1

ec
 . This occurs for a different reason: complete teams are not being formed when s is 

too small. Combining the theoretical advice from the previous section with this section and 
assuming the user wants to maximize the back up pool with at least cx agents with experi-
ence, we see that our theory can offer very specific and tangible advice.

Referring back to Fig.  3a where n=100 and x=20 , complete teams will almost cer-
tainly form if s ≥ x

n
= 0.2 and, according to Fig.  4, c-factor redundancy is ensured if 

s <
1

ec
≈ 0.18 . As we can see in Fig. 4, an s value in the range 0.18<s<0.2 is indeed a good 

first choice to achieve c=2 redundancy. Note that if s < x−1

en
≈ 0.07 , we will almost cer-

tainly fail to form a team—which is roughly close to where we lose a redundancy factor of 
two on the left part of the graph. Also, if s > 1

c
= 0.5 , we will almost certainly starve later 

agents and fail to get redundancy, which is roughly close to where we lose a redundancy 
factor of two on the right part of the graph.

4  Foraging problem

While the analysis above provides guidance on how response probability will affect if and 
when agents in a threshold-based swarm receive the opportunity to gain experience on 
a task, it is too simple to allow us to study how response probability may affect system 
robustness. To more thoroughly examine the latter, we study an agent-based simulation of 
a foraging problem.

The foraging problem is a common testbed for swarm robotics because it is a complex 
coordination and task allocation problem that is representative of many real-world appli-
cations (Winfield 2013). It is an effective testbed for examining the costs and benefits of 
single versus multiple agent systems (Brutschy et  al. 2012; Krieger and Billeter 2000; 
Labella et al. 2006; Pini et al. 2013). In a foraging problem, all (Lerman et al. 2006; Pini 
et al. 2013, 2014) or a subset (Castello et al. 2016; Krieger and Billeter 2000; Labella et al. 
2006; Pang et al. 2017; Yang et al. 2010) of the agents in a swarm search a working area to 
find and retrieve one (Krieger and Billeter 2000; Labella et al. 2006; Pini et al. 2013, 2014) 
or more (Lee and Kim 2017; Lerman et al. 2006) types of resources. Agents may or may 
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not adapt their behavior over time in response to environmental2 (Brutschy et al. 2014; Ler-
man et al. 2006; Pini et al. 2011) or internal (Agassounon et al. 2001) factors.

In the problem that we use, a decentralized swarm of agents searches a two-dimensional 
working environment for a single resource that is available at one or more locations in the 
environment. Agents have multiple opportunities to search for the resource, gaining infor-
mation about where in the environment to find the resource in each search attempt. Over 
multiple explorations, agents learn where to find the resource and how to get there effi-
ciently. Thus, the task that the agents take on is to retrieve one unit of resource (from any 
location), and experience refers to an agent’s information about the working environment 
and where in the environment the resource may be obtained.

It is important to note that this problem is a single-task problem where the task in ques-
tion for each agent is whether or not to go forage for the resource. It is not a multi-task 
problem where each location is a separate task. Although the resource may be available at 
more than one location, all locations contain the same resource. Regardless of the number 
of resource locations, the goal of the swarm is to address the single task of retrieving suf-
ficient units of resource. The task that each agent considers whether or not to take on is: 
shall I go retrieve one unit of the resource (from any location).

We first describe the simulation and how it relates to the analytical model. We then 
present the experimental setup, and discuss the results and their implications. We further 
connect the results with the bounds proved above for the simpler problem domain to better 
show how these two problems relate to one another.

