
Character Depth and Sentence Diversification in Automated Narrative Generation
Brooke Bottoni,1 Yasmine Moolenaar,1 Anthony Hevia,1 Thomas Anchor,1 Kyle Benko,1

Rainer Knauf,2 Klaus Jantke,3 Avelino Gonzalez,1 Annie Wu1

1Computer Science Dept.; University of Central Florida; Orlando, FL, USA
bbottoni@knights.ucf.edu, ymmoolenaar@knights.ucf.edu, anthony.hevia@knights.ucf.edu,

thomas.anchor@knights.ucf.edu, kyleb3nko@knights.ucf.edu, Avelino.Gonzalez@ucf.edu, aswu@cs.ucf.edu
2Computer Science Faculty; Technische Universitat Ilmenau; Ilmenau, Germany

Rainer.Knauf@tu-ilmenau.de
3Adicom Group; Weimar, Germany
klaus.p.jantke@adicom-group.de

Abstract

This paper describes and discusses methods for improving
character depth and sentence diversification in automated sto-
rytelling systems. The fAIble III system that is the subject
of this paper addresses a major limitation of its immediate
predecessor (fAIble II) in that the characters in its stories
seemed to act in a vacuum, without any apparent reasons for
their choices or emotions. This amelioration is accomplished
through generating character backstories. fAIble III also ad-
dresses the diversity of generated sentences with a pattern
recognition system that removes many of the awkward and
repetitive sentences that drew negative comments in the test-
ing of fAIble I and II. Lastly, stories generated by the three
iterations of fAIble are compared and empirical test results
are presented.

Introduction
Throughout history, people have told stories to pass down
values, teach lessons, and inspire future generations. Tales
both true and fictitious are woven into art, philosophy, and
belief systems. There have been several attempts to auto-
mate the storytelling process, all of which achieved vary-
ing degrees of success. Some of these systems focused on
high-level story planning, others focused on description of
the story world and its elements, and still others focused on
character development. A common thread throughout many
of the recent systems is an abundance of repetitive sentence
structures and a lack of reasoning behind character actions.
Two of the main goals in the development of fAIble III were
ameliorating these issues through the creation of a pattern
recognition subsystem and a background generation compo-
nent.

Background
One of the first attempts to automate the storytelling process
was the Tale-Spin system in 1977 (Meehan 1977). This first
system used a predefined set of rules and world qualities to
generate various Aesop’s fables. It was relatively narrow in
scope, but it was an inciting force for the expansion of the
field of automated narrative generation. As more and more

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research was performed on the automated generation of sto-
ries, systems began to specialize and focus their attention
on one aspect of narratives. Systems such as UNIVERSE
(Lebowitz 1985) and MEXICA-Impro (Pérez y Pérez and
Lemaitre 2010) narrowed their scope to developing the char-
acters in their stories, focusing on their emotions and goals.
Meanwhile, systems such as MINSTREL (Turner 1991) and
VB-POCL (Riedl 2010) focused on events, rather than char-
acters, to drive the story. These systems often used tradi-
tional planning systems to determine the path of the narra-
tive.

More recently, some architectures have employed varia-
tions of the classical models of AI planning. These include
heuristic planning algorithms such as those found in CO-
NAN (Breault, Ouellet, and Davies 2018), and the adop-
tion of LSTM networks found in Plan, Write, and Revise
(Goldfarb-Tarrant, Feng, and Peng 2019). CONAN uses a
planning algorithm known as Fast Downward alongside the
information it has about the story world and its characters’
preferences to create a logical sequence of events that can
result in an achievable quest. Porteous and Lindsay (2019)
make the case that incorporating a process by which the an-
tagonist continually seeks to interfere with the goals of the
protagonist can reduce the burden on the human author (the
user of the system). They view this issue as non-cooperative
multi-agent planning.

However, there are a limited number of systems that gen-
erate backstories for their characters. Some narrative gen-
eration systems utilize emotions and goals for determining
character actions, but these are not informed by a history of
prior experiences, as is often the case in human-generated
fiction, and indeed in real life. In analyzing most works of
popular fiction, one will notice that almost all main char-
acters have rich backstories that affect their personalities,
goals, and actions. Such backstories are rarely part of auto-
mated narrative generation research. Therefore, our research
presented here has sought to create a system that builds
a scaffolding of experiences with which to reason about
character-related plot points, and to provide more explana-
tion for their decisions and actions.

