
Vol.:(0123456789)

Swarm Intelligence
https://doi.org/10.1007/s11721-020-00181-3

1 3

Respecializing swarms by forgetting reinforced thresholds

Vera A. Kazakova1 · Annie S. Wu1 · Gita R. Sukthankar1

Received: 28 February 2019 / Accepted: 17 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Response threshold reinforcement is a powerful model for decentralized task allocation and
specialization in multiagent swarms. In dynamic environments, initial task assignments and
specializations must be updated over time to meet changing system needs. The very nature
of threshold reinforcement-based behavior can, however, hinder respecialization, limiting
its usability in real-world applications. We propose a decentralized forgetting-based exten-
sion to response threshold reinforcement and show that it can improve the efficiency and
stability of the resulting task assignments under changing system demands.

Keywords Threshold reinforcement · Emergent coordination · Decentralized division of
labor · Specialization · Task allocation · Multiagent deployment

1 Introduction

Task allocation in real-world domains often requires decentralized, scalable, adapt-
able approaches. Decentralized systems are robust to failure of any one agent and scale
better to scenarios of many agents than centralized alternatives (Almeida et al. 2004;
van Lon and Holvoet 2017). Approaches that do not rely on inter-agent communication
can improve scalability (Murciano et al. 1997) and robustness in environments where
communication is unreliable or not feasible (Kanakia et al. 2016). Not requiring com-
munication also allows for simpler agent hardware, allowing for scalability at a lower
cost (Jones and Mataric 2003). Without communication, emergent cooperation often
relies on specialization, which can improve decentralized task allocation by reducing
interference and task switching, while increasing efficiency (Ono and Fukumoto 1996;
Murciano et al. 1997; Li et al. 2002; Nitschke et al. 2008; Hsieh et al. 2009; Campbell

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1172
1-020-00181 -3) contains supplementary material, which is available to authorized users.

 * Vera A. Kazakova
 kazakova@cs.ucf.edu

 Annie S. Wu
 aswu@cs.ucf.edu

 Gita R. Sukthankar
 gitars@eecs.ucf.edu

1 University of Central Florida, Orlando, FL 32816-2362, USA

http://orcid.org/0000-0001-9691-4883
http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-020-00181-3&domain=pdf
https://doi.org/10.1007/s11721-020-00181-3
https://doi.org/10.1007/s11721-020-00181-3

 Swarm Intelligence

1 3

and Wu 2011; Agmon et al. 2011; Román et al. 2014; Ferrante et al. 2015). Self-organ-
ization coupled with adaptable specialization can increase the complexity of tasks a
multiagent system (MAS) can handle, as task re-allocation may be needed to handle
agent failures and changes in dynamic environments (Hsieh et al. 2008, 2009). In this
work, we investigate how the adaptability of specialization affects task allocation within
dynamic and decentralized MAS, using patrolling as an example. We employ a well-
known communication-free task allocation through threshold adaptation method (Ther-
aulaz et al. 1998) and propose a forgetting-based extension to improve its respecializa-
tion capabilities, as well as the efficiency and stability of the resulting task assignments.
In our approach, agents assess how task stimuli are changing over time, in order to
autonomously decide when to reset existing but outdated specializations and respecial-
ize from scratch, resulting in improved task performance and task allocation efficiency
and stability.

We focus on decentralized task allocation of simple robots in environments with multi-
ple always-available tasks of changing demands. Consider that some tasks can be acted on
by any agent, but only a subset of these actions would be beneficial, while extra work could
be in fact become detrimental. Consider patrolling: 10 agents may be required to success-
fully patrol an area on each step, indefinitely, until the system’s security needs change or
until the agents become more urgently needed elsewhere within the system. Fewer patrol-
ling agents would result in decreased security, while excess patrolling agents are wasteful
and can lead to harmful interference. Additionally, patrolling efforts cannot be accumu-
lated ahead of time: patrolling more now does not reduce patrolling needs later. Patrolling
is also never completed, requiring ongoing agent action from a subset of the agents. Other
examples include exploration, perishable resource gathering, diagnostics, maintenance, and
production. We group such tasks under the term of ongoing tasks. Assuming homogeneous
capabilities, any agent can independently choose to act on any one ongoing task at a time,
or even no task, idling instead. Without a limit on how many agents can simultaneously
take up an ongoing task and without communication, agents must make sensible choices
based on the perceived system needs rather than based on task availability. Ongoing tasks
without task supply limits are seldom discussed in the literature.

For our discussion, we employ the following working definitions:

Ongoing tasks: tasks available continuously, in unlimited supply but in limited demand,
which can be acted on by any number of agents simultaneously (i.e., task availability is
not limited by task demand nor by agents’ actions).
Task demand: ongoing tasks are never finished, requiring continuous work instead;
demand is the percentage of agents needed on a task per time step, but can be equiv-
alently seen as explicit numbers of agents; percentages are used merely to quantify
system needs with respect to resources. Task allocation is guided by actual amount of
received versus needed activity on each task, so the goal is a specific number of agents
self-allocating to each task in accordance with the demand, as opposed to merely a pro-
portional allocation.
Task stimulus: a “concurrent benefit,” contributed to and observable by the agents,
such as putting out a fire, where heat intensity and area coverage stimulate agents to
act (Kanakia et al. 2016); task stimuli can directly or indirectly represent current system
needs, dependent on task demands.
Specialization: an agent’s tendency to act on some task(s) more than on others; adaptive
specializations are those that can adapt to changes in the environment, such as agent
failures or variations in task demands. In this work, specializations do not correspond to

Swarm Intelligence

1 3

an increase in skill, thus only indicating a habit or preference formation, resulting from
changes in agents’ action probabilities over time.
Specialization resetting: forgetting learned behavior by resetting agents’ learned or rein-
forced task thresholds back to random values.

Specialization is often considered fundamental to efficient functionality of complex adap-
tive systems (Nitschke et al. 2008), as it can improve a system’s efficiency, adaptability,
and scalability. A system’s efficiency is increased when specialists collaborate on a com-
mon goal (Román et al. 2014). In distributed problem solving, allowing agents to special-
ize matches or outperforms homogeneous agent solutions (Li et al. 2002). In multi-task or
multi-role environments, specialization helps synchronize agent behavior where tasks may
be time-sensitive and switching from one to another can result in delays or even hinder
overall functionality (e.g., herding Ono and Fukumoto 1996). While optimal controllers
can be designed to suit known system needs, specialization allows for handling of uncer-
tainty (Hsieh et al. 2009). Specialization tendencies can diversify a homogeneous work-
force to suit environmental needs, leading to increased individual fitness and improved
joint resource utilization (Murciano et al. 1997). Emergent cooperation through specializa-
tion scales better than more centralized approaches, by: (1) allowing for simpler software
and cheaper hardware, as agents only need to handle a subset of all the behaviors needed
within the system; (2) allowing for simplified agent coordination by limiting the agents’
focus to a set of subtasks or subroles within the system (e.g., leader vs. follower), while
(3) reducing interference resulting from agents attempting to take on the same tasks either
physically or virtually (Ono and Fukumoto 1996; Campbell and Wu 2011). Specialization
also improves problem scalability, as it allows for a natural mapping from larger and poten-
tially intractable problems to tractable subproblems (e.g., agents tasked with patrolling a
large area vs. patrolling a set of smaller subareas) (Agmon et al. 2011).

While specialization has been widely used for task allocation in environments where
systems needs specified ahead of time, allowing the approaches to adapt to a variety of
scenarios, the readaptation of specializations (i.e., respecialization) within dynamic envi-
ronments is not well investigated. Efficient allocation of non-communicating swarm agents
to ongoing tasks can be achieved through emergent specialization, resulting from agents
reacting to a shared environment by following simple rules, such as response threshold
reinforcement. Existing research suggests that specialization resulting from threshold rein-
forcement may improve system performance as compared to market-based solutions (Kit-
tithreerapronchai and Anderson 2003). Additionally, threshold reinforcement can drive
task allocation without explicitly modeling costs to non-specialization, with specialization
simply emerging from a habit toward repeated activity (Theraulaz et al. 1998). Agents need
to balance taking advantage of developed specializations with a flexibility to take on new
specializations as system needs change. Maintaining this balance between specialization
and responsiveness to change is closely related to the non-trivial balancing of exploitation
and exploration in learning (Levinthal and March 1993). Adaptive solutions often depend
on agents’ diversity, which can be diminished after an initial adaptation to the environment,
complicating or even precluding readaptation to new system conditions (Mavrovouniotis
et al. 2017; Price and Tiňo 2004; Kazakova and Wu 2018). Forgetting-based approaches
can be used to improve performance in decentralized domains, such as forgetting older
observations in adversarial decision making (Villacorta et al. 2013), forgetting older train-
ing environments in case-based reasoning robotic navigation (Kira and Arkin 2004), or
resetting agents’ habit-based preferences for and against available tasks (Kazakova and Wu
2018).

 Swarm Intelligence

1 3

If forgetting learned behavior can help agents adapt in dynamic environments, decen-
tralized approaches require a decentralized way for agents to decide when forgetting is war-
ranted. We hypothesize that observing changes in task stimuli over time may be sufficient
for agents to individually decide when to reset their current specializations back to their
prespecialized random values, without a need for central controllers, task limitations, or
inter-agent communication. Although some domains may require global task performance/
stimulus monitoring module or informant agents (surveillance cameras or drones), in many
cases the state of the current task can be readily observable by the agents: growing vol-
ume of debris to cleanup, quickly depleting collected resources, long production queues,
etc. Note also that the cost of monitoring environmental effects of agent action scales bet-
ter than the cost of explicitly coordinating larger numbers of agents. Agents do not need
to know how much work or how many agents a task requires, only focusing on whether
the stimulus for that task is currently growing or decreasing. An increase in task’s stim-
ulus indicates that agents are currently under-working on that task, while a decrease in
stimulus indicates over-working. Smaller stimulus changes are used to gradually redirect
agent activity choices, but larger stimulus changes can serve as indications of environmen-
tal change that warrants a reset of specializations. Entomology research, which inspires
much of the techniques for decentralized MAS, supports our hypothesis, as insect societies
appear to use rate of stimulus change to achieve decentralized task allocation in dynamic
natural environments (Westhus et al. 2013).

We propose a forgetting-based extension to a well-known insect-inspired task allocation
model that is decentralized, communication free, and combines system needs and agents’
threshold-reinforced specializations into task selection probabilities (Theraulaz et al.
1998). We introduce an automated specialization resetting heuristic, based on the number
of system tasks and per-step stimulus increases. We first use a two-task setup to showcase
how different amounts of change in task demands affect stimulus values. Then, we com-
pare the performance achieved with the proposed automated resetting of specializations
to performance without resetting, as well to a baseline performance when using a central-
ized signal to reset specializations when task demands change. All three approaches are
tested on an abstract multi-area patrolling domain, with changing patrolling needs for each
area. We then expand our testing to more agents, more tasks, and more demand changes to
assess system scalability. Finally, we conduct a noise sensitivity test and propose an noise-
based adjustment to the threshold resetting condition. Results demonstrate that agents are
able to improve performance by automatically detecting when current task specializations
have become outdated. Automated specialization resets decrease the number of unneces-
sary task switches while allowing faster readaptation to changes in the environment.

2 Related work

Without limits on task availability and without inter-agent communication, many exist-
ing task allocation approaches become unsuitable. Auctions and dominance contests for
assigning a limited number of unit jobs require communication and limits on task avail-
ability: once an agent wins a task in an auction, others cannot win that same task, which
reduces their choices (McIntire et al. 2016; Nunes and Gini 2015; Nunes et al. 2016; Zheng
and Koenig 2011; Campos et al. 2000; Cicirello and Smith 2004; Ghizzioli et al. 2005;
Nouyan 2002; Nouyan et al. 2005). Applying these approaches to ongoing tasks requires
an artificial discretization of continuous system needs into individually assignable unit

Swarm Intelligence

1 3

jobs. Additionally, market-based approaches do not scale well with increasing numbers
of agents and tasks (Golfarelli et al. 1997; Dias 2004). Token-passing approaches allow
agents to take turns taking individual jobs off the list of options (Farinelli et al. 2006; Ma
et al. 2017; Ferreira and Bazzan 2006; Ferreira et al. 2007, 2010; Schwarzrock et al. 2018;
Tavares et al. 2017) and thus also require both communication and limitations on the avail-
able tasks. Task supply can also be limited indirectly, by restricting the number of spots
available at the transition interface between sequentially dependent tasks, thus allowing
agents to use their waiting times to estimate task needs (Frison et al. 2010; Pini et al. 2011;
Brutschy et al. 2014). Another set of approaches employ inter-agent recruitment to a team
or coalition responsible for some task (Dos Santos and Bazzan 2009, 2011, 2012; Duca-
telle et al. 2009; Wawerla and Vaughan 2010), which also requires communication, role
assignments, tracking the number of agents on a team, etc.