4.1  System description

The simulation consists of a swarm of n agents searching for a resource in a two-dimen-
sional environment of width w and length l. Agents enter and exit the environment at an 
entrance located at the center of the environment, at coordinates ( w

2
,
l

2
 ). Within the environ-

ment, there are � sources of the resource, where � ≥ 1 . These resource locations may be 
randomly generated or user-specified; in either case, they remain fixed through the duration 
of a simulation run. Figure 5 shows an example environment with � = 4 . The four blue 

Fig. 4  Effect of s on the forma-
tion of a backup pool of c = 2 in 
a single task problem. The x-axis 
indicates the response probabil-
ity, s, and the y-axis indicates the 
average number of actors. The 
vertical lines indicate our formal 
bounds, and the horizontal line 
shows when the redundancy 
factor is met

2 Includes perceived local or global swarm status.
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targets represent locations where the resource is available. The brown dot at the center of 
the environment marks the swarm’s entry point into the environment.

Each run of the simulation consists of multiple trials. In each trial, x agents leave the 
home base to forage for the resource; each agent is able to travel a maximum of � steps 
before needing to return to the home base to recharge. Each agent’s foraging attempt con-
tinues until either the agent has found a resource location or the agent has travelled � steps. 
A trial ends after x agents have foraged (successfully or not) or after all n agents have 
entered and transitioned out of the candidate state (as defined in Sect. 3.1). Each time an 
agent travels to a resource location, it retrieves one unit of the resource. The performance 
of the swarm is measured by the number of resource units retrieved by the swarm in each 
trial.

Each agent maintains its own memory map of the environment. An agent’s memory map 
is a w × l grid. Each cell in the grid, mi,j ∶ i = 0,… ,w − 1 and j = 0,… , l − 1 , encodes 
a floating point value in the range [0.0, 2.0]. At the start of a run, all memory map cells 
are initialized to mi,j = 1.0 . Each time an agent forages, it keeps track of the path that it 
traverses in the environment. If the agent is successful in finding the resource, the agent 
records the path in its memory map as favorable. If the agent is unsuccessful in finding 
the resource, the agent records the path in its memory map as unfavorable. Specifically, let 
� be the positive reinforcement factor and � be the negative reinforcement factor. Both � 
and � are user-set parameters with range [0.0, 1.0]. If an agent is successful in finding the 
resource,

for all mi,j in the agent’s path. If an agent is unsuccessful in finding the resource,

for all mi,j in the agent’s path. The function t(mi,j) returns an integer value indicating what 
step number the cell mi,j is in the agent’s path, allowing the later steps in the path to be 

(4)mi,j = mi,j + (2.0 − mi,j) × �

(5)mi,j = mi,j − mi,j × � ×
t(mi,j)

�

Fig. 5  An example environment 
where � = 4 . The brown dot in 
the center indicates the swarm’s 
entry point into the environ-
ment. The blue targets indicate 
locations where the resource is 
available
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reinforced more than earlier steps. Figure 6 shows snapshots of the memory map of one 
agent in an example run in the environment shown in Fig. 5. Over multiple trials, cells that 
are likely to lead to a resource location become more desirable (more green), and cells that 
are unlikely to lead to a resource location become less desirable (more red).

The path that an agent takes each time it forages is guided by the agent’s current mem-
ory map. The maximum length of a path is � steps. The agent moves a distance of one cell 
in each step. In each step, the agent considers all immediate neighbors3 from its current 
location and probabilistically selects the most favorable cell to which to move. The prob-
ability that a cell will be selected as an agent’s next step is equal to the value of that cell 
divided by the sum of the values of all cells under consideration. At the start of a run, when 
all memory cells have been initialized to 1.0, agents basically move in a random walk. As 
an agent gains experience over multiple trials, positive and negative reinforcements to cell 
values based on successful and unsuccessful foraging attempts help the agent differentiate 
between promising and unpromising cells to which to move.