History of the fAIble System
Our work is the culmination of a four-year NSF-supported
research project. The AESOP storytelling framework (Wade
and Gonzalez 2017) was the first iteration of the project,
which was later named fAIble. This system manually creates
a model of information that can inform the system when cre-
ating stories. The story world is limited to the nouns, verbs,
and sentence structures implemented, and is governed by a
set of rules. AESOP chose events semi-stochastically based
primarily on individual event probabilities, each event’s pre-
conditions and postconditions, the performing character’s
attributes and goals, and previous events in the story. This
system can only generate simple Subject - Verb - Object sen-
tences, as seen in this story snippet:

Harriette meets Gary. Gary becomes a friend of Harri-
ette. Harriette becomes a friend of Gary. Gary antag-
onizes Harriette. Gary becomes an enemy of Harriette.
Gary attacks Harriette. Gary attacks Harriette. Harriette
attacks Gary.

The deficiencies of this system are evident from the story
snippet above – repetitive, short, illogical, and sometimes
contradictory events. Nevertheless, the work was valuable
in exposing the advantages and limitations of using a proba-
bilistic approach to event generation.

The fAIble I system (Kazakova and Gonzalez 2018) fol-
lowed AESOP and was radically different. It focused on
character-driven stories, goal-based decision-making, and
was modular in its architecture. fAIble I continued to use
probabilistic event generation, but incorporated a graph
database for keeping track of context-based reasoning and
character thoughts. The stories sounded less repetitive and
richer in detail, and the language was more expressive as
a result of an added Natural Language Generation (NLG)
layer. An example of a fAIble I story snippet follows:

Our story begins in a village. A mercenary named
Nathaniel lived in the village. The village was wel-
coming. Nathaniel had a companion named Christo-
pher. Daria, the creature, killed Christopher. Nathaniel
set out to avenge Christopher. Nathaniel thought: “Is
Nathaniel at location of Daria: forest?”, “No” he
thought. Nathaniel went to a forest. The forest was
sunny. Nathaniel thought: “Is Daria dead?”, “No”
he thought. Nathaniel thought: “Is Nathaniel evil?”,
“No” he thought. Nathaniel thought: “Is Daria evil?”,
“Yes” he thought. Nathaniel thought: “Nathaniel has
weapon?”, “Yes” he thought. Nathaniel attacked Daria
violently with a sword.

The stories generated by fAIble I are more diverse in their
sentence structure and provide a more engaging plot than
those of AESOP. Despite the awkwardness of the constant
“internal thoughts” dialog, this feature was a step in the right
direction for character depth and reasoning behind actions.

fAIble II (Alvarez and Gonzalez 2019) was a transfor-
mation of the fAIble system, drawing distinct lines between
world, event, and sentence creation. Its modularity was in-
creased, and fAIble II’s event generation is less stochastic

and more driven by the goals of the characters. A turn-
taking system was implemented to alternate which character
has agency to act. An event translation layer was added af-
ter event generation to filter the events and give them more
structure before they’re passed to the NLG module. The re-
sulting stories focus on a quest and enhance the description
of the world and how characters travel through it. Here is an
example of a partial story generated by fAIble II:

Our story begins with Q, a civilian. He cared for Kirk.
There was also Khan, a sailor. He took Kirk. Khan
looked for a way to cross an antica bay. He saw a mo-
tor boat. He boarded the motor boat. He escaped from
Q into the antica bay. Khan infuriated Q. He was on a
quest to get Kirk back from Khan. Q, a civilian, looked
for a way to travel across the antica bay. He noticed a
yacht. He boarded the yacht. He went from a shuttle
port to the antica bay. He crashed his yacht on his way
to a shipping yard.

While fAIble II succeeds in moving away from the distract-
ing self-questioning and generally improves the quality of
the stories by making them richer in detail, it still fails to
provide sufficient information about the reasons for charac-
ters’ actions.

Our modifications build directly upon the work of the AE-
SOP (Wade and Gonzalez 2017), fAIble I (Kazakova and
Gonzalez 2018), and fAIble II (Alvarez and Gonzalez 2019)
systems. A main thread among these stories is that charac-
ters act based on a goal, but this is never explained to the
reader. If the reader has no idea of the internal workings of
one of these systems, an action by a character (such as kid-
napping someone) may seem impulsive and illogical. One of
our goals in the development of the fAIble III system was to
create a structure that would allow characters’ actions to be
justified and reasoning to be presented in an eloquent way.
In addition, the sentences of all three prior systems tend to
sound repetitive, a complex issue that was addressed in a
variety of ways in fAIble III.