Task allocation for ongoing tasks can be viewed as proportionate agent deployment to
multiple locations, applicable to multi-area surveillance, environmental monitoring, and
aerial coverage for units on the ground (Hsieh et al. 2008). Under this view, locations/tasks
can have explicit probabilities for agents to transition from one task to another (Berman
et al. 2007; Halász et al. 2007). Performance of systems with task transition probability
matrices is sensitive to initial conditions and to chosen transition probabilities. Addition-
ally, transition probabilities are static, which poses a conflict between the speed of initial
task allocation and the stability of the resulting task assignments: higher probabilities result
in faster deployment, but also higher rates of task switching at equilibrium. Improvements
to this sensitivity of transition probabilities are possible with the incorporation of a quorum
technique, where agents become more likely to transfer out of a location/task when that
location is close to the desired occupancy (i.e., close to the desired performance) (Hsieh
et al. 2008). To respond to quorum conditions, agents do need an ability to assess occu-
pancy or, equivalently, current task performance. Note, however, that approaches relying
on transition probabilities do not distinguish among the transitioning agents and thus have
no explicit specialization tendencies. The need for explicitly defined transition values also
complicates adaptability in dynamic environments.

In lieu of direct communication, stigmergic approaches can be used, where agents coor-
dinate through pheromone diffusion in their environment (Theraulaz and Bonabeau 1999).
While pheromone techniques allow for decentralized task allocation (de Lope et al. 2012),
they do require that agents are able to deposit and sense some form of environmental mark-
ers. Additionally, local markers do not inform agents about the demands of non-local tasks.
Task allocation approaches that depend on temporary completion markers, such as patrol-
ling of areas with the lowest concentration of pheromone (Chu et al. 2007), rely on break-
ing down the environment into discrete tasks with limited task availability, while also not
promoting specialization. Furthermore, pheromone diffusion may not be sufficiently fast to
allow for timely responses in dynamic environments (Garnier et al. 2007)

Decentralized task allocation without direct communication or explicit environmen-
tal markers can be achieved through response threshold techniques, i.e., approaches
where agents respond to task stimuli surpassing some threshold value. Agents have pref-
erence values for and against each task, commonly referred to as thresholds (also known
as sensitivity thresholds, affinity thresholds, habit thresholds, preference thresholds,
specialization thresholds, etc.), which represent their current action-reinforced speciali-
zation, experience, suitability, or even circumstantial factors such as distance to task
or battery levels. The lower the threshold, the more sensitive an agent is to that task’s
demand. As stimuli rise, agents with lowest thresholds begin acting first, slowing the
increase in stimuli and, indirectly, preventing agents with higher thresholds from acting.

 Swarm Intelligence

1 3

Each agent’s thresholds can change over time in response to the agent’s activity, which
in turn is affected by these thresholds, creating a threshold reinforcement loop and lead-
ing to emergent specializations, beneficial when systems needs are unknown ahead of
time (Murciano et al. 1997; Nitschke et al. 2008; Hsieh et al. 2009).

Threshold-based approaches have been used for both deterministic and probabilis-
tic agent responses. Agents’ task switches can be deterministically triggered when task
stimuli surpass or fall below some threshold value; we refer to these as trigger thresh-
olds. Examples include: identical (Agassounon et al. 2001) or different hard-coded
trigger thresholds for all agents within a foraging domain (Krieger and Billeter 2000;
Lee and Kim 2017); trigger thresholds calculated based on work availability, estimated
individually, or through peer communication (Agassounon and Martinoli 2002); trig-
ger thresholds adapted through environmental, internal, and social cues (Liu et al.
2007); and trigger thresholds communicated and updated following jamming avoidance
response, approaching a uniform distribution over time to assign a proportionate num-
ber of workers to an ordered set of tasks (Lee and Kim 2016). Given the nature of these
trigger thresholds, when a stimulus matches an agent’s threshold, exceeds it by a small
amount or exceeds it by a large amount, the agent responds with acting on that task with
100% probability. To achieve a more commensurate response, agents can instead use
a probabilistic approach that combines their individual thresholds and the task stim-
uli (Theraulaz et al. 1998). Although this approach has been referred to by a variety of
names, including “threshold reinforcement” and “response threshold,” to avoid confu-
sion with the various trigger threshold methods, we refer to this model as StimHab, to
reflect its reliance on stimuli and action-reinforced task habit thresholds. Given only
the ability to sense tasks’ current performance, agents decide how to act independently
of each other, while also having the ability to specialize via threshold reinforcement,
resulting in a highly scalable and efficient task allocation. Some decentralized probabil-
istic task allocation approaches rely on agents altering their action probabilities directly
(instead of altering a threshold that affects these probabilities), in a variety of learning
automata approaches with different probability-adapting formulas (Labella et al. 2006;
Quiñonez et al. 2011; de Lope et al. 2012). The differences between direct and indirect
probability adaptation approaches are not yet clear, although some comparison efforts
have been made (de Lope et al. 2015).

Under StimHab, task stimuli alone can suffice to facilitate decentralized task allocation
of simplistic agents, which is useful given that task stimuli are based on performance infor-
mation, which is often already monitored in computational systems to assess operations.
Additionally, while in the majority of existing task allocation approaches tasks are pre-
sented to agents one at a time, StimHab has been extended to allow agents to continuously
consider multiple tasks simultaneously (Wu and Kazakova 2017). Note that although Stim-
Hab does not require communication, auctions, or token passing, it has been previously
extended with these techniques for decentralized task allocation in domains with limita-
tions on task supply: bee-inspired clustering for RoboCup Rescue (Dos Santos and Bazzan
2012); job queue and dominance contests based on delay prior to beginning a job for fac-
tory job assignment (Campos et al. 2000; Nouyan 2002; Cicirello and Smith 2004; Nouyan
et al. 2005; Ghizzioli et al. 2005); identical, experimentally set, static thresholds for event-
handling agents (Kalra and Martinoli 2006); pre-evolved stimuli and thresholds for a real-
time strategy game (Tavares et al. 2014); and token passing for RoboCup Rescue (Ferreira
et al. 2007, 2010) and for unmanned aerial vehicle surveillance (Schwarzrock et al. 2018).
Communication-free StimHab has been applied to mail processing (Price and Tiňo 2004)
and generalized task allocation with unlimited task supply (Kazakova and Wu 2018).

Swarm Intelligence

1 3

Threshold reinforcement does, however, struggle with respecialization, i.e., read-
aptation from an existing specialization to a new specialization when system conditions
change (Price and Tiňo 2004; Kazakova and Wu 2018). Threshold reinforcement is guided
by the principle of “keep preferring to do what you’ve been doing.” Under StimHab, agents
commonly begin with uniformly random thresholds, which are subsequently updated based
on agents’ individual action choices, developing a preference for one task and aversions
toward the other tasks. The resulting specializations fit existing system needs, but when
these needs change, agents may need to work on tasks to which they have grown averse.
When beginning to respecialize, agents’ thresholds correspond to pre-existing specializa-
tions. When these specializations are in opposition to new system needs, respecialization
requires acting against existing conditioning, fighting against the very nature of threshold
reinforcement, and resulting in slower task allocation, accompanied by an increase in task
switching (Kazakova and Wu 2018). A forgetting-based solution can reset specialization
capabilities, but has only been previously triggered for the agents in a centralized fash-
ion (Kazakova and Wu 2018), which would be unsuitable for decentralized MAS.

3 Example domain: deployment for multi‑area patrolling

To ground our discussion, we consider agent deployment for multi-area patrolling as an
example of a decentralized task allocation for multiple ongoing tasks (i.e., deployment to
the different patrollable areas), dynamic task demands (i.e., varying patrolling needs per
area over time), no inter-agent communication, and an ability to benefit from specialization
(staying in a subset of patrollable space can improve efficiency). Below we discuss why
this view of patrolling is useful and how StimHab can be applied to this domain.

Decentralized selection among multiple patrollable areas with varying patrolling
demands is an example of a dynamic domain with ongoing tasks. Existing patrolling
approaches often rely on deterministic and centralized approaches, to the detriment of flex-
ibility, scalability, and the costs of communication and load balancing (Portugal and Rocha
2011), while also relying on some form of task supply limits (e.g., Chu et al. 2007), which
can restrict general applicability within real-world domains. Many-to-many communica-
tion does not scale well, but local communication may not be sufficient if the patrolled
areas are disconnected, requiring some form of general information (task/area patrolling
stimuli). Additionally, an agent choosing a particular area does not indicate that no more
agents are needed in that area, so communicating patrolling choices may not be informa-
tive. Multi-area patrolling is a domain of multiple ongoing tasks, as all areas are always
available to be patrolled. Thus, agents are not presented with one task at a time, but have to
select from among all the choices every time they reconsider their current activity (poten-
tially every time step). All agents can choose to patrol the same area or no area at all, but
are ideally expected to distribute themselves across the areas in accordance with the patrol-
ling demands. Each agent specializing on any one area can help minimize interference,
while maximizing efficiency by reducing time-consuming area switching (Agmon et al.
2011). If patrolling demands change, agents need to redistributed themselves, i.e., a subset
of the group needs to respecialize.

Emergent coordination is adaptable to dynamic patrolling needs (Almeida et al. 2004;
Portugal and Rocha 2011). Under StimHab, current task performance can be inferred from
each area’s patrolling stimulus, allowing agents to self-deploy to the different areas without
additional assumptions. Without exchanging or modeling each other’s patrolling choices,

 Swarm Intelligence

1 3

agents only consider whether each area is adequately patrolled. We measure patrolling per-
formance as the ratio of [number of patrolling agents in area] to [desired number of patrol-
ling agents in area]. The number of patrolling agents in each area can be tracked at the
entry and exit points to each area. The desired number of patrolling agents can be set based
on number or importance of targets within each area, importance of events within each
area, time dependencies, etc. Variations in these area specifics would then lead to dynami-
cally changing demands and thus require dynamically changing patrolling deployments.

To clearly assess the quality of decentralized deployment to different patrollable areas
based on stimulus information alone, we use a high-level representation of the multi-area
patrolling domain. Patrolling domains can have many specific elements and costs: number
of patrollable nodes within each area, distance between nodes and between areas, agent
speed, etc. To eliminate any domain-specific dependence on area adjacencies and travel-
time costs, we consider patrollable areas as an abstract set of ongoing tasks. At every time
step, each agent chooses whether to patrol any one of the areas or to idle, if it perceives that
its services are not currently needed. In the presence of excess patrolling agents, idling can
reduce interference, save expendable resources, and reduce wear and tear on the agents.

4 StimHab threshold reinforcement model

We employ a commonly used decentralized and communication-free threshold reinforce-
ment model (Theraulaz et al. 1998), which we refer to as StimHab. Decentralized task
allocation is achieved through probabilistic action, based on a combination of global task
stimuli and agents’ individual habit thresholds for these tasks. StimHab increases the
agents’ probability to act on tasks with (1) higher task stimuli and (2) lower agent-specific
task thresholds, thus addressing system needs while also promoting specialization (Ther-
aulaz et al. 1998). Below we review how stimuli and habit thresholds are defined, updated,
and used to calculate action probabilities, as well as how the resulting actions lead to
specialization.

4.1 Global task stimuli

Agents sense system needs through task stimuli, which can be provided explicitly as glob-
ally available values or implicitly as observable environmental qualities (e.g., the dimen-
sions of a fire Kanakia et al. 2016). An increase in a task’s stimulus indicates an increase in
the task’s demand or a decrease in the task’s fulfillment (e.g., number of targets in a given
area has increased or some of the patrolling agents have moved away or have become inop-
erative). As task stimulus rises, more agents switch to that task, abandoning others; as the
stimulus lowers, some agents switch to other tasks.