This foraging problem is appropriate for testing the conclusions of our analytical model 
because it is an example of a problem in which experience (information gained during 
foraging trials) improves performance (ability to travel efficiently to resource locations). 
The task that the swarm seeks to address is to forage sufficient amounts of a resource in 
each trial. The x agents called upon in each trial to address this task represent the expected 
number of agents needed to meet the foraging demand, given the fact that each agent can 
retrieve a single unit of resource per trial. The performance of the system is measured 
by the amount of resource collected per trial. As with the analytical model, the response 
threshold aspect of the system is simulated via an implicit ordering of the agents. This 
implicit ordering represents the order in which the agent thresholds would be triggered 
as task demand increases. Experience, in this problem, refers to an agent’s knowledge of 
where in the environment to go to find the resource. Each trial is one opportunity for an 
agent to improve its knowledge of the environment which improves its ability to retrieve 
one unit of resource. The more trials that an agent receives to forage, the more likely it 
is able to find a resource location and, once a location has been found, the more strongly 
a path to that location will be reinforced. The response probability affects which of the n 
agents become the x actors in each trial: the first x agents from the implicit ordering that 
accept the task (given the response probability) are the agents that act.

Recall that, in a given trial, a single agent needs only to retrieve one unit of resource, 
from any location, to have successfully completed its task. As a result, a single agent will 
not necessarily find all resource locations and, because agents do not communicate or share 
memory maps, different agents may find different resource locations. The collective knowl-
edge of the swarm includes all resource locations that have been found, as shown in Fig. 7.

While allowing agents to communicate and share information4 has the potential to 
speed up the rate at which the swarm as a whole discovers and exploits a resource loca-
tion (Pini et al. 2013), this speed comes at a cost. Maintaining a central shared repository 
of all agents’ experience basically turns this problem into a model of stigmergic search 
which is known to focus swarm exploitation on the single closest resource location found 
(Goss et al. 1989, 1990). Focusing all agents on a single resource location leads to potential 

3 Von Neumann neighborhood with radius one.
4 For example, by incorporating individual memory maps into a central map at the nest that is shared with 
all agents.



248 Swarm Intelligence (2020) 14:233–258

1 3

interference and traffic jam issues and leaves the swarm vulnerable to gaps in resource 
availability: if the location exploited by the entire swarm runs out of resource, the swarm 
will experience a lack of resource until a new location can be found. Alternatively, our 
model, which disallows inter-agent communication, distributes the information gained by 
the swarm across multiple agents which distributes agent activity and lessens inter-agent 
interference. Because different agents may find and exploit different resource locations, if 
one resource location becomes non-productive, only a subset of agents will be affected. 
Agents that have focused on other locations will continue to perform at full capacity, while 
the affected agents revise their memory maps to reflect the new resource availability.

4.2  Experimental setup

We examine how a swarm’s ability to find and retrieve a resource is affected by peri-
odic loss of the swarm’s primary foragers as response probability varies. Table 1 lists the 
parameters that we use in the example scenario presented here. Alternative scenarios and 
parameter settings result in comparable system behavior as response probability varies.

We use a swarm of size n = 200 working in the environment shown in Fig. 5. Each run 
consists of 1000 trials. In each trial, x = 20 agents leave the base to forage. At trials 125, 
250, 375, and 500, the twenty most experienced agents are removed from the swarm and 
the remaining swarm members continue to carry out the foraging task. These twenty agents 
represent the twenty agents with the current lowest thresholds. This removal rate means 
that, if the agents are acting deterministically ( s = 1.0 ), all experienced agents are removed 
from the swarm and the swarm continues after each removal with no knowledge of the 

Fig. 6  Snapshots of a single agent’s memory map after trials 1, 4, 50 (top row, left to right) and 100, 150, 
199 (bottom row, left to right) in an example run in the environment shown in Figure 5. Green indicates that 
a cell is likely to lead to the resource. Red indicates that a cell is unlikely to lead to the resource. Yellow 
is neutral, indicating that a cell is equally likely or unlikely to lead to the resource. The brown dot in the 
center indicates the swarm’s entry point into the environment. The blue targets indicate locations where the 
resource is available
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resource locations. For s < 1.0 , there may be agents beyond the first twenty with some for-
aging experience.