System Description

The subject of this paper, the fAIble III system, is split into
four main stages. Before a story is generated, a story world
must be created to give the story a setting and the charac-
ters connections to elements of the world and each other.
This stage includes the process of background generation,
which is a new addition in fAIble III and allows for im-
proved event reasoning. Next, events are generated based on
a context-free grammar that allows for multiple sequential
plot lines and subplots; these events are then passed to a
translation module that converts the detailed event objects
into sentence structures and uses a pattern-recognition algo-
rithm to diversify the sentence composition. Finally, the sen-
tence structures are joined into readable English sentences
in the NLG module. In addition, a 3D avatar storyteller that
reads the story text out loud through a text-to-speech system
was added.

Figure 1: The Modules of fAIble

World Creation
The purpose of the first stage in fAIble III, world creation, is
to decide what characters, assets, vehicles, and locations the
story world contains and how all of the elements are con-
nected. At the start of world creation, a token is generated
and registered with the database, and a theme, such as “me-
dieval” or “space opera” is selected at random. Based on the
theme selected, the world creation component uses JSON-
formatted schemas stored in S3 to construct the world. These
schemas contain names and types of objects to ensure the
story is internally consistent. Once a schema is selected, the
component generates, in the following order: locations, ve-
hicles, characters, and assets; it then initializes a quest by
placing the protagonist into the world, and generates a back-
ground for the main characters (discussed in detail below).
In each step, the component retrieves the appropriate schema
objects from S3 and uses them to create and insert nodes in
the graph database.

Event Generation
The next step of the fAIble III system is event generation,
which pieces together the plot of the story by following an
algorithm loosely modeled after the following replacement
grammar:

S −> iPo
i −> i n t r o
o −> o u t r o
P −> eG | G
G −> fTR | TR | R
f −> s e a r c h f o r i n f o r m a t i o n
T −> eT | PT | t
t −> t r a v e l
R −> r | rP
r −> r e s o l v e c u r r e n t p l o t
e −> good e v e n t | bad e v e n t

In this system, a story (S) consists of an intro, a plot (P), and
an outro. A plot consists of some good or bad event happen-
ing to the protagonist (e) and the protagonist pursuing a goal
(G). Pursuing a goal consists of gathering information (f),
traveling (T), and a resolution (R). During travel, sub-events
can occur, a subplot can be started, or the main character can
simply travel to a location. During the resolution, the current
plot is resolved, after which a new plot can be started.

A character’s backstory and previous story events allow
for the creation of “plot hooks” or the beginning of new sub-
plots. For example, if the main character sets out on a quest

to obtain a magical sword about which he or she had heard
legends, a subplot where the antagonist steals the sword
would be added to the possibilities for continuing the story.
This plot hook structure not only allows for longer stories,
but also makes story progression more logical. The compart-
mentalization of each life stage into a function and further
separating life events into function calls allows for an eas-
ily debuggable and scalable system. Adding additional life
events to the background structure is as simple as writing a
new function and exporting it to the appropriate life stage.

Event Translation
The purpose of the event translation piece of the system is
to convert the raw event details from event generation into
JSON that can be fed into the NLG process. After the plot
has been created by event generation, those events are passed
to translation in the form of a JSON file. Then, translation
breaks that file down into its individual events. In fAIble
II, this was done by pulling out events one-by-one, process-
ing them, and adding them to the output to eventually be
passed to NLG. This often resulted in choppy sentences and
made it hard to create more complex sentence structures.
In fAIble III, this part of the system was restructured so
the entire batch of events is processed together, and com-
mon sentence patterns are condensed into various structures.
This pattern recognition process is discussed in more detail
later. To process an event, the system uses the information
in the JSON, which includes the type of event (e.g. “walk”,
“find”, or “rescue”) and the subject (e.g. “Maria” or “the
sailor”), along with adverbs, adjectives, and other sentence
parts. Based on the event type (or types, when combining
sentences), this information is passed to a function that puts
these sentence pieces in order and creates an object. NLG
takes in the sentence objects from event translation and turns
them into readable English sentences. This piece of the sys-
tem was not changed from fAIble II to fAIble III.

Addressing Character Depth and Reasoning
Humans don’t usually act without reason, and characters in
a story shouldn’t either if the story is to sound logical and
internally consistent. The purpose of the background gener-
ation algorithm is to create a scaffold representing a char-
acter’s past in order to provide logic and reasoning for that
character’s emotions and actions during the main story. We
aimed to generate a “history” for our main characters before
the story even began. Not only did this allow fAIble III to
justify actions, it also became a way to lengthen stories by
creating new instigating events and goals based on charac-
ters’ personalities, emotions, and relationships.