In StimHab, a task’s stimulus does not directly indicate current task needs or the ratio
of work that must be done on this task versus other tasks. Consider that knowing the num-
ber or ratio of agents currently needed for an ongoing task per some time period does not
give an agent any indication of whether it should take on that task. Knowing how well the
task is being handled, i.e., task performance, is a more informative heuristic for whether
an agent’s services are needed. Nevertheless, using performance values directly as stimuli
results in an environment that is too unstable for specialization: ideal performance would
correspond to zero stimulus, while no activity would correspond to maximum stimulus.
Thus, reaching correct allocation would sharply drop activity and performance, increasing

Swarm Intelligence

1 3

stimulus, which would increase activity back to previous levels, as habits have not had time
to change significantly, leading to zero stimulus again, and so on. This oscillating stimulus
behavior causes agents to behave erratically, unable to fine-tune their specializations. This
behavior was confirmed during initial testing, though the tests are omitted here for brevity.

In StimHab, task performance is the change in task stimulus, with ideal amount of work
leading to no change, excess work leading to stimulus decrease, and insufficient work lead-
ing to stimulus increase. There are multiple ways of regarding stimulus changes: as the
difference between system expenditure and work-based replenishment, as a change in the
amount of a stored resource, or as a reflection of the ratio of performed versus ideal amount
of work on a task per unit of time. Task t’s stimulus s

t
 is updated as a change in the previ-

ous stimulus, with the assumption that the absence of work on a task with nonzero demand
must lead to some stimulus increase. This per-step increase in stimulus represents either a
drop in the level of some stored resource (e.g., materials being expended faster than col-
lected) or a signal that the amount of work done was lower than desired for that task (e.g.,
fewer than ideal number of agents patrolling a given area).

up to a Min(s
t
) = 0.0 and Max(s

t
) = 1.0 . If agents perform the exact amount of work that

is needed on a task, s
t
 remains unchanged. We set Δs

t
 to increase the task’s stimulus from

minimum 0.0 to maximum 1.0 within a single cycle, defined as some number of consecu-
tive decision steps. After any one step, if agents do no work on task t, s

t
 will increase by

1.0∕(steps in cycle) , i.e., given a cycle of 100 steps, s�
t
= s

t
+ 0.01.

4.2 Individual task habit thresholds

Each agent maintains a habit threshold for every task. These have sometimes been referred
to as “response thresholds,” which can be misleading in the case of StimHab, as agents do
not respond based on these thresholds alone. When agent a acts on a task t, its threshold
�
a,t is reduced, while the thresholds for the other tasks are increased, over time leading to

specialization. Lower thresholds increase action probability (see Sect. 4.3), causing agents
to become more likely to act on the same task in the future.

When agent a chooses to act on task t, it specializes toward task t (�
a,t→0.0) and against

all the other tasks (�
a,t′≠t→1.0) according to the following threshold reinforcement rules:

with � restricted to the range [0.0, 1.0]. Affinity and aversion rates indicate how fast agents
specialize for and against tasks, based on their actions. We set affinity-building rate to
� = 1∕(steps in cycle) , ensuring that thresholds can evolve from minimum (indicating high-
est affinity) to maximum (indicating highest aversion) in a single cycle. Aversion-building
rate is set to � = �∕(number of tasks − 1) . In the original setup, � is set to be one-tenth of �
for a domain with two tasks (Theraulaz et al. 1998). Instead, we assume that the total habit
gained by one task should be lost elsewhere, consistent with potentially limited memory
in simplistic swarm agents. Consequently, we split the habit loss (i.e., aversion-building)
equally among the other tasks, excluding idling as doing nothing takes up no memory.

s
�
t
= s

t
+ (Δs

t
given no work) ∗ (1 − (step performance))

= s
t
+

(
1

steps in cycle

)
∗

(
1 −

step work done

step work needed

)

�
a,t = �

a,t − � (where � is the affinity-building rate)

�
a,t�≠t = �

a,t� + � (where � is the aversion-building rate),

 Swarm Intelligence

1 3

4.3 Action selection

StimHab achieves decentralized task allocation through probabilistic action based on a com-
bination of global task stimuli and agents’ individual affinities for these tasks (Theraulaz
et al. 1998). Probability to switch to a task is directly proportional to the task’s stimulus and
inversely proportional to an agent’s task threshold. A higher task stimulus indicates a higher
need for that task within the system, while a lower agent’s task threshold indicates that agent
has developed an affinity for this task. When a task’s stimulus rises, more agents abandon
other tasks in favor of the one with rising stimulus, beginning with agents that have the lowest
thresholds for that task and followed by those with higher thresholds. The result is a gradual
response that is commensurate with system demands, similar to that achieved by fuzzy control
systems. Below we review StimHab’s probabilistic response in the presence of multiple tasks:
(1) how probabilities are compared and (2) how action is chosen.

Every time step (or every domain-specific decision step), each agent a calculates the prob-
ability to act on every task t, by combining a globally known current task stimulus s

t
 with its

own affinity for that task �
a,t as follows:

For reference, the space of all combinations of s
t
 and �

a,t is provided in Fig. 1a. Note the
formula redefinition above to avoid division by zero at s

t
=�

a,t=0 , corresponding to the
vertical edge to the left of 3D probability map in Fig. 1. The resulting probability is a 50/50
chance to select the task or not, which is precisely between the adjacent values of P

a,t = 1.0
for (s

t
> 0.0, 𝜃

a,t = 0.0) and P
a,t = 0.0 for (s

t
= 0.0, 𝜃

a,t > 0.0) (upper and lower edges of
the map, respectively), while also matching the other values along the rest of the “ s

t
= �

a,t ”
line (depicted in yellow and dividing the map horizontally in half): when s

t
= 𝜃

a,t > 0.0 ,

P
a,t = s

2
t
∕(s2

t
+ �2

a,t
) where s ∈[0.0, 1.0], �∈[0.0, 1.0]

P
a,t = 0.5 where undefined (s

t
= �

a,t = 0.0)

(a) (b)

Fig. 1 StimHab probabilities. Notice that P
s=1,�=1=P

s=0,�=0 = 0.5 (left-most edge/point vs. right-most point
in a or, equivalently, gray arrow-pointed points in b), causing fully specialized agents (those with a max
habit for one task and min habit for all the others) to have difficulty readapting. Consequently, adaptability
can be improved by resetting agents’ habit thresholds �

a
, t to random values as demands change (Kazakova

and Wu 2018)

Swarm Intelligence

1 3

P
a,t = (s2

t
∕(s2

t
+ s

2
t
) = (s2

t
)∕(2s2

t
) = 0.5 . In Fig. 1b, we provide an alternative view of the

agents’ action space, but focusing instead on the responses that different specialization
thresholds produce given various stimulus values. In this view, we can also see why Stim-
Hab agents struggle to respecialize. Consider the gray arrow in the center of the graph,
which points to a P

a
, t = 0.5 for both the “max habit” specialization � = 0 at minimal stim-

ulus s
t
= 0 and the “min habit” specialization � = 1 at maximum stimulus s

t
= 1 . As these

endpoints lead to identical probability to choose the task, there is no way for the agents
to favor tasks with higher need for which they have developed maximally high thresholds
through repeated action-based reinforcement (Kazakova and Wu 2018).

Under standard StimHab, only a single task is presented to the agents at a time (Ther-
aulaz et al. 1998), but given an environment of multiple ongoing tasks, agents require a
task selection mechanism. At every decision step, each agent a calculates the StimHab-
based probability P

a,t to act on every task t, sorts tasks in descending probability order, and
begins considering acting on each task starting from the most probable. Existing research
shows that this ordering is conducive to improved specialization characterized by reduced
number of task switches (Wu and Kazakova 2017). Note that agents are likely to end up
with different task orderings, as probabilities are calculated by each agent using agent-spe-
cific thresholds. When considering each task, if a randomly generated value is below the
calculated task probability, the agent will act on that task. Otherwise, the task with the next
highest P

a,t is considered. Once a task is selected to be acted on, tasks further down the list
are not considered. If no task is chosen after all tasks have been considered, the agent will
idle until next decision step.

5 Triggering automated threshold resetting

In this section we discuss a level of minimal system change that may warrant agent respe-
cialization. To benefit from StimHab’s fast decentralized specialization, as well as from
faster respecialization shown with centrally triggered threshold resets (Kazakova and Wu
2018), we allow agents to individually reset their habit thresholds back to random values
based on a new assessment of stimulus change. Changes under the level of interest indicate
normal probabilistic action and specialization development, while changes above this level
indicate additional environmental changes that may warrant respecialization. First, we dis-
cuss what changes in stimuli mean for system stability and how they can be used to detect
when existing specializations are no longer producing desired results. We then establish
a minimum level of change, exceeding which will trigger agents to reset their �

a,t back to
uniformly random values in order to respecialize more effectively.

5.1 Monitoring stimulus changes to understand environmental changes

StimHab reliably leads to adequate specialization when starting with randomly assigned habit
thresholds, but struggles to respecialize effectively if thresholds correspond to previous spe-
cializations when demands change (Kazakova and Wu 2018). As resetting habit thresholds
effectively turns respecialization into specialization, agents can respecialize faster if they can
recognize that a reset is needed. We hypothesize that observing changes in stimuli can let
agents recognize that their existing specializations have become outdated, warranting a reset.

 Swarm Intelligence

1 3

Below we discuss the meaning behind stable versus unstable task stimuli and consider how
this information can be leveraged by decentralized agents for automated threshold resetting.

Although agents only have task stimuli available to them (not the actual task demands,
number of agents, agent assignments, etc.), observing how these stimuli change over time can
be sufficient to assess overall system stability. As agents’ specializations develop over time,
their assignments to tasks become consistent, allowing for stabilization in the changes of
tasks’ stimuli: if agents are able to fulfill a task’s demands exactly, without under- or over-
working, per-step expenditure will be offset, keeping the stimulus stable; if agents consist-
ently under-work, stimulus will rise steadily; if agents over-work, stimulus will drop steadily.
A sudden increase in the rates of stimuli changes, i.e., destabilization, can thus be used as an
indication of a change within the environment. As existing specializations evolved to fit a pre-
vious environmental condition, respecialization may help agents adapt to the new conditions.
Threshold resetting is only beneficial when conditions change after specializations have been
fully developed (i.e., reached max and min threshold values due to repeated threshold rein-
forcement), as that is when StimHab struggles to respecialize. Thus auto-detection of changes
is only needed when the system destabilizes; changes in an unstable environment do not need
to be detected, as agents that have not yet fully specialized are capable of respecializing with-
out resetting.

Perceiving only the tasks’ stimuli, agents can recognize system destabilization by observ-
ing how these stimuli change over time. Stimuli changes are the velocity of the stimuli, and
the changes of these changes represent stimuli accelerations. Decelerating stimuli represent
stabilization: stimuli values approach a constant rate of change (or no change) as agents’ task
assignments become more stable with specialization. Accelerating stimuli correspond to
destabilization: stimuli changes become less constant (or spike up or down) as agents’ task
assignments no longer lead to the same stimulus updates as before.

Agents can recognize destabilization by detecting acceleration in the tasks’ stimuli, i.e., an
increase in the change of the changes in stimuli. Within an environment of multiple ongoing
tasks, we use the highest change of stimulus among all of the tasks as our velocity for a cur-
rent step, calculated as follows.

where prev.s
t
 is the stimulus for task t at the start of the step and new s

t
 is the value at the

end of the step, after all actions take place. We use absolute value of the change to establish
whether stimuli are changing more rapidly than before; whether stimuli are actually rising
or falling does not represent system stability. We then compare this highest velocity to the
highest velocity calculated identically over the previous step. The difference between the
two velocities is the acceleration of the highest stimulus change:

indicating whether stimuli just grew faster than before (positive value) or slower than
before (negative value), corresponding to destabilization and stabilization, respectively.
Thus, in order to assess whether the system destabilized, agents need to calculate and store
MAX|Δs

t
| for the last two steps, i.e., the newest max change and the previous max change

among the tasks’ stimuli.