Swarm performance is measured in terms of the number of resource units retrieved in 
each trial. In the trial immediately following an agent removal event, this amount drops 
then gradually increases again as the newly active agents gain experience. Robustness is 
evaluated as the distance of this drop and the resulting level of resource after the drop. 
Because agent behavior is probabilistic, both when s < 1.0 and when making decisions 
about where to move in each step, we perform 100 runs for each response probability 
value. For each run, we track the number of resource units retrieved by the swarm in each 
trial and average the results for each trial over all 100 runs.

Fig. 7  The average of the memory maps of all agents in the swarm at the end of an example run in the 
environment shown in Fig. 5. Green indicates that a cell is likely to lead to the resource. Red indicates that 
a cell is unlikely to lead to the resource. Yellow is neutral, indicating that a cell is equally likely or unlikely 
to lead to the resource. The brown dot in the center indicates the swarm’s entry point into the environment. 
The blue targets indicate locations where the resource is available

Table 1  Parameter settings used 
in experiments

These values were selected empirically

Parameter description Variable Value

Swarm size n 200
Team size x 20
Positive reinforcement factor � 0.3
Negative reinforcement factor � 0.3
Maximum steps � 1000
Environment width w 100
Environment length l 100
Number of resource locations � 4
Number of trials per run 1000
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4.3  Results

We evaluate our system by examining both how a swarm performs from one trial to the 
next within a run and aggregating metrics over multiple runs to compare how performance 
varies for different response probability values.

Figure  8 shows the average expected behavior of a swarm during a run for different 
response probability values. Specifically, Fig. 8 shows the average resource units retrieved 
by a swarm in each trial of a run. Each plot shows the results, averaged over 100 runs, for 
one response probability value, from s = 1.0 to s = 0.1 in increments of 0.1. The x-axes 
indicate the trial number, and the y-axes indicate the average resource units retrieved. The 
blue solid line shows the average resource units retrieved, the green region around the blue 
line indicates the 95% confidence interval, and the red dashed line shows the average drop 
level, the average performance level to which the swarm drops each time the lowest thresh-
old twenty agents are removed. Removals occur at trials 125, 250, 375, and 500.

Figure  9 shows aggregated measurements of the swarm’s success rate at forming a 
complete team and the swarm’s ability to withstand loss of agents. The x-axis indicates 
response probability values from s = 0.05 to s = 1.0 . The y-axis on the left measures the 
percentage of trials that achieve complete teams. The y-axis on the right measures the num-
ber of resource units for evaluating drop amount and drop level. The individual elements of 
this plot will be described in the discussion below.

We can see from Fig. 8 that swarm performance (in terms of the number of resource 
units retrieved in a trial) improves as agents gain experience over multiple trials. Improve-
ment is faster with higher s and slower with lower s. Higher s values focus the activity 
on fewer agents which gives those few agents more opportunities to gain experience and 
increases the rate at which those few agents improve in performance. Lower s values dis-
tribute activity among more agents which lowers the number of opportunities any indi-
vidual agent gets to gain experience and improve performance.

Each time we remove the current lowest threshold agents, swarm performance drops 
abruptly due to the loss of experienced agents then improves again as the remaining agents 
gain experience. The amount by which the performance drops is highest for s = 1.0 and 
decreases as s decreases. The dashed pink line in Fig. 9 plots the drop amount, the average 
number of resource units by which performance drops after agent removal for response 
probability values from s = 0.05 to s = 1.0 . The observed proportional relationship is con-
sistent with the fact that higher s values mean that swarm effort and experience are focused 
on the agents with the lowest thresholds, resulting in the remaining agents having fewer 
opportunities to gain experience. As a result, if the primary actors are removed, the perfor-
mance capabilities of the remaining agents are much lower than that of swarms with lower 
s which give more agents opportunities to gain experience, and the drop in performance 
will be much larger.