The life of each major character is abstracted to a pro-
gression of discrete events split up into three stages: youth,
teenager, and adult. Each stage contains a pool of possible
events from which the system can select and add to a char-
acter’s life. In addition, each stage has one or more events
that must happen, and some events that are not allowed.
The selection of events in background generation is semi-
stochastic and very similar to the AESOP system. The pool
of possible events is based on preconditions and postcondi-

tions assigned to an event; for example, in order to lose an
item, a character must first have possession of it.

Once an event is selected from the set, graph operations
are applied to mutate the world/character graph state so the
event is now valid - this could be giving the character an item
it did not have before, or turning a friend into an enemy.
The result of the background generation process is a new,
mutated “world” graph with more character connections to
other elements of the story world and “reasons” explaining
those connections. One important aspect of this process is
that for each of the events that create relationships, whether
with a friend, a family member, or an enemy, the character
the connection is formed with is already a part of the story
world; this way, these characters can show up later to influ-
ence the narrative.

The fAIble II system could generate sentences such as
“Chris valued a sword” and “Marty stole his sword”; how-
ever, there was no explanation as to why Chris valued that
particular sword, or why Marty would steal it. With the cre-
ation of the background generation system, those sentences
would sound more like “Chris valued a sword because it was
a gift from his father” and “Marty hated Chris because they
got in a fight. He stole Chris’s sword.” These sentences still
sound a little choppy, but they provide some information
about the characters’ motivations, creating a more logical
storyline. We hope to build on this process in our future re-
search to provide a richer description of the backgrounds of
the main characters.

Addressing Lack of Sentence Variation
Our first step in reducing repetitiveness and increasing the
quality of the sentences overall was analyzing how sentences
are processed in event translation. Sentences in stories are
affected by the sentences around them, and most readers
can quickly notice if they don’t flow together “correctly”:
e.g. “Noah went to the store. He went to the store to buy
eggs.” or “Sara saw a spaceship. She boarded the spaceship.”
There are quotation marks around “correctly” because pre-
scriptively these sentences have correct grammar. However,
they sound robotic and inhuman - “incorrect” in a rhetorical
sense. The core issue with those sets of sentences is repeti-
tion. Most of the time, readers don’t expect to hear the same
noun-verb pair or direct object in two consecutive sentences.
In reality, it is nearly impossible to correct these kinds of
context issues without having any information about the sur-
rounding sentences; therefore, the system needed to be mod-
ified in a way that would allow it to process multiple events
at once.

For each of the action functions, we created another func-
tion to output a clause object instead of a whole sentence
object; then, they could be used as building blocks for more
complex sentences. The information contained in a clause
object and a sentence object are nearly identical, but due to
the structure of the system, multiple clause objects can be
combined into one sentence, while sentence objects are stan-
dalone. Because the action functions were no longer return-
ing entire sentences, mappers could be created inside actions
that were the beginning of a common sequence, such as ’no-
tice’ then ’board’. Patterns would be recognized and com-

bined into one or more sentences, while individual actions
that were not part of a pattern were processed separately. In-
stead of outputting ”Nico noticed the pirate ship. He boarded
the pirate ship.” the ’notice’ - ’board’ pattern would be com-
bined into ”Nico noticed and boarded the pirate ship.” Sim-
ilarly, the pattern ’notice’ - ’get’ would be condensed from
”Ghita saw a sword. She picked up the sword.” to ”Ghita saw
a sword and picked it up.” All of the action objects passed to
NLG were processed in this way, allowing for more fluent
paragraph structures and decreased repetitiveness between
sentences.

Additional smaller edits were made to increase the sen-
tence diversity, including fixing the question and answer di-
alog. When a character is searching for something, they are
able to ask other characters where it is located. There was a
bug in fAIble II that caused side characters to never have the
information the protagonist was looking for, so these sen-
tences were never used. In fAIble III, we fixed this system
to allow this dialog to happen sporadically, creating more
interesting stories.