MAX|Δs
t
| = MAX{|∀t, current s

t
− prev. s

t
|},

ΔMAX|Δs
t
| = current MAX|Δs

t
| − previous MAX|Δs

t
|,

If current MAX|Δs
t
| > prev. MAX|Δs

t
| → Δ MAX|Δs

t
| > 0, faster change: destabilization;

If current MAX|Δs
t
| < prev. MAX|Δs

t
| → Δ MAX|Δs

t
| < 0, slower change: stabilization.

Swarm Intelligence

1 3

These comparisons involve only stimuli values s
t
 , already available to agents within

StimHab.

5.2 Analyzing stimulus destabilization

Within an MAS based on probabilistic actions, some fluctuation is to be expected. Reset-
ting specialization thresholds can be detrimental if specializations are not outdated, so agents
need to distinguish between natural stimulus fluctuations versus destabilization requiring
respecialization. To establish when the system has changed sufficiently to warrant resetting,
agents need to establish what ΔMAX|Δs

t
| are sufficiently high as to indicate an environmental

change has occurred. We hypothesize that the smallest possible change in task demands is a
reasonable heuristic value for the distinction between fluctuation versus destabilization. We
investigate how the number of steps in cycle and number of tasks within the system affect the
smallest possible change in stimuli. We then establish a formula for the minimum positive
ΔMAX|Δs

t
| that represents sufficient destabilization to trigger agents to reset their thresholds

and respecialize.
The smallest possible change in stimuli over a single decision step is a function of total

steps in a system’s cycle. Recall that under StimHab, in the absence of agent action, stimuli
increase over time based on some resource expenditure or rate of growing need for a task
that is not being attended to. Assuming stimuli are confined to the [0.0, 1.0] range, stimuli
of unattended tasks increase from minimum (s

t
= 0.0) to maximum (s

t
= 1.0) values over

a single cycle defined as some n number of steps (e.g., a simulation day defined as some
number of hours), increasing by (1∕steps in cycle) every time step (e.g., every simulation
hour). Note that even in setups without explicit “cycles,” there must be some amount of
consumption that decreases s

t
 on every step, maximizing the stimulus over some number of

steps. Agents can only do one task per step. The smallest change in task demand is then ± a
single work step out of the total available within a cycle, i.e., (1∕steps in cycle).

The smallest possible change in stimuli is also a function of the total number of tasks
within the system. If all agents are needed to fulfill tasks demands, the smallest MAX|Δs

t
|

is observed when all tasks require the same number of steps and then one step shifts from
one task to another. Task demands affect the expenditures incurred on each time step,
which corresponds to total expenditure for the cycle divided by number of steps in a cycle.
With a setup of two tasks, this minimal change corresponds to an initial demand set of
(T1-50%, T2-50%), meaning that 50% of the cycle steps need to be spent on Task 1 and
the other 50% on Task 2, shifting to a new demand set of either (T1-51%, T2-49%) or
(T1-49%, T2-51%). This demand change is of 1% out of 50%, where 50% is the maximum
demand amount when total steps are distributed equally between two tasks. With a setup of
five tasks, minimum change would happen going from the demand set (T1-20%, T2-20%,
T3-20%, T4-20%, T5-20%) to, for example, (T1-19%, T2-20%, T3-20%, T4-20%, T5-21%).
This change is of 1 out of 20 steps, where 20 cycle steps are the maximum demand amount
when the steps are distributed equally among 5 tasks. Thus, we see that the same demand
change of a single step corresponds to a ratio of 1/((steps in cycle)/2) for two tasks and 1/
((steps in cycle)/5) for five tasks. Consequently, to ensure that this change ratio can rep-
resent per-step changes consistently, we incorporate the number of tasks into the value
delimiting the lowest amount of change to be regarded as destabilization:

1∕steps in cycle

number of tasks
=

number of tasks

steps in cycle

 Swarm Intelligence

1 3

Thus, we propose that, given some number of steps per cycle and the number of tasks,
agents automatically reset their specialization thresholds �

a,t to uniformly random values
when:

6 Experiments

We conduct a series of experiments to investigate whether tracking changes in MAX|Δs
t
|

can be sufficient to improve respecialization of decentralized agents employing threshold
reinforcement. We first describe our testing setup and the metrics used. Then, we test how
changes in task demands are manifested in MAX|Δs

t
| values under a series of progressively

smaller task demand changes, as well as under a set of random-valued demand changes.
Finally, we compare the behavior of the proposed Auto-Reset approach to that of standard
StimHab, referred to here as No-Reset for clarity of distinction, as well as to the approach
of Central-Reset of �

a,t thresholds to uniformly random values each time demands are reset,
which has been shown to outperform No-Reset (Kazakova and Wu 2018). We test how 100
agents dynamically self-allocate under the three approaches given maximal, minimal, and
random changes in the demands of five tasks. Finally, we conduct a test with more random
changes in demands, 1000 agents, and 10 tasks. The provided results show that StimHab
with Auto-Reset is able to combine the benefits of No-Reset and Central-Reset approaches,
ultimately leading to efficient and stable task allocation under all of the tested variations
in demands and without a need for a central signal for agents to reset their specializations.

6.1 Baselines and metrics

To assess whether tracking ΔMAX|Δs
t
| can improve decentralized threshold reinforce-

ment-based respecialization, below we define the three compared approaches, describe our
experimental settings, and define the performance metrics used.

We test three approaches on decentralized multiagent deployment to multiple patrolla-
ble areas seen as a set of ongoing tasks with dynamic demands. Agents will reinforce their
habits, over time specializing on a single patrollable area or task. When demands change,
agents will attempt to respecialize accordingly. The tested approaches are:

Auto-Reset: agents monitor changes in MAX|Δs
t
| and reset their specialization thresh-

olds �
a,t when the detected change is above the minimal change value equal to

number of tasks

steps in cycle
.

No-Reset: standard StimHab (Theraulaz et al. 1998), where all threshold adjustments
are due solely to threshold reinforcement rules and thus there is No-Reset under this
approach.
Central-Reset: when demands change, agents receive a central signal to reset their spe-
cialization thresholds �

a,t . This is our theoretical optimum, as the goal of automated
resetting is to eliminate the need for a central signal, while still achieving compara-
ble respecialization, give that Central-Reset outperforms standard No-Reset Stim-
Hab (Kazakova and Wu 2018).

ΔMAX|Δs
t
| ≥ number of tasks

steps in cycle

Swarm Intelligence

1 3

The following basic system settings are used for all three approaches. The underlying sys-
tem is always StimHab, with the only differences being whether and when system-wide
habit threshold resets take place. During each simulation, 100 agents work on 5 ongoing
tasks (T1-T5) over the course of 500 cycles or 50,000 steps. During each step, each agent
can choose to work on a single task or to idle. Given 100 steps per cycle and 5 tasks,
when choosing to act on a task, the agent’s threshold for this task decreases by � = 1∕100 ,
while the thresholds for the other 4 tasks’ increase by � = �∕4 = 1∕400 (as discussed in
Sect. 4.2).

Task demands change every 50 cycles = 5000 steps, for a total of 10 times over a sim-
ulation, always adding up to 100% of the population, requiring the correct allocation of
every agent to fully and continuously satisfy all ongoing tasks’ to 100% performance. Task
demands are defined as percentage of the total population. No excess work can be saved
from one step to the next (excess current patrolling does not offset deficiencies in future
patrolling). To assess respecialization behavior of each approach, we define the following
terms:

Demand Period: a time period during which task demands remain stable; when demands
change, a new demand period begins and will end when demands change again. Thus,
observing average behavior across demand periods showcases the agents’ average abil-
ity to adapt to changes in task demands.
Task Performance (per step or per cycle): ongoing tasks are never finished; thus, per-
formance represents the proportion of work done as compared to work needed on a task
per unit of time, such as per time step (a period of one action from each agent) or per
cycle (a period of multiple consecutive agent actions).
Deviation from 100% Task Performance: the percentage of work misallocation with
respect to a task, either above or below the ideal task requirement; as task performance
can exceed or fall below 100%, averaging deviations prevents positive and negative mis-
allocations from canceling each other (e.g., average task performance of two steps of
95% and 105% performance is 100%, but the average deviation is 5%, more meaning-
fully showcasing the task allocation behavior).
Task Switch: a change in agent activity, switching from acting on one task to acting on
another (including switching to or from idling).
Task-Switching Rate: for any time period, the percentage of all actions that involved a
task switch (e.g., given 100 steps per cycle and 100 agents, 10,000 actions take place in
a cycle; a 20% task-switching rate indicates 2000 task switches for that cycle)
Ideal Task Allocation: a task allocation resulting in continuous task performances of
100% or, equivalently, average task performance deviations of 0%, with the number of
average task switches approaching zero over time.
Adaptation Period: a period between demand changes, during which agents must respe-
cialize in order to fulfill new system needs. Looking at average adaptation period behav-
ior we can assess the expected task allocation behavior in dynamic environments.

Performance is assessed using: (1) task performance percentages over time, (2) average
task deviations calculated for each cycle of a 50-cycle adaptation period, and (3) average
task switches calculated for each cycle of a 50-cycle adaptation period. Observing task
performance percentages over all 10 demand periods of a simulation showcases the actual
behavior of each approach in a dynamic environment. In a dynamic environment, ideally
satisfied tasks are those that quickly reach and maintain 100% task performance after task
demands change, while task performances below and above 100% indicate insufficient

 Swarm Intelligence

1 3

and excess agents on the tasks, respectively. Observing average task performance devia-
tions and average task-switching rates showcases how each approach is able to respond
to changes in task demands. Average deviations show the agents’ ability to fulfill newly
updated task demands, with deviations approaching 0% over time indicating near ideal task
fulfillment resulting from an appropriate task allocation. Average task-switching rates show
the stability of the task assignments, with values approaching 0% over time, indicating
agents becoming highly specialized, continuously working on a single task.

6.2 How changes in demands affect stimuli

To ground our discussion of ΔMAX|Δs
t
| , we conduct a series of preliminary experiments

to observe how MAX|Δs
t
| changes over time under different demand changes for two

tasks: (1) maximal changes, (2) large changes, (3) small changes, (4) minimal changes, and
(5) a set of auto-generated random changes. We first graph and discuss the MAX|Δs

t
| fluc-

tuations observed during each of the demand changes. We then provide task performance
graphs, showcasing how StimHab agents handle demands after each change. We discuss
what can be learned about changes in stimuli with respect to changes in task demands from
looking at MAX|Δs

t
| and the corresponding task performances, simultaneously. Finally,

we discuss how these observations can improve respecialization through automated thresh-
old resetting.

We observe fluctuations in MAX|Δs
t
| given the following changes in task demands:

(format: “task name—percentage of all agents that are continuously needed on this
task”)

• maximal: alternating (T1-1%, T2-99%) and (T1-99, T2-1%);
• large: alternating (T1-10%, T2-90%) and (T1-90%, T2-10%);
• small: alternating (T1-60%, T2-40%) and (T1-40%, T2-60%);
• minimal: alternating (T1-50%, T2-50%) and (T1-51%, T2-49%);
• random: (T1-2%, T2-98%), (T1-24%, T2-76%), (T1-66%, T2-34%), (T1-48%, T2-52%),

(T1-18%, T2-82%), (T1-72%, T2-28%), (T1-40%, T2-60%), (T1-9%, T2-91%), (T1-
49%, T2-51%), (T1-57%, T2-43%).