The impact of a performance drop cannot be fully evaluated without also considering 
the level to which the performance drops. Because higher response probabilities result in 
better overall swarm performance, swarms with higher s values can withstand larger drops 
before reaching unacceptable levels of performance. The red dashed lines in the plots from 
Fig. 8 indicate the average performance level immediately after a drop. The solid blue line 
in Fig.  9 consolidates this data into a single plot and shows how the average drop level 
varies as s varies. As the response probability decreases from s = 1.0 to s ≈ 0.25 , the aver-
age drop level increases, indicating that the removal of agents has lower impact on swarm 
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performance. In the scenario studied here, average drop level peaks at s ≈ 0.25 . Below 
s = 0.25 , the average drop level decreases and approaches zero as s approaches zero.

The dotted red line in Fig. 9 shows the average percentage of trials in a run in which the 
swarm forms a complete team, averaged over 100 runs. This plot is consistent with Theo-
rem 1 that predicts that a complete team is likely to be formed when s1 >

x

n
=

20

120
= 0.17 

Fig. 8  Average number of resource units (blue solid line) obtained in each trial and 95% confidence interval 
(green region), averaged over 100 runs. The red dashed line shows the average performance level to which 
the swarm drops each time the lowest threshold twenty agents are removed
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for this problem.5 Empirical analysis finds that, for this scenario, the swarm achieves a 
complete team in every trial of every run for sc ≥ 0.35 . These results help to explain the 
decline in the drop level for s < 0.25 . This decline is likely a decline in overall swarm 
performance due to inability to form a complete team, which would result in substandard 
performance due simply to the inadequate number of actors.

The results presented above use the environment shown in Fig. 5. To ensure that there 
is no bias due to the particular resource location configuration of that environment, we 
re-run the same experiments with � = 4 resource locations but generate a random place-
ment of the resources for each run. The resource locations are fixed and unchanged for 
all trials of a run, but each run has a different randomly generated configuration. Fig-
ure 10 shows the average drop amount and the average drop level for response proba-
bilility values from s = 0.05 to s = 1.0 , averaged over 100 runs. While the magnitudes 
are different and there is more variability, the relative changes in the plots as s varies are 
consistent with the corresponding results from Fig. 9. The swarm again achieves a com-
plete team in every trial of every run for sc ≥ 0.35.

The cumulative swarm performance in each period between the incidents of agent 
loss further supports our hypothesis that probabilistic agent response can generate a 
backup pool that can mitigate performance drop when actors are lost. Table  2 shows, 
for the data from Fig. 8, the total amount of resource units collected by a swarm within 
each period of stable agent population size. Each row gives the data for one s value, and 
each column gives the data for one period of stable agent population size. The bottom 
row, for s = 1.0 , shows the performance of the system when all learning opportunities 
are concentrated on the lowest threshold agents and the lowest threshold agents are the 
only ones that act. In other words, this row shows the swarm performance when the 
agents that act have all gained the maximum amount of experience possible. For all 

Fig. 9  Measurements of swarm team formation, drop amount, and drop level for response probability val-
ues from s = 0.05 to s = 1.0 on the environment shown in Fig. 5. The x-axis indicates the response prob-
ability, s 

5 Although the runs begin with n = 200 , four losses (of 20 agents each) drops the swarm size down to 
n = 120 for the entire second half of a run.
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other rows, the primary actors sacrifice some opportunities to gain experience to backup 
actors.

Table  3 shows, for each s and each period, the amount of resource retrieved by a 
swarm as a percentage of the amount of resource retrieved when s = 1.0 . That is, the 
data in Table 3 is calculated by dividing the values in each of the rows of Table 2 by 
the corresponding value in the last row of Table 2, which shows us how swarm perfor-
mance when primary actors do not receive maximal experience ( s < 1.0 ) compares with 
performance when primary actors do ( s = 1.0 ). Values of 100% or above indicate that 
performance is as good or better than the maximal experience case.