Comparison of Generated Stories
In order to demonstrate the changes made to the system, we
implemented them on the intro section of fAIble II. This
way, we were able to juxtapose intros generated by fAIble
II and fAIble III, and gauge whether our modifications ac-
tually enhanced the system output. Below are examples of
fAIble II intros and fAIble III intros, for comparison:

fAIble II:
Once upon a time there was John, a civilian. He valued
a sword. There was also Khan, a sailor. He took John’s
sword.
Our story begins with Q, a pilot. He cared for Kirk.
There was also Thomas, a knight. He took Kirk.

fAIble III:
Once upon a time there was Martin, a prince. He valued
a war hammer because it was a gift. There was also An-
thony, a doctor. Martin disliked Anthony because they
were lifelong rivals. Anthony took Martin’s war ham-
mer.
Our story begins with Peter, a soldier. He cared for
Kirk because they grew up together. There was also
Alex, a knight. Peter hated Alex because they were
friends but got in a fight. Alex kidnapped Kirk.

The syntactic complexity has increased in the last two intros.
It still sounds a little telegraphic, but the additional subordi-
nating clauses add to both the readability and the logic of
the story. The further explanation of character actions leads
to more character depth. An important part of stories is allu-
sion, or indirect references to past events. An intro such as
this one generated by the fAIble II system. . .

Our story begins with Luke, a mercenary. He cherished
an iron hammer. There was also Christine, a king. She
took the iron hammer. She looked for a way to pass
over a thar desert. She saw a carriage. She boarded the

carriage. She got away from Luke, a mercenary, into
the thar desert. Christine infuriated Luke. He was on a
quest to get the iron hammer back from Christine.

. . . would sound like this when generated by the fAIble III
system:

Our story begins with Gwen, a blacksmith. She valued
a rake because she went on a quest to find it. There was
also George, a princess. Gwen disliked George because
they were friends but got in a fight. George took Gwen’s
rake. George escaped from Gwen into a walkway. She
decided to go on a quest to get it back from George.

While the fAIble II stories gave the reader all of the informa-
tion about a situation up front, the fAIble III system is able
to allude to a past quest and a fight between friends that was
part of the characters’ backstories. The background gener-
ation structure adds more complexity and internal logic to
generated stories, as well as increased explanation of char-
acter reasoning, leading to deeper and more believable char-
acters.

Testing and Results
Testing of the system was conducted through an anonymous
online survey distributed to undergraduate students. Partic-
ipants were presented with three stories generated by the
fAIble system: one in print form, one in audio-only form,
and one read aloud by the animated avatar shown in Fig. 3.
61 responses were recorded in total. The participants were
asked eleven questions about the stories, nine of which were
multiple choice, and two of which were free-response.

The first six multiple choice questions assessed the par-
ticipants’ perception of the quality of the stories, with the
last three questions assessing the value of adding the avatar
to the system. The first seven multiple-choice questions and
the first free-response question were the same as those asked
during fAIble II testing. The questions were as follows:

1. Do story events appear to follow a coherent progression?

2. Do the characters appear to act based on some internal
reasoning and motivations?

3. Do story events appear varied?

4. Does the language resemble human generated narrative?

5. Does the use of adverbs and adjectives add to the depth
of descriptiveness of the story?

6. Is the language varied across sentences and stories?

7. Does the animation enhance the experience of the story?

8. Which do you like best? (Reading, Audio, or Audiovi-
sual?)

9. Do you find the human avatar telling the story to be en-
gaging?

10. What would you like to see the fAIble system do next?

11. How do you think the fAIble system could be improved?

The participants answered each multiple-choice question
with a 2 for “Yes”, 1 for “Somewhat”, and 0 for “No”. The
total score was the sum of all responses for a question and

Figure 2: Survey Results

was broken down into Poor, Poor Approaching Fair, Fair
Approaching Good, and Good correlating to the intervals:
0-32, 33-62, 63-92, 93-122. The results are shown in Fig. 2
below.

On the seven questions they had in common, fAIble III
scored lower than fAIble II; however, there are several pos-
sible explanations for this. One of the goals of fAIble III
was generating longer stories, and the stories presented in
the fAIble III testing were around 20 sentences longer than
the stories presented in the fAIble II testing. This could have
increased the perceived repetitiveness of the fAIble III sto-
ries, which could account for some of the negative feedback
related to event diversity and language variability. Addition-
ally, we were not present when the research was introduced
to the students completing the survey, since each survey was
completed by a class of students and introduced by the in-
structor of that class. We have no knowledge about what was
said to them before they began the testing, and the instructor
could have potentially set a higher expectation by misstating
the intent or scope of the research.