The resulting MAX|Δs
t
| for each simulation step are graphed in Fig. 2-left column, with

the corresponding task performance values shown on the right.
Figure 2-left graphs maximum absolute changes in s

t
 per step, for a setup of two

tasks. Each graph in the figure corresponds to a different demand change amount: (a)
maximal, (b) large, (c) small, (d) minimal, and (e) random. For each MAX|Δs

t
| graph

on the left, the horizontal axis tracks simulation steps, while the vertical axis tracks
MAX|Δs

t
| (e.g., if the most changed task stimulus for the step drops by 0.2, a spike

of height 0.2 will appear for that step). Demands are changed every 5000 steps, and in
most cases producing in a visible spike: given a relatively large positive ΔMAX|Δs

t
| :

current MAX|Δs
t
| ≫ previous MAX|Δs

t
| , the new y-value is considerably larger, result-

ing in a spike. For maximal demand changes in graph (a)-left, spikes of MAX|Δs
t
| are the

tallest, as the largest change in a task’s demand results in the largest change in the cor-
responding task stimulus, be it positive or negative. For minimal changes in demand rep-
resented in graph (d)-left, minimal fluctuations are observed after the initial specialization
over the first 50 cycles, as agents continue working based on their existing specializations.
Overall, as demand changes decrease moving from graph (a) to (b) to (c) to (d), so does the

Swarm Intelligence

1 3

height of MAX|Δs
t
| spikes in the graphs, culminating in barely visible spikes for minimal

demand changes in graph (d). Some exceptions to this tendency can be observed in graphs
(b) and (e). Graph (b) depicts relatively large demand switches, from (T1-10%, T2-90%) to
(T1-90%, T2-10%) leading to relatively tall spikes, but of inconsistent height, despite con-
sistent demand shift amounts. Looking closely, we can see that prior to all shorter spikes,

Fig. 2 Effect that changing task demands has on (left) MAX|Δs
t
| fluctuations per step under the approach

with No-Reset (standard StimHab) and (right) the corresponding task performances for a setup of 2 tasks
with demands changing 10 times, every 5000 steps = 50 cycles. We see that, generally, larger demand
changes correspond to taller spikes in MAX|Δs

t
| (left) and larger spikes in performance (upward or down-

ward) (right). By looking at task performances (right), we also see that after the initial specialization
(cycles 0–50), returning to 100% performance takes significantly longer during each subsequent 50-cycle
readaptation, demonstrating a struggle to respecialize

 Swarm Intelligence

1 3

the MAX|Δs
t
| line fluctuates. When task allocation has not yet achieved the zero change

in stimuli (characteristic of the system reaching an equilibrium point after initial adapta-
tion), changes in task demands will not result in as large of a spike in MAX|Δs

t
| . Graph (e)

depicts spikes of varying heights, but these do not directly relate to the amount of shifted
demand. Notice, for example, that a shift from T1-2% to T1-24% at step 5000 results in a
spike of about 15%, while a shift from T1-24% to T1-66% at step 10,000 does not result
in a larger spike, as may be expected (since the first change was of 22% and the second
of 42%) and, in fact, appears to not result in a spike at all. Looking closer, we see that all
shorter and missing spikes are preceded by fluctuations in MAX|Δs

t
| , while taller spikes

follow periods of MAX|Δs
t
| = 0.0 (i.e., flat lines).

Figure 2-right depicts the per-task performances given the stimulus changes depicted
in the left column. The horizontal axis tracks simulation cycles (of 100 steps each), while
the vertical axis tracks task performance. Ideal task performance is 100%; values below
indicate insufficient work is done on the task, while values above indicate excess work. We
see that, as demand changes decrease from graph (a) to (b) to (c) to (d), so do the fluctua-
tions of task performances, leading to smaller initial spikes away from the ideal 100% task
performance. Given minimal changes in demand represented in graph (d), minimal fluctua-
tions are observed after the initial specialization over the first 50 cycles, as agents continue
working based on their existing specializations. Although we limit the y-axis to 200% to
ensure visibility, maximal demand changes on graph (a) lead to task performance peaks
nearing 1000%, while the smaller demand changes in graph (b) result in smaller peaks,
nearing 250%.

A deeper understanding of why larger changes in demand do not always lead to larger
spikes in MAX|Δs

t
| can be gained by analyzing both columns in Fig. 2, simultaneously.

Consider that when a task is not getting sufficient work steps, its stimulus increases over
time, until reaching the maximum of 1.0; a task that is getting too many work steps will
have its stimulus decrease over time, until reaching a minimum of 0.0. This is precisely the
case in Fig. 2e-right, over the demand period between cycles 50 and 100: T1 struggles to
reach enough workers (its performance line is continuously below 100%), resulting in its
stimulus increasing to s1 = 1.0 ; T2 starts out with too many workers (line above 100%),
causing stimulus to reach s2 = 0.0 before finding the correct number of workers (line drops
to 100% performance). At step 10,000 (cycle 100), demand for T1 increases (from 24 to
66%), resulting in T1 being even further from the correct amount of work steps, but its 1.0
stimulus can rise no further. Demand for T2 decreases (from 76 to 34%), but its 0.0 stimu-
lus can fall no further. As neither task’s stimulus can change any further in the direction
determined by the changes in demand, no spike is observed in Fig. 2e-left. The same situ-
ation is observed on step 20,000 (cycle 200), 35,000 (cycle 350), and 45,000 (cycle 450).
Thus, if demand changes alter stimuli further in the direction they have been evolving thus
far, the curbing of stimuli to the range [0.0, 1.0] obscures the spike in MAX|Δs

t
|.

We hypothesize that positive spikes in MAX|Δs
t
| observed in Fig. 2-left can help

improve respecialization in decentralized systems using threshold reinforcement. As
spikes in MAX|Δs

t
| are present for most changes in demand, they can serve as a heuristic

to indicate system destabilization that warrants a reset of specialization thresholds. The
special case of stimuli going below minimum or above maximum measured values occurs
under continuous drops/rises in stimulus over the course of slow StimHab respecializa-
tion. To address this issue, un-curbed changes in s

t
 can be monitored (i.e., unrestricted to

the [0.0, 1.0] stimulus range), revealing any s
t
 increases above 1.0 and drops below 0.0.

In this work, however, we assume that agents cannot accurately calculate stimulus values
beyond the maximum and minimum values. Consequently, in our tests, we work with s

t

Swarm Intelligence

1 3

values restricted to [0.0, 1.0] in order to investigate whether such edge-case blindness to
demand changes hinders ΔMAX|Δs

t
|-based Auto-Reset approach to respecialization. As

resetting thresholds can allow agents to respecialize as effectively as they are able to spe-
cialize (Kazakova and Wu 2018), we hypothesize that with timely threshold resetting, con-
tinuous deficiencies in task allocation leading to the min/max stimulus edge case described
above will not be common. Additionally, if no spike is observed and threshold reset is not
triggered, agents simply fall back to standard StimHab functionality, modifying their task
habits through threshold reinforcement alone.

6.3 Experiments with max, min, and random changes in demands of five tasks

We test how respecialization using automated threshold resetting performs given minimal,
maximal, and random changes in the demands of 5 tasks. We compare Auto-Reset behav-
ior to the baseline represented by StimHab’s native method with No-Reset of thresholds,
as well as to Central-Reset, previously shown to outperform No-Reset (Kazakova and Wu
2018). We plot task performances over the entire simulation run, to show performance over
time in a system with dynamic demands. We also plot average task performance devia-
tions and average task-switching rates, to assess the expected adaptation behavior each
time demands change. The corresponding numerical data are made available in the Online
Resource. Our results show that the proposed Auto-Reset trigger causes timely threshold
resets, leading to improved readaptation, thus making it viable decentralized strategy for
improving dynamic task allocation under response threshold reinforcement strategies such
as StimHab.

6.3.1 Maximal changes in task demands

First, we test how the three approaches handle maximal changes in demands. For 5 tasks
and 100 agents, such a change corresponds to initial demands of 1% of agents on all tasks
except one, which has a demand of the remaining 96% of agents, switching to a new
demand set that swaps any of the 1% tasks with the 96% task. On the next demand period
(50 cycles later), this swap is repeated with any other 1% task and so on. Note that in order
to calculate per-task performances we need a nonzero demand for each task and we cannot
assign fewer than 1 agent to a task, which, given 100 agents, corresponds to a 1% demand.

Figure 3-left shows task performance percentages over all 10 demand periods for (a)
Auto-Reset, (b) Central-Reset, and (c) No-Reset. The horizontal axis indicates simula-
tion cycles; the vertical axis indicates task performance percentages. Lines near 100% are
best, indicating appropriate amount of work on that task over time; spikes below or above
100% indicate insufficient or excess work, respectively. Auto-Reset and Central-Reset
show nearly identical behavior, both quickly converging back to 100% after each change in
demands. No-Reset does significantly worse than the other two: it takes approximately half
of each demand period (25 cycles = 2500 agent decision steps) to find the right task allo-
cation, at which point it quickly converges to 100% performance. Given how long it takes
No-Reset to find appropriate task assignments, it can become unsuitable for systems where
demands change more frequently. Although the actual cycles needed to adapt are specific
to the tested threshold reinforcement affinity and aversion rates, we can clearly see that
task reallocation benefits from threshold resetting. Figure 3-right corroborates these find-
ings by plotting average performance deviations from 100% for each cycle of an adaptation
period. Each n-th cycle represents the average of the n-th cycles of all ten demand switches

 Swarm Intelligence

1 3

depicted in the graphs in the left column. The horizontal axis indicates simulation cycles;
the vertical axis indicates task performance deviations from 100%. Here, lines near 0% are
best, as we ideally want no deviation from 100% task performance. These average adapta-
tion period graphs showcase what behavior can be expected given such large changes in
system demands. We see that, when demands change on cycle 0 of an average adaptation
period, Auto-Reset quickly converges to near 0% deviations after just one cycle, followed
closely by Central-Reset, while No-Reset takes substantially longer to settle on the correct
agent allocations.

Figure 4 shows the task-switching rates of the three approaches for each cycle of an aver-
age 50-cycle adaptation period. The horizontal axis shows simulation cycles; the vertical
axis shows average task-switching rates. No-Reset incurs the most task switching, which
remains around 60% for 25 cycles, at which point it quickly drops to 0%. This indicates that
respecializing without first resetting the habit thresholds can be inefficient. Auto-Reset and
Central-Reset both result in virtually identical task-switching rates that quickly decrease to
10% by cycle 5 and reaching 0% by cycle 15, demonstrating that resetting allows for faster
adaptation to change and that Auto-Reset is able to match Central-Reset capabilities, while
allowing agents to make independent reset decisions without requiring a central signal.

Table 1 in the Online Resource shows the numerical data for average deviations and
task switching shown in Figs. 3-right and 4, respectively. Blue-to-white color gradient cor-
responds to average amount of task switching and corresponding confidence intervals, with
darker blue indicating more task switching and thus less stable task assignments. Red-to-
white color gradient corresponds to the average performance deviations and their confi-
dence intervals for each task over an average 50-cycle adaptation period, with darker red
indicating higher deviations and thus less ideal task allocation. Overall, lighter cells indi-
cate better dynamic adaptation. No-Reset leads to much higher task switching and lower
task performance deviations through the first 25 cycles. Average performance deviations
for all tasks under Auto-Reset and Central-Reset begin ranging from 15 to 37% for cycle
0 and drop to 1% by cycle 8, but Central-Reset does end up settling on a considerably
worse deviation of 10% for T2 by cycle 13, while Auto-Reset stabilizes at 0% deviation by
cycle 10. No-Reset, however, begins with deviations ranging from 256 to 519% on cycle
0 and does not reach 0% deviation until cycle 27. All three approaches are able to settle
on a stable task assignment, nearing 0% task switching per step, although Auto-Reset and
Central-Reset reach it by step 16, while No-Reset takes until step 28. Additionally, No-
Reset also starts out with more than double the average number of task switches on cycle
0 (60%, as compared to 27% under Auto-Reset and 27% under Central-Reset) and con-
tinuing with similarly high task switching until cycle 21, when if finally begins dropping.
Note the nonzero deviations present for T2 throughout Central-Reset. For this set of tests,
T2 requires only one agent over several of the demand periods. Misallocation of this one
agent over any one demand period results in 0% performance and 100% deviation for that
period, increasing the average deviation for T2 under Central-Reset, as seen in Table 1 of
the Online Resource.

6.3.2 Minimal changes in task demands

Next, we test how the three approaches handle minimal changes in demand. Recall that we
need nonzero demands on all tasks for performance calculations to be possible. Thus, the
minimal possible change in system demands for a setup with 5 tasks corresponds to one
fewer agents needed on one task, while one more agent is needed on another. Given 100

Swarm Intelligence

1 3

agents, such a change corresponds to initially equal 20% demands across all tasks, switch-
ing to a new demand set of 21% on any one task, 19% on another, and 20% on the remain-
ing tasks; for the next demand period (50 cycles later) demands switch back to the equally
distributed demand set, and so on, for the remainder of the 10 demand periods.