Column 2 of Table 3 gives a relative measure of swarm performance (relative to a 
swarm with s = 1.0 ) for the period consisting of trials 0–124. These data illustrate that, 
when starting from a population of inexperienced agents, the more that task experience 
is focused on the most experienced agents (the higher the s), the better the performance 
achieved. As the swarm builds a backup pool of agents with experience (columns 3-5), 
performance loss due to agent removal decreases until performance is as good or better 
than a swarm with s = 1.0 . As s decreases, it takes longer to build up a sufficient backup 
pool to mitigate agent loss: swarms with s = 0.7 achieve a sufficient backup pool size by 
the second period (trials 125–129) while swarms with s = 0.4 do not achieve a sufficient 
backup pool until the fourth period (trials 375–499). Note that columns 2–5 each repre-
sents a period consisting of 125 trials while column 6 represents a period consisting of 
500 trials. When no agent loss occurs, focusing task experience on the most experienced 
agents maximizes swarm performance, and there is no benefit to be gained from using 
s < 1.0 . When agent loss may occur, swarms with lower s are better able to cope with 
and adapt to agent loss.

Fig. 10  Measurements of swarm team formation, drop amount, and drop level for response probability val-
ues from s = 0.05 to s = 1.0 on random environments with � = 4 . The x-axis indicates the response prob-
ability, s 
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These results along with the theoretical analyses from the previous section support 
our hypothesis that, for problems where experience improves performance, a non-deter-
ministic response probability can temper a threshold-based swarm’s overall performance 
decline when the primary actors for a task become unavailable. In addition, applying a 
response probability to a swarm of agents with variable thresholds can allow the swarm 
to build up a back up pool of agents with experience on a task while focusing the effort 
on the most experienced agents. Our results support the following conclusions:

• There is a tradeoff between improving the swarm’s performance and improving the 
swarm’s robustness. Focusing opportunities to gain experience on the same agents 

Table 2  Total amount of 
resource units retrieved by the 
swarm within each period of 
stable agent population size as 
per Fig. 8

These values are the average results averaged over 100 runs. The 
twenty most experienced agents in the swarm are removed at the start 
of trials 125, 250, 375, and 500

Response 
probability s

Period (first trial–last trial)

0–124 125–249 250–374 375–499 500–999

0.10 338.17 393.83 397.19 408.12 1841.84
0.20 398.69 488.88 580.61 655.06 3284.75
0.30 423.75 539.72 642.25 690.50 3523.45
0.40 437.04 579.07 669.13 698.92 3643.27
0.50 456.01 607.97 674.15 699.22 3768.16
0.60 469.03 624.63 681.02 701.07 3869.81
0.70 487.03 642.21 685.81 707.81 3960.30
0.80 503.98 640.73 685.22 708.58 4035.44
0.90 521.99 641.31 680.19 698.66 4094.79
1.00 541.67 641.52 676.78 695.54 4183.42

Table 3  Amount of resource 
retrieved by the swarm within 
each period of stable agent 
population size as a percentage 
of the amount of resource 
retrieved by the swarm when 
agents decisions are deterministic 
and response probability is 
s = 1.0

Each percentage is calculated by dividing the corresponding value 
in Table 2 by the last (bottom) value in the corresponding column of 
Table 2. Bold values indicate periods in which performance meets or 
exceeds the performance of a swarm with s = 1.0

Response 
probability s

Period (first trial–last trial)

