
A Genetic Algorithm Approach to Predictive Modeling of Medicare Payments to
Physical Therapists

Annie S. Wu
Computer Science

University of Central Florida
Orlando, FL 32816-2362

aswu@cs.ucf.edu

Xinliang Liu
Health Management and Informatics

University of Central Florida
Orlando, FL 32816-2205
Xinliang.Liu@ucf.edu

Reamonn Norat
Computer Science

University of Central Florida
Orlando, FL 32816-2362

ReaNorat@Knights.ucf.edu

Abstract

We examine the ability of a genetic algorithm to learn a pre-
dictive model that can estimate the likelihood that a physi-
cal therapist will receive annual Medicare payments above or
below the industry median based on the physical therapist’s
practice parameters. We compare the performance of a canon-
ical genetic algorithm and a self adaptive genetic algorithm
with the performance of traditional logistic regression. Re-
sults show that both genetic algorithm approaches are com-
petitive with logistic regression with the canonical genetic al-
gorithm consistently outperforming logistic regression.

Introduction
In this work, we investigate the ability of a genetic algo-
rithm (GA) (Holland 1975; Goldberg 1989) to learn a pre-
dictive model on when the total Medicare standardized pay-
ment amount received by a physical therapist (PT) will be
above or below the industry median. Given a set of example
data points with the correct classification, we use a GA to
learn a model that can be used to predict the classification of
future data points.

The ability to collect and analyze data at a large scale has
transformed many industries including the health care in-
dustry. In the health care industry, this ability has made pos-
sible system-wide analyses across populations of providers
that were previously impossible or intractable. The Cen-
ters for Medicare and Medicaid Services (CMS) has re-
leased information on services and procedures provided
to Medicare beneficiaries by physicians and other health
care professionals including PTs, with the goal of mak-
ing the US healthcare system more transparent, affordable,
and accountable (Brennan, Conway, and Tavenner 2014;
mis ). With the current widespread health care workforce
shortage, it is of great interest to examine what factors may
affect the service volume and payments of various health
care providers.

Physical therapy services that strive to improve strength
and mobility, restore and maintain physical function, and en-
hance health, well-being, and quality of life are covered by
the Medicare Fee-for-Service (FFS) program under Part B.
Few studies have examined the PT workforce participating

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in Medicare Part B. Although there is work that explores the
factors associated with Medicare service volume and stan-
dardized Medicare payment (Liu et al. 2018), it remains un-
clear what factors affect a PT’s likelihood of receiving an
annual Medicare payment that is above the industry median.

We are interested in identifying and understanding corre-
lations between PT practice parameters and expected costs
billed to Medicare. Specifically, we would like to know
if practice parameters may be used to classify whether
the annual Medicare payments received by a PT will be
above or below the industry median. The traditional ana-
lytical approach to such classification problems is logistic
regression (LR), but evidence suggests that machine learn-
ing (ML) algorithms may also be effective approaches for
these problems (Chaurasia and Pal 2014; Ciresan et al. 2012;
de Vasconcelos et al. 2001; Ning et al. 2005; Thornblade,
Flum, and Flaxman 2018; Waibel et al. 1989), potentially
offering more precise solutions than traditional regression-
based methods (Thornblade, Flum, and Flaxman 2018). GAs
are a type of ML algorithm that have been successfully ap-
plied to classification problems, both alone and in conjunc-
tion with other ML approaches.

Multiple examples of GAs for classification exist
(Fernández et al. 2010). These methods commonly re-
volve around the learning of a set of rules with which to
make the classification. This rule-set commonly follows an
IF-THEN or IF-THEN-ELSE paradigm. GA classification
methods have been used on classification problems includ-
ing the detection of breast cancer (Fidelis, Lopes, and Freitas
2000), multicriteria inventory classification (Guvenir and
Erel 1998), as well as multiple common classification test
sets (Dehuri et al. 2008; Fernández et al. 2010). Genetic pro-
gramming, an evolutionary algorithm related to the GA, has
been successfully used for the prediction of natural gas con-
sumption of a chemical processing company (Kovačič and
Dolenc 2016).

GAs have also been used to select the relevant features
with which other ML methods build a predictive model. This
approach has been used on a variety of classification prob-
lems. ML methods with which GAs have been combined
include: random forests for outcome prediction on patients
with oesophageal cancer (Paul et al. 2017), support vector
machines (SVM) for bankruptcy prediction (Min, Lee, and
Han 2006), neural networks for surgery outcome prediction



on patients with non-small cell lung carcinoma (Jefferson et
al. 1997), linear discriminant analysis for prediction of firms
that default on tax payments (Höglund 2017), and logistic
regression (Zamuda et al. 2017; Zhang et al. 2018) for pre-
diction of the progress of Alzheimer’s disease (Vandewater
et al. 2015). In these systems, GAs are sometimes used for
other uses beyond feature selection; in the SVM example
(Min, Lee, and Han 2006), the GA also optimizes the SVM
parameters in addition to feature selection. In each of these
examples, GAs were found to be an effective tool for feature
selection.

We begin by describing the problem and how it is rep-
resented in the GA. We give a description of the two GA
methods that we use, and an overview of the LR analysis.
Finally, we compare the performance of all three methods
on both the training and validation data sets.