Figure 5-left shows task performance percentages over 10 demand periods for all three
approaches. This time, No-Reset remains near 100% performance, as it allows the majority

(a)

(b)

(c)

Fig. 3 Dynamic task allocation behavior of 100 agents, given maximal changes in the demands of 5 tasks
(T1–T5), with demands changing every 50 cycles, shown as (left) per-task performances throughout a sam-
ple run of 10 demand periods and (right) per-task deviations from 100% performance, averaged over these
10 demand periods for a Auto-Reset, b Central-Reset, and c No-Reset (standard StimHab). The correct con-
tinuous amount of work for a task is shown as color lines near 100% performance on the left and lines near
0% deviation on the right (Color figure online)

Fig. 4 Task-switching rates per cycle of an average demand period for Auto-Reset, Central-Reset, and No-
Reset, given maximal changes in the demands of 5 tasks. Lines near 0% are best. These rates show how task
assignments stabilize over the course of an average adaptation period. Approaches where thresholds are
reset prior to re-adaption adapt more efficiently, reaching near 0% task switching by cycle 15

 Swarm Intelligence

1 3

of the agents to continue working according to their initially developed specializations
(cycles 0–49) throughout the run. The last demand switch causes a spike in performance
Central-Reset task performances spike away from 100% every time demands change, as
agents receive a signal to reset their thresholds back to random values. When such dras-
tic readaptation is not needed, given a small environmental change, resetting can become
a destructive force. This makes a case against resetting agents’ existing specializations
every time demands change. Auto-Reset does not trigger any threshold resets given the
small changes, essentially falling back to basic StimHab functionality, closely matching
No-Reset performance. This suggests that Auto-Reset can be useful in limiting the destruc-
tive force of specialization resets to the cases where existing specializations are not longer
useful. Figure 5-right corroborates these findings by plotting average deviations away from
100% task performance for each cycle of an average 50-cycle adaptation period. Given the
forced resets, Central-Reset displays the highest performance deviations for the first 5 steps
of each demand period. Auto-Reset and No-Reset show identically low and nearly ideal
deviation averages throughout the 50 cycles.

Figure 6 shows the average task-switching rates for each cycle of an average 50-cycle
adaptation period for all three approaches. Central-Reset incurs the highest task-switch-
ing rate near the beginning of readaptation, given its system-wide resets and the subse-
quent periods of readaptation, but quickly drops from 20% task switching to near 0% over
the first 5 cycles. Auto-Reset and No-Reset both remain at near 0% task switching for the
entirety of the 50 cycles. Note, however, that none of the systems quite reach 0% average
task switching, as the small agent misallocations across tasks continue changing stimuli
and causing agents to keep adjusting their task choices throughout.

Table 2 in the Online Resource shows the numerical data for the average deviations
and the task-switching rates depicted in Figs. 5-right and 6, respectively. Recall that lighter
cells correspond to better task allocation: darker blue cells indicate higher amounts of
task switching, while darker red cells indicate higher task performance deviations. We see
that all three approaches result in low-performance deviations across all tasks. Neverthe-
less, Central-Reset does incur a large increase in task switching and performance devia-
tion averages for the first two cycles after demands change: task-switching rates for the
0-th cycle of an average adaptation period are 22% for Central-Reset, compared to 5% for
Auto-Reset and 7% for No-Reset; per-task performance deviations for the 0-th cycle reach
as high as 44% for Central-Reset, compared to 6% for Auto-Reset and 5% for No-Reset.
While this increase is short-lived, as Central-Reset quickly reaches task allocation similar
to that of the other two approaches, depending on the domain, even a temporary increase
in task switching and fluctuations in task performance may be costly, again suggesting that
forced specialization resets every time demands change may be too destructive for some
applications.

6.3.3 Random changes in task demands

Finally, we test how the three approaches handle random-sized changes in task demands.
Given that real-world domains are likely to have a variety of demand variations, this test
is more representative of real-world performance than the maximal and minimal change
experiments. For the setup of 5 tasks, we auto-generate a set of random task demands add-
ing up to 100% of the available agents for every step of each cycle, ensuring that every
agent is needed continuously. Per-task demands are shown in Table 1. Recall that percent-
ages can instead be equivalently seen as the corresponding explicit numbers of agents.

Swarm Intelligence

1 3

Figure 7-left shows task performance percentages the 10 demand periods for all three
systems. Auto-Reset task performances closely approximate Central-Reset, generally
quickly converging to the ideal 100% performance across all tasks. No-Reset task perfor-
mance lines are rarely near 100% after the initial specialization (cycle 0–50), showcasing
the agents struggling to respecialize. Figure 7-right corroborates these findings by plotting

(a)

(b)

(c)

Fig. 5 Dynamic task allocation behavior of 100 agents, given minimal changes in the demands of 5 tasks
(T1–T5), with demands changing every 50 cycles, shown as (left) per-task performances throughout a sam-
ple run of 10 demand periods and (right) per-task deviations from 100% performance, averaged over these
10 demand periods for a Auto-Reset, b Central-Reset, and c No-Reset (standard StimHab). The correct con-
tinuous amount of work for a task is shown as color lines near 100% performance on the left and lines near
0% deviation on the right (Color figure online)

Fig. 6 Task-switching rates per cycle of an average demand period for Auto-Reset, Central-Reset, and No-
Reset, given minimal changes in the demands of 5 tasks. Lines near 0% are better. These rates show how
task assignments stabilize over the course of an average adaptation period. Given almost no change after
initial demands, the approaches perform similarly, quickly reaching high specialization seen in the near 0%
task-switching rates and remaining there for the duration of the run

 Swarm Intelligence

1 3

average performance deviations away from 100% for each cycle of an average 50-cycle
adaptation period. Auto-Reset and Central-Reset averages match closely, both quickly
dropping to 0% deviations for all tasks, while No-Reset deviations remain at 20–40% for
the majority of the 50-cycle adaptation period. This supports our hypothesis that Auto-
Reset can improve StimHab-based task allocation under dynamic conditions, while
remaining fully decentralized (since it does not rely on a centralized signal to reset the way
Central-Reset does).

Figure 8 shows the average task-switching rates for each cycle of an average 50-cycle
adaptation period. As expected from the behavior observed in Fig. 7, average task-switch-
ing rates for Auto-Reset and Central-Reset are comparable, both starting at 20% and drop-
ping to near 0% by cycle 5, while No-Reset incurs vastly larger amounts of task switching,
starting near 40% and barely reaching 20% by the end of the 50 cycles. Given the many
benefits of stable task assignments (diminished interference, skill-acquisition, time effi-
ciency, etc.), we see that Auto-Reset and Central-Reset can offer an advantage.

Table 3 in the Online Resource shows the numerical data for average deviations and
task switching depicted in Figs. 7-right and 8, respectively. Auto-Reset closely approxi-
mates Central-Reset and both readapt well overall: average deviations for all tasks drop
below 5% by cycle 5. No-Reset struggles, both in terms of task performance deviations
and task-switching rate unable to match Auto-Rest and Central-Reset performance even by
the end of the 50-cycle adaptation period. Additionally, No-Reset confidence intervals are
significantly higher, indicating that tasks are experiencing large performance fluctuations
throughout, which can be extremely detrimental to overall system behavior.

6.4 Experiments with more agents, more tasks, and more demand switches

To further assess the reliability of the observed behaviors, we now repeat our last test with
random changes in task demands, this time with more agents, more tasks, and over a longer
period of time. We increase the number of agents from 100 to 1000, increase the number
of tasks from 5 to 10, and increase the duration of each test from 10 to 100 changes in
demands (i.e., from 500 to 5000 cycles or, equivalently, from 50,000 to 500,000 decision
steps). We present deviation and task-switching graphs for the Auto-Reset, Central-Reset,
and No-Reset approaches, showcasing their dynamic task allocation quality and stability
for an average adaptation period.

Table 1 Per-task demands for
each of the 10 demand periods
for “random changes” test

Demand period T1 (%) T2 (%) T3 (%) T4 (%) T5 (%)

#1 (cycles 0– 49) 6 20 32 18 24
#2 (cycles 50–149) 11 10 24 30 25
#3 (cycles 100–149) 15 41 7 9 28
#4 (cycles 150–199) 26 13 27 6 28
#5 (cycles 200–249) 3 34 19 35 9
#6 (cycles 250–299) 35 18 15 6 26
#7 (cycles 300–349) 31 5 13 3 48
#8 (cycles 350–399) 54 14 9 18 5
#9 (cycles 400–449) 11 19 2 51 17
#10 (cycles 450–499) 30 22 25 14 9

Swarm Intelligence

1 3

In Fig. 9, we provide average performance deviations and the corresponding 95%
confidence intervals (C.I.) per task for each of the three approaches, showcasing both
the quality and robustness of their dynamic task allocation. Note here that, as we have
augmented the graph to depict C.I. for each task’s performance deviation, where all C.I.
overlap, a dark green shaded area can be seen. Note also that this time we omit graph-
ing per-task performances across all cycles, as it is not feasible to print 100 changes

(a)

(b)

(c)

Fig. 7 Dynamic task allocation behavior of 100 agents, given random changes in the demands of 5 tasks
(T1–T5), with demands changing every 50 cycles, shown as (left) per-task performances throughout a sam-
ple run of 10 demand periods and (right) per-task deviations from 100% performance, averaged over these
10 demand periods for a Auto-Reset, b Central-Reset, and c No-Reset (standard StimHab). the correct con-
tinuous amount of work for a task is shown as color lines near 100% performance on the left and lines near
0% deviation on the right (Color figure online)

Fig. 8 Task-switching rates per cycle of an average demand period for Auto-Reset, Central-Reset, and No-
Reset, given random changes in the demands of 5 tasks. Lines near 0% are better. The downward slope of
all lines shows that task assignments stabilize during average adaptation period for all three approaches, but
approaches where thresholds are reset prior to re-adaption reach significantly more stable task assignments
(below 10% task switching) and do so significantly faster (approximately by cycle 5)

 Swarm Intelligence

1 3

in demands intelligibly (as compared to the 10 changes in the earlier tests). The aver-
age deviation graphs confirm earlier observations, with Auto-Reset closely matching
Central-Reset behavior: in both cases, deviations quickly drop to 10% across all tasks,
reaching near 0% by cycle 15 of an average adaptation period; C.I. intervals are identi-
cal for both systems, ultimately settling around ± 1% , indicating extremely dependable

Fig. 9 Task performance devia-
tions for an average adaptation
period. Color lines are average
deviations and shaded regions
are 95%C.I. for 10 tasks T1–T10,
obtained with 1000 agents and
demands changing every 50
cycles, 100 times per test. Lines
near 0% and narrower shaded
regions represent more accurate
and reliable task allocation. Dark
green areas where all C.I. overlap
indicate similar performance
across tasks (Color figure online)

(a)

(b)

(c)

Fig. 10 Task-switching rates per cycle of an average demand period for Auto-Reset, Central-Reset, and No-
Reset. Averages (lines) and C.I. (shaded regions) are obtained with 1000 agents, 10 tasks, and demands
changing every 50 cycles, 100 times per test. Lines near 0% and narrower shaded regions represent more
stable and efficient task allocation (Color figure online)

Swarm Intelligence

1 3

behavior across tasks and demand changes. Both Auto-Reset and Central-Reset dras-
tically outperform the No-Reset approach, under which task deviations remain above
50% for the first 25 cycles of adaptation, and then slowly fall to near 5%. Furthermore,
we see that C.I. regions under No-Reset are much wider for all tasks, overlapping and
covering most of the graph, showcasing significantly less dependable behavior for each
task.

In Fig. 10, we provide the task-switching rates for all three approaches, along with
the corresponding 95% C.I. We again see identical behavior for Auto-Reset and Central-
Reset, with task switching starting at 11% at the beginning of an average adaptation
period and dropping to 7% toward the end. While these rates are higher than the ideal
0%, they far outperform No-Reset, which incurs 40–50% task switching at the beginning
of adaptation and slowly decreases to 16% by the end of the 50-cycle adaptation period.
Furthermore, both Auto-Reset and Central-Reset demonstrate highly reliably behavior,
seen in the narrow C.I. that reach ± 5% , while No-Reset C.I. remain around ± 20% for
over 30 cycles, later narrowing to around ± 10% . Overall, No-Reset is unable to match
the stable and reliable task allocations achieved by the approaches employing threshold
resetting before readaptation.