0–124 125–249 250–374 375–499 500–999

0.10 62.43 61.39 58.69 58.68 44.03
0.20 73.60 76.21 85.79 94.18 78.52
0.30 78.23 84.13 94.90 99.28 84.22
0.40 80.68 90.27 98.87 100.49 87.09
0.50 84.19 94.77 99.61 100.53 90.07
0.60 86.59 97.37 100.63 100.80 92.50
0.70 89.91 100.11 101.33 101.76 94.67
0.80 93.04 99.88 101.25 101.87 96.46
0.90 96.37 99.97 100.50 100.45 97.88
1.00 100.00 100.00 100.00 100.00 100.00
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allows those agents to improve in performance very quickly, but leaves the swarm 
vulnerable to drastic declines in performance if those agents are lost. Distributing 
opportunities to gain experience over many agents allows a swarm to be more resil-
ient to loss of  agents, but slows down the rate at which the swarm’s performance 
improves. The response probability value s may be used to adjust this tradeoff so 
long as s is high enough to form complete teams.

• The s1 value given by Theorem 1 is a generous lower bound estimate of a response 
probability value that ensures formation of complete teams. For this problem, the 
value of s that guarantees complete team formation, sc , is likely to be higher than s1.

• The value of s1 can be theoretically calculated for a problem with a known n and x, 
but the value of sc and the relationships between drop amount and s and drop level 
and s are problem dependent and would have to be determined empirically.

These conclusions lead to the following recommendations:

• If the speed at which the swarm system’s performance improves is important, use the 
highest s that meets robustness requirements.

• To maximize system robustness, use the lowest s that allows successful team formation.
• The general recommendation is to use the highest s that meets the performance con-

straints on the drop level (minimum acceptable performance) and drop amount (min-
imum acceptable perturbation) values. With respect to Figs.  9 and  10, this means 
selecting the highest s value to the right of s1 or sc , depending on the importance of a 
complete team always being formed, that generates acceptable values for either or both 
drop level and drop amount.

5  Conclusions

In this paper, we investigate the hypothesis that, in a swarm where agents have differing 
thresholds for a task, response probability can be used to regulate how much dependence 
the swarm places on the lowest threshold agents for a task as well as the size of the pool of 
agents that gain experience on the task over multiple instances. We examine such a model 
for a single-task scenario both mathematically and empirically.

Mathematically, we create a model of such a system and show that we can estimate 
the response probability values that ensure that a complete team will be formed. In addi-
tion, over multiple trials, we can estimate the response probability values needed to meet 
a specified backup pool size, where the backup pool consists of agents with experience on 
the task.

Empirically, we test this hypothesis on a decentralized foraging problem in which agents 
with differing thresholds gain experience over multiple trials as to where to find resources 
to forage. We periodically remove the most experienced (lowest threshold) agents from the 
swarm and measure the change in performance and time to recover. Our results indicate 
that, as expected, systems with a non-deterministic response probability are better able to 
withstand loss of agents than systems with a deterministic response (response probability 
of 1.0), due to more agents having gained experience on the task.

Higher response probability values concentrate learning experiences among just the 
lowest threshold agents. This concentration results in a faster increase in system perfor-
mance but larger performance drops after removal of the lowest threshold agents. Lower 
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response probability values distribute learning experiences among more agents. This dis-
tribution results in a slower increase in system performance but smaller performance drops 
after the removal of agents. As response probability decreases from 1.0 to 0.05, the level 
to which performance drops increases until the response probability is low enough that a 
complete team cannot be formed, at which point it decreases toward zero.

In summary, we show that, for swarms in which agents have differing threshold val-
ues, a response probability provides a way to balance maximizing system performance and 
distributing opportunities to gain experience. A non-deterministic response probability 
allows a decentralized swarm to focus most of the effort on the most experienced agents 
while at the same time generating a backup pool of additional agents with experience on 
a given task. This emergent backup pool can mitigate performance drop if the primary 
agents are lost or become unavailable. There is a tradeoff between improving the swarm’s 
performance and improving the swarm’s robustness. For a given swarm and task demand, 
we can estimate mathematically the response probability values that ensure team forma-
tion and meet a specified backup pool size. Empirical results indicate that, in general, one 
should consider using the highest response probability value that meets task performance 
constraints.
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