Many of the free-response answers focused on improv-
ing the avatar, adding more description and detail for envi-
ronments and characters, and generating more complex sen-
tences. Many other participants suggested improving the di-
alogue between characters and increasing the overall amount
of dialogue. The questions that received the highest scores
were 1, 2, and 3, which asked about story coherency, char-
acter believability, and event variability - three of our goals
in the development of fAIble III. The testing results suggest
that the fAIble system needs further development in order to
generate stories that sound convincingly human. To gener-
ate longer stories, the pattern recognition piece of the system
will have to be expanded and the quantity and variety of ob-
jects, people, and places the system has to choose from will
have to be increased. Increasing the types of actions and sen-
tence structures could also reduce perceived repetitiveness
and improve the overall quality of the stories.

Future Research
There are two ways a system such as fAIble III can be en-
hanced in future research: with respect to its internal work-
ings and with respect to the content from which the story
generator pulls when creating a narrative. The former was

Q fAIble I fAIble II fAIble III

1 1.39 1.00 1.11
2 1.27 1.48 1.21
3 0.98 1.12 1.00
4 0.29 0.79 0.66
5 0.88 0.93 0.93
6 0.46 0.75 0.57

Table 1: Comparison of testing results

Figure 3: The Animated Avatar

the primary focus of this project; however, many of these
modifications were done on a test basis and did not encom-
pass the entire system. To further develop this system, the
pattern recognition module should be expanded to recog-
nize more, and increasingly complex, patterns. Background
generation could be improved by generating backgrounds
for characters in parallel, allowing characters’ lives to affect
each other earlier, thereby creating more complex relation-
ships.

The reliance on authored content in a system like fAIble
III is both a positive and a negative. While it’s useful to be
able to change the details of the generated stories whenever
the user wants, that content must be written by someone, and
it’s required in order to generate completely new stories. The
types of content that can supplement the system are numer-
ous and include characters, their backgrounds, the settings
in which they act, the items with which they can interact,
and the adjectives used to describe everything. These all re-
quire human effort to create. An interesting idea for future
expansions would be to create a webpage where users could
upload their own story world schemas and generate stories
whenever they want.

Conclusion
The fAIble III system generates logical, grammatically cor-
rect, often interesting, relatively detailed stories, the major-
ity of which contain believable locations and items, as well
as characters who seem to have motivation behind their ac-
tions. It improves upon past systems by generating a back-
story for main characters and alluding to these past events,
creating character depth and improving logical flow. Addi-
tionally, a pattern recognition component was added that in-
creases the variation of sentence structures and make gener-
ated stories more interesting to read.

Acknowledgments
This material is based upon work sup- ported by the Na-
tional Science Foundation (NSF) under Grant No. 1458272.
The presented research is a contribution to the NSF Program
International Research Experiences for Students (IRES).

References
Alvarez, M.J., A. R. B.-K. M. J. K. R. J. K., and Gonza-
lez, A. 2019. Hello, narratives: Character development in
automated narrative generation. In Proceedings of the 32nd
Annual Florida Artificial Intelligence Research Society Con-
ference.
Breault, V.; Ouellet, S.; and Davies, J. 2018. Let conan tell
you a story: Procedural quest generation.
Goldfarb-Tarrant, S.; Feng, H.; and Peng, N. 2019. Plan,
write, and revise: an interactive system for open-domain
story generation.
Kazakova, V.A., H. L. P.-A. G. L. K. R. J. K., and Gonzalez,
A. 2018. Let us tell you a faible: Content generation through
graph-based cognition. In Proceedings of the 31st Annual
Florida Artificial Intelligence Research Society Conference.
Lebowitz, M. 1985. Storytelling as planning and learning.
Poetics 483–502.
Meehan, J. 1977. Tale-spin, an interactive program that
writes stories. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence, 91–98.
Porteous, J., and Lindsay, A. 2019. Protagonist vs antago-
nist provant: Narrative generation as counter planning. In
Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’19,
1069–1077. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Pérez y Pérez, R., N.-Y. S. E. P. R. C. V., and Lemaitre, C.
2010. Mexica-impro: A computational model for narrative
improvisation. In Proceedings of the International Confer-
ence on Computational Creativity, volume ICCC-10, 90–99.
Riedl, M. 2010. Story planning: Creativity through explo-
ration, retrieval, and analogical transformation. Minds and
Machines 20:589–614.
Turner, S. 1991. A case-based model of creativity. In
Annual Conference of the Cognitive Science Society, vol-
ume 13, 933–937. Association for Computing Machinery.
Wade, J., W. J. W.-M. P. L. J. K. K. R., and Gonzalez, A.
2017. A stochastic approach to character growth in auto-
mated narrative generation. In Proceedings of the 30th An-
nual Florida Artificial Intelligence Research Society Confer-
ence.