These results showcase the extensibility of the automated threshold resetting approach
to larger decentralized teams of agents and to domains with more tasks. The earlier tests
with fewer agents, fewer tasks, and fewer task switches, discussed in Sect. 6.3.3 produced
comparable results. Note, however, that the presented tests are only assessing behavior in a
general case of random demand changes across tasks. Special edge-case behaviors, such as
when task demands change very slowly, adding up to larger changes over time, would need
to be considered separately and may require additional safeguards or stability checks (live-
locks may occur, with agents cycling through a subset of tasks to continuously compensate
for outdated specializations).

7 Noisy stimuli: a sensitivity analysis

As automated threshold resetting relies on detecting stimulus changes, noise in sensing
these stimuli can affect the agents’ ability to reset as needed. In this section we present
Auto-Reset experiments with varying levels of Gaussian noise on the stimuli that are
being independently sensed by the agents. We first compare per-task deviations and task-
switching rates for Auto-Reset given no noise versus three-level noise. We then incorporate
the expected noise range into the resetting threshold formula and repeat the experiment.
Results show that Auto-Reset based on observing changes in stimuli can be robust given
small levels of noise if the expected noise range is known and accounted for in the thresh-
old reset-triggering value.

For our experiments, we apply Gaussian perturbations to the stimuli sensed by the
agents. Each agent senses the stimulus for each task as the actual stimulus value plus an
error equal to a percentage of that value. This error follows a Gaussian distribution, with
a mean � = 0.0 and one of three standard deviations (st.dev.): �=0.005 , �=0.01 , and
�=0.02 , representing ranges of ± 1.5% , ± 3% , and ± 6% error, respectively. Thus, 99.7%
of the sensed stimuli fall within the range [s

t
−(s

t
∗ 3 ∗ �) , s

t
+(s

t
∗ 3 ∗ �)] . For this test we

return to the earlier setup of 100 agents, 5 tasks, and 10 demand changes of random size,
identical to Sect. 6.3.3.

 Swarm Intelligence

1 3

We first assess the Auto-Reset behavior given the resetting condition defined in
Sect. 5.2 under the four noise levels. Resulting task performances and deviations are shown
in Fig. 11, in the left and right columns, respectively. We see that ± 1.5% noise performs
comparably to the noise-free setup, but higher noise (± 3% and ± 6%) leads to an increase
in deviations. Perhaps curiously, we see worse performance for ± 3% than for ± 6% ; the
cause is more resetting being triggered for ± 6% errors, causing agents to specialize less,
but respond more to stimuli. This is corroborated by the task-switching rates in Fig. 12:
± 1.5% leads to minimal task switching, similar to no noise, while higher noise leads to
higher task switching. While low average performance deviations indicate that task allo-
cation still works given these errors, recall that in our implementation there is no cost to
switching tasks; in a system where task switching is not free, the higher task switching will
negatively affect performance.

We hypothesize that if the range of the expected stimulus noise for a given system is
known, it can be incorporated into the threshold resetting trigger we defined in Sect. 5.2 to

(a)

(b)

(c)

(d)

Fig. 11 Auto-Reset per-task performance given reset trigger that ignores the error. Task performance nega-
tively affected by errors in stimulus estimation (see fluctuations away from 100% in the left column). Look-
ing at average performance deviations (right column), we see that higher errors appear to lead to higher
performance deviations

Swarm Intelligence

1 3

allow agents to ignore small error-based fluctuations, potentially leading to improved auto-
resetting capabilities. Considering that two consecutively sensed task stimuli can now fall 6
error standard deviations apart (i.e., 3� in both the positive and the negative directions), we
propose that, given some number of steps per cycle and the number of tasks, agents auto-
matically reset their specialization thresholds �

a,t to uniformly random values when:

While increasing the amount of change needed for agents to reset their thresholds can
result in missed resetting given small changes, in the average case we expect improved
performance.

Figure 13 shows the effect of this updated resetting trigger on Auto-Reset given the four
error rates. As expected, we see that twice a needed reset was missed at cycle 300, under
± 1.5% and ± 6% errors, increasing average deviations for T2. In all other cases, resets now
happen when demands change, but the performance at ± 6% error suffers anyway; the cause
is that agents do not reset excessively as before, beginning to specialize instead, but the
higher stimulus errors confuse the agents’ threshold reinforcement path to specializations.
Figure 14 showcases the lower resetting and higher specialization for all noise levels, with
task switching quickly stabilizing to near 0%. While deviations are lower under the original
resetting trigger, if task switching is not free, the lower task switching under the updated
resetting trigger will ultimately benefit performance. These results support the viability of
improving dynamic task allocation via appropriately timed automated threshold resetting.

8 Conclusions and future directions

In this work, we investigated whether observing changes in stimuli can serve as an indication
of changes in system needs that require agents to respecialize. We tested whether agents can
independently detect when their specializations have become outdated and reset their per-task
specialization thresholds back to uniformly random values, in order to respecialize without
fighting pre-existing conditioning, thus improving adaptability in dynamic environments. We
proposed a new automated trigger value for resetting agents’ thresholds based on the mini-
mal possible change in task demands and tested the resulting adaptability behavior on a set of
ongoing tasks representing patrollable areas, with patrolling requirements changing over time.
Results show that augmenting standard StimHab (defined in (Theraulaz et al. 1998) and pre-
sented here as No-Reset) with automated threshold resetting (presented here as Auto-Reset)

(ΔMAX|Δs
t
| + 6 ∗ �) ≥ (number of tasks)∕(steps in cycle)

Fig. 12 Auto-Reset task-switching rates given reset trigger that ignores the error. Task-switching rates
increase very quickly given small increases in the task stimulus estimation errors. Recall that there is no
explicit cost to task switching in the current systems; otherwise, these increases in task-switching rates
would have also resulted in significantly higher fluctuations in task performance

 Swarm Intelligence

1 3

(a)

(b)

(c)

(d)

Fig. 13 Auto-Reset per-task performances given a reset trigger that accounts for error. While task assign-
ment stability is negatively affected by errors in stimulus estimation (see fluctuations away from 100% in
the left column), accounting for the error range in the Auto-Reset threshold still results in low average devi-
ations across all tasks

Fig. 14 Auto-Reset task-switching rates given a reset trigger that accounts for error. Accounting for the
expected error range in the agents’ task stimulus estimation when establishing the value of the Auto-
Reset threshold ΔMAX|Δs

t
 leads to lower task-switching rates at all tested error levels, showing that this

approach is capable of task allocation stability comparable to that of the error-free setup

Swarm Intelligence

1 3

outperforms standard StimHab, while matching and in some cases outperforming StimHab
augmented with a central resetting signal sent to the agents when demands change (presented
here as Central-Reset), which has been previously shown to improve respecialization under
response threshold reinforcement (Kazakova and Wu 2018).

The proposed Auto-Reset method outperformed Central-Reset and No-Reset by leveraging
the strengths of the latter two approaches under a variety of changes in task demands. No-
Reset achieved accurate and stable task assignments only under small changes in demands, as
initially developed remained generally well suited for the subsequent sets of similar demands.
Given larger changes, No-Reset struggled to respecialize, as agents had to re-adapt while
fighting pre-existing conditioning. Central-Reset drastically improved upon No-Reset under
most conditions, as pre-existing conditioning was erased by the resetting of the habit thresh-
olds. Central-Reset did, however, produce overly destructive behavior when respecialization
resetting was not needed given only small changes in demands. Auto-Reset can forego reset-
ting existing specializations if demand changes are minimal, thus approximating No-Reset
behavior in such cases. Given larger changes, Auto-Reset successfully triggered decentral-
ized threshold resetting, thus producing a behavior that is more sensitive to the actual system
needs, as opposed to resetting never (as under the No-Reset approach) or always (as under
the Central-Reset approach). Thus, Auto-Reset task allocation: (1) closely approximated No-
Reset’s less destructive task assignment given small changes, (2) matched Central-Reset’s effi-
cient respecialization in cases of larger changes, (3) maintained low task-switching rates in all
cases, (4) all while eliminating the need for centralized resetting triggers.

The proposed approach seamlessly scaled to more tasks and agents, producing reliable
adaptation. Noise sensitivity analysis indicated that some levels of noise, especially if known,
can be handled without significant disruption to the behavior. Nevertheless, there are edge
cases not being considered, such as when minimal demand changes slowly, leading to larger
shifts over time: as Auto-Reset only considers immediate changes, if that change is undetected
by the trigger threshold, repeated changes will also go undetected. A secondary safeguard may
be needed to detect such outdated specializations (e.g., if ideal task allocation implies remain-
ing on one task, average time on current task could be used in conjunction with time since
the last reset: if it has been a while since the agent reset, but the time on current task is quite
short, we can assume that there is some continuous task switching happening, characteristic of
poor task allocation). Additionally, for a more in-depth analysis, further investigation should
be conducted into environments with even higher numbers of tasks, with continuously chang-
ing demands, with changing agent number and capabilities, with too few agents to keep all
tasks at 100% performance, or where agents must maintain specializations on more than one
task simultaneously (e.g., consider alternating sets of tasks, such as when some factory tasks
are needed during the day and others are needed during the night).

Acknowledgements This research was supported in part by ONR Grant N000140911043 and NSF Grant
IIS1816777.

References

Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation
algorithms in multi-agent systems. In Proceedings of the first international joint conference on Autono-
mous agents and multiagent systems: Part 3 (pp. 1090–1097). ACM.

Agassounon, W., Martinoli, A., & Goodman, R. (2001). A scalable, distributed algorithm for allocating
workers in embedded systems. In 2001 IEEE international conference on systems, man, and cybernet-
ics (Vol. 5, pp. 3367–3373).

 Swarm Intelligence

1 3

Agmon, N., Urieli, D., & Stone, P. (2011). Multiagent patrol generalized to complex environmental condi-
tions. In Proceedings of the twenty-fifth conference on artificial intelligence (AAAI’11).

Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V., et al. (2004). Recent
advances on multi-agent patrolling. In A. L. C. Bazzan & S. Labidi (Eds.), Advances in artificial intel-
ligence: SBIA 2004 (pp. 474–483). Berlin: Springer.

Berman, S., Halasz, A., Kumar, V., & Pratt, S. (2007). Bio-inspired group behaviors for the deployment of
a swarm of robots to multiple destinations. In Proceedings 2007 IEEE international conference on
robotics and automation (pp. 2318–2323).

Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to
sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-agent Systems,
28(1), 101–125.

Campbell, A., & Wu, A. S. (2011). Multi-agent role allocation: Issues, approaches, and multiple perspec-
tives. Autonomous Agents and Multi-agent Systems, 22(2), 317–355.

Campos, M., Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (2000). Dynamic scheduling and division of
labor in social insects. Adaptive Behavior, 8(2), 83–95.

Chu, H. N., Glad, A., Simonin, O., Sempe, F., Drogoul, A., & Charpillet, F. (2007). Swarm approaches for
the patrolling problem, information propagation vs. pheromone evaporation. In 19th IEEE interna-
tional conference on tools with artificial intelligence, 2007. ICTAI 2007 (Vol. 1, pp. 442–449). IEEE.

Cicirello, V. A., & Smith, S. F. (2004). Wasp-like agents for distributed factory coordination. Autonomous
Agents and Multi-Agent Systems, 8(3), 237–266.

de Lope, J., Maravall, D., & Quiñonez, Y. (2012). Decentralized multi-tasks distribution in heterogeneous
robot teams by means of ant colony optimization and learning automata. In International conference
on hybrid artificial intelligence systems (pp. 103–114). Springer.

de Lope, J., Maravall, D., & Quiñonez, Y. (2015). Self-organizing techniques to improve the decentralized
multi-task distribution in multi-robot systems. Neurocomputing, 163, 47–55.

Dias, M. B. (2004). Traderbots: A new paradigm for robust and efficient multirobot coordination in dynamic
environments (p. 153). Robotics Institute: Pittsburgh.

Dos Santos, D. S., & Bazzan, A. L. (2012). Distributed clustering for group formation and task allocation in
multiagent systems: A swarm intelligence approach. Applied Soft Computing, 12(8), 2123–2131.

Dos Santos, F., & Bazzan, A. L. (2009). An ant based algorithm for task allocation in large-scale and
dynamic multiagent scenarios. In Proceedings of the 11th annual conference on genetic and evolution-
ary computation (pp. 73–80). ACM.

Dos Santos, F., & Bazzan, A. L. (2011). Towards efficient multiagent task allocation in the robocup rescue:
A biologically-inspired approach. Autonomous Agents and Multi-agent Systems, 22(3), 465–486.

Ducatelle, F., Förster, A., Di Caro, G. A., & Gambardella, L. M. (2009). New task allocation methods for
robotic swarms. In 9th IEEE/RAS conference on autonomous robot systems and competitions.

Farinelli, A., Iocchi, L., Nardi, D., & Ziparo, V. A. (2006). Assignment of dynamically perceived tasks by
token passing in multirobot systems. Proceedings of the IEEE, 94(7), 1271–1288.

Ferrante, E., Turgut, A. E., Duéñez-Guzmán, E., Dorigo, M., & Wenseleers, T. (2015). Evolution of self-
organized task specialization in robot swarms. PLoS Computational Biology, 11(8), e1004273.

Ferreira, P., & Bazzan, A. L. (2006). Swarm-gap: A swarm based approximation algorithm for e-gap. In
First international workshop on agent technology for disaster management (pp. 49–55).

Ferreira, P. R., Boffo, F. S., & Bazzan, A. L. (2007). Using swarm-gap for distributed task allocation in
complex scenarios. In International conference on autonomous agents and multiagent systems (pp.
107–121). Springer.

Ferreira, P. R., Dos Santos, F., Bazzan, A. L., Epstein, D., & Waskow, S. J. (2010). Robocup rescue as
multiagent task allocation among teams: experiments with task interdependencies. Autonomous Agents
and Multi-agent Systems, 20(3), 421–443.

Frison, M., Tran, N. L., Baiboun, N., Brutschy, A., Pini, G., Roli, A., Dorigo, M., & Birattari, M. (2010).
Self-organized task partitioning in a swarm of robots. In International conference on swarm intelli-
gence (pp. 287–298). Springer.

Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm
Intelligence, 1(1), 3–31.

Ghizzioli, R., Nouyan, S., Birattari, M., & Dorigo, M. (2005). An ant-based algorithm for the heterogeneous
dynamic task allocation problem. Technical Report, TR/IRIDIA/2005-005.

Golfarelli, M., Maio, D., & Rizzi, S. (1997). Multi-agent path planning based on task-swap negotiation. In
Proceedings of the 16th UK planning and scheduling SIG workshop (p. 69).

Halász, A., Hsieh, M. A., Berman, S., & Kumar, V. (2007). Dynamic redistribution of a swarm of robots
among multiple sites. In IEEE/RSJ international conference on intelligent robots and systems, 2007.
IROS 2007 (pp. 2320–2325). IEEE.

Swarm Intelligence

1 3

Hsieh, M. A., Halász, Á., Berman, S., & Kumar, V. (2008). Biologically inspired redistribution of a
swarm of robots among multiple sites. Swarm Intelligence, 2(2–4), 121–141.

Hsieh, M. A., Halász, Á., Cubuk, E. D., Schoenholz, S., & Martinoli, A. (2009). Specialization as an
optimal strategy under varying external conditions. In IEEE international conference on robotics
and automation, ICRA’09 (pp. 1941–1946).

Jones, C., & Mataric, M. (2003). Adaptive division of labor in large-scale minimalist multi-robot sys-
tems. In 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 (IROS
2003). Proceedings (Vol. 2, pp. 1969–1974). IEEE.

Kalra, N., & Martinoli, A. (2006). Comparative study of market-based and threshold-based task alloca-
tion. In Distributed autonomous robotic systems 7 (pp. 91–101). Springer.

Kanakia, A., Touri, B., & Correll, N. (2016). Modeling multi-robot task allocation with limited informa-
tion as global game. Swarm Intelligence, 10(2), 147–160.

Kazakova, V. A., & Wu, A. S. (2018). Specialization vs. re-specialization: Effects of Hebbian learning in
a dynamic environment. In Florida artificial intelligence research society conference FLAIRS-31.

Kira, Z., & Arkin, R. C. (2004). Forgetting bad behavior: Memory for case-based navigation. In 2004
IEEE/RSJ international conference on intelligent robots and systems (IROS). Proceedings (Vol. 4,
pp. 3145–3152).

Kittithreerapronchai, O., & Anderson, C. (2003). Do ants paint trucks better than chickens? Markets ver-
sus response thresholds for distributed dynamic scheduling. In The 2003 congress on evolutionary
computation, 2003. CEC’03 (Vol. 2, pp. 1431–1439). IEEE.

Krieger, M. J., & Billeter, J. B. (2000). The call of duty: Self-organised task allocation in a population of
up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84.

Labella, T. H., Dorigo, M., & Deneubourg, J. L. (2006). Division of labor in a group of robots inspired
by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(1),
4–25.

Lee, W., & Kim, D. (2016). Local interaction of agents for division of labor in multi-agent systems. In
International conference on simulation of adaptive behavior (pp. 46–54). Springer.

Lee, W., & Kim, D. (2017). History-based response threshold model for division of labor in multi-agent
systems. Sensors, 17(6), 1232.

Levinthal, D. A., & March, J. G. (1993). The myopia of learning. Strategic Management Journal,
14(S2), 95–112.

Li, L., Martinoli, A., & Abu-Mostafa, Y. S. (2002). Emergent specialization in swarm systems. In Inter-
national conference on intelligent data engineering and automated learning (pp. 261–266). Springer.

Liu, W., Winfield, A. F., Sa, J., Chen, J., & Dou, L. (2007). Towards energy optimization: Emergent task
allocation in a swarm of foraging robots. Adaptive Behavior, 15(3), 289–305.

Ma, H., Li, J., Kumar, T., & Koenig, S. (2017). Lifelong multi-agent path finding for online pickup and
delivery tasks. In Proceedings of the 16th conference on autonomous agents and multiagent sys-
tems, international foundation for autonomous agents and multiagent systems (pp. 837–845).

Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for dynamic optimiza-
tion: Algorithms and applications. Swarm and Evolutionary Computation, 33, 1–17.

McIntire, M., Nunes, E., & Gini, M. (2016). Iterated multi-robot auctions for precedence-constrained task
scheduling. In Proceedings of the 2016 international conference on autonomous agents & multiagent
systems, international foundation for autonomous agents and multiagent systems (pp. 1078–1086).

Murciano, A., Millán, J. D. R., & Zamora, J. (1997). Specialization in multi-agent systems through
learning. Biological Cybernetics, 76(5), 375–382.

Nitschke, G., Schut, M., & Eiben, A. (2008). Emergent specialization in biologically inspired collective
behavior systems. In Intelligent complex adaptive systems (pp. 215–253). IGI Global.

Nouyan, S. (2002). Agent-based approach to dynamic task allocation. In International workshop on ant
algorithms (pp. 28–39). Springer.

Nouyan, S., Ghizzioli, R., Birattari, M., & Dorigo, M. (2005). An insect-based algorithm for the
dynamic task allocation problem. KI, 19(4), 25–31.

Nunes, E., & Gini, M. L. (2015). Multi-robot auctions for allocation of tasks with temporal constraints.
In AAAI (pp. 2110–2116).

Nunes, E., McIntire, M., & Gini, M. (2016). Decentralized allocation of tasks with temporal and prec-
edence constraints to a team of robots. In IEEE international conference on simulation, modeling,
and programming for autonomous robots (SIMPAR) (pp. 197–202). IEEE.

Ono, N., & Fukumoto, K. (1996). Multi-agent reinforcement learning: A modular approach. In Second
international conference on multiagent systems (pp. 252–258).

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011). Task partitioning in
swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.

 Swarm Intelligence

1 3

Portugal, D., & Rocha, R. (2011). A survey on multi-robot patrolling algorithms. In Doctoral conference on
computing, electrical and industrial systems (pp. 139–146). Springer.

Price, R., & Tiňo, P. (2004). Evaluation of adaptive nature inspired task allocation against alternate decen-
tralised multiagent strategies. In International conference on parallel problem solving from nature (pp.
982–990). Springer.

Quiñonez, Y., Maravall, D., & de Lope, J. (2011). Stochastic learning automata for self-coordination in
heterogeneous multi-tasks selection in multi-robot systems. In Mexican international conference on
artificial intelligence (pp. 443–453). Springer.

Román, J. A, Rodríguez, S., & Corchado, J. M. (2014). Improving intelligent systems: Specialization. In
International conference on practical applications of agents and multi-agent systems (pp. 378–385).
Springer.

Schwarzrock, J., Zacarias, I., Bazzan, A. L., de Araujo Fernandes, R. Q., Moreira, L. H., & de Freitas, E. P.
(2018). Solving task allocation problem in multi unmanned aerial vehicles systems using swarm intel-
ligence. Engineering Applications of Artificial Intelligence, 72, 10–20.

Tavares, A. R., Azpúrua, H., & Chaimowicz, L. (2014). Evolving swarm intelligence for task allocation in
a real time strategy game. In 2014 Brazilian symposium on computer games and digital entertainment
(SBGAMES) (pp. 99–108). IEEE.

Tavares, A. R., Zuin, G. L., Azp, H., Chaimowicz, L., et al. (2017). Combining genetic algorithm and swarm
intelligence for task allocation in a real time strategy game. SBC Journal on Interactive Systems, 8(1),
4–19.

Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5(2), 97–116. https ://doi.
org/10.1162/10645 46995 68700 .

Theraulaz, G., Bonabeau, E., & Deneubourg, J. L. (1998). Response threshold reinforcement and division of
labour in insect societies. Proceedings of the Royal Society of London B, 265, 327–332.

van Lon, R. R., & Holvoet, T. (2017). When do agents outperform centralized algorithms? Autonomous
Agents and Multi-agent Systems, 31(6), 1578–1609.

Villacorta, P. J., Pelta, D. A., & Lamata, M. T. (2013). Forgetting as a way to avoid deception in a repeated
imitation game. Autonomous Agents and Multi-agent Systems, 27(3), 329–354.

Wawerla, J., Vaughan, R. T. (2010). A fast and frugal method for team-task allocation in a multi-robot trans-
portation system. In ICRA (pp. 1432–1437).

Westhus, C., Kleineidam, C., Roces, F., & Weidenmller, A. (2013). Behavioural plasticity in the fanning
response of bumblebee workers: Impact of experience and rate of temperature change. Animal Behav-
iour, 85(1), 27–34.

Wu, A. S., & Kazakova, V. A. (2017). Effects of task consideration order on decentralized task allocation
using time-variant response thresholds. In Florida artificial intelligence research society conference
FLAIRS-30 (pp. 466–471).

Zheng, X., & Koenig, S. (2011). Generalized reaction functions for solving complex-task allocation prob-
lems. In IJCAI proceedings-international joint conference on artificial intelligence (Vol. 22, p. 478).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1162/106454699568700
https://doi.org/10.1162/106454699568700

	Respecializing swarms by forgetting reinforced thresholds
	Abstract
	1 Introduction
	2 Related work
	3 Example domain: deployment for multi-area patrolling
	4 StimHab threshold reinforcement model
	4.1 Global task stimuli
	4.2 Individual task habit thresholds
	4.3 Action selection

	5 Triggering automated threshold resetting
	5.1 Monitoring stimulus changes to understand environmental changes
	5.2 Analyzing stimulus destabilization

	6 Experiments
	6.1 Baselines and metrics
	6.2 How changes in demands affect stimuli
	6.3 Experiments with max, min, and random changes in demands of five tasks
	6.3.1 Maximal changes in task demands
	6.3.2 Minimal changes in task demands
	6.3.3 Random changes in task demands

	6.4 Experiments with more agents, more tasks, and more demand switches

	7 Noisy stimuli: a sensitivity analysis
	8 Conclusions and future directions
	Acknowledgements
	References