Problem description
The problem that we study is a predictive modeling problem.
Given a set of data points and a classification for each data
point, we apply a GA to learn how the characteristics (or
independent variables) of each data point are correlated with
the classification (or dependent variable) of that data point.
We represent this problem in the GA as a linear weighted
sum. The goal of the GA is to evolve appropriate weights or
coefficients that produce a correct classification via the sum.

Our data sources are the 2014 Medicare Provider Uti-
lization and Payment Data: Physician and Other Supplier
Public Use File (PUF) and the 2015-2016 Area Health Re-
sources File (AHRF). Specifically, we identify 40,662 PTs
from the 50 states and the District of Columbia who submit-
ted Medicare Part B non-institutional claims in 2014 using
the PUF and link the provider-level variables with county-
level variables that reflect the characteristics of the health
care market in which each of the PTs practice. Each of the
40,662 data points specifies the data for one PT provider,
Pr : r ∈ {1, 2, ..., 40662}, which consists of:
• 25 independent variables, vr,i : i ∈ {0, 1, ..., 24}, each of

which describes a practice parameter for Pr. Table 1 lists
the 25 independent variables.

• one dependent variable,Br, which gives the full Medicare
standardized payment amount received by Pr in 2014.

Let Bmedian be the median Medicare standardized payment
amounts over all PT in 2014. Given vr,i : i ∈ {0, 1, ..., 24}
for any Pr, we would like to be able to predict if Br will be
above or below Bmedian.

The GA addresses this problem as a linear weighted sum

Qr =

24∑
i=0

civr,i (1)

where vr,i are the independent variables for one data point
(Pr) and ci are a set of coefficients evolved by the GA.
The goal of the GA is to evolve a set of coefficients ci :
i ∈ {0, 1, ..., 24}, such that the following is true for all data
points, Pr.

Qr =

{
> 0 if Br > Bmedian
≤ 0 if Br ≤ Bmedian (2)

i Independent Variable
0 Female gender
1 Doctor of Physical Therapy degree
2 Number of HCPCS/CPT codes billed
3 Number of Medicare beneficiaries served
4 Charge to Medicare allowed amount ratio
5 Avg Medicare standardized payment amt per benef
6 Proportion of physical agent
7 Percent of therapeutic procedures
8 Proxy for number of new patients
9 Average age of beneficiaries
10 Average Hierarchical Condition Category (HCC)

risk score of beneficiaries
11 Practice location: Small metro area
12 Practice location: Mid-sized metro area
13 Practice location: Non-metro area or missing
14 Standardized Medicare payment per beneficiary
15 Primary care physicians per 10,000 pop, county level
16 Number of PTs per 10,000 pop (2009), county level
17 Beneficiaries as a share of total pop, county level
18 Average age of beneficiaries, county level
19 Percent of female beneficiaries, county level
20 Avg HCC risk score of beneficiaries, county level
21 Percent of Medicare beneficiaries eligible for

Medicaid, county level
22 Median household income, county level
23 Pct persons 65 or older in deep poverty, county level
24 Number of PTs serving Medicare per 10,000

beneficiaries, county level

Table 1: Input parameters of problem.

Methods
We examine two GA approaches to this problem: a basic GA
and a self-adaptive GA (SAGA). The basic GA is a canon-
ical GA in which all parameters must be hand tuned by a
user. The SAGA reduces the amount of parameter tuning
required of a user by evolving some of the parameter values
along with the solution. The traditional approach to this type
of problem is LR; we include it as our baseline comparison.

In addition to running the GA and SAGA on the raw data
from the PUF and AHRF, we also run both algorithms on the
standardized version of the same data. In problems where the
ranges of the independent variables vary, standardization is
used to equalize the impact of the individual variables in the
ML process. The standardized value v′r,i for each indepen-
dent variable i is calculated as follows: v′r,i = (vr,i−~vi)/σi
where

~vi =
1

40662

40662∑
r=1

vr,i (3)

is the average of the ith independent variable and σi is the
standard deviation of ~vi.

Genetic algorithm
The GA is an ML algorithm that learns by simulating evolu-
tion (Holland 1975; Goldberg 1989). Algorithm 1 describes
the basic steps of a GA. A GA typically begins with a ran-
domly generated population of candidate solutions. Each so-
lution is evaluated to determine its fitness or quality as a



Algorithm 1 Basic steps of a genetic algorithm.
1: Initialize population of candidate solutions randomly
2: while stopping condition not met do
3: Evaluate the fitness of every population member
4: Apply selection method to select parents
5: Apply genetic operators to generate offspring from selected

parents
6: end while

solution. The more fit individuals are probabilistically se-
lected to be used to create a new population of candidate
solutions. Over multiple populations or generations, the al-
gorithm evolves better and better solutions. Our GA uses a
floating point representation to encode solutions and uses
empirically determined experimental parameter settings.

Each individual in the GA population represents one can-
didate solution (a vector of 25 coeffiecients). Each solu-
tion is represented as a floating point array of 50 values,
zj : j ∈ {0, 1, ..., 49} where −1.0 ≤ zj ≤ 1.0. For each
independent variable i listed in Table 1, the coefficient value
encoded by the GA is ci = zxi where

x =


1 if −1.0 ≤ zi + 25 < −0.5
2 if −0.5 ≤ zi + 25 < 0.0
3 if 0.0 ≤ zi + 25 < 0.5
4 if 1.5 ≤ zi + 25 ≤ 1.0

(4)

The exponential term is included because the ranges of these
variables vary by multiple magnitudes, this term aids the GA
reaching all magnitudes. The fitness of an individual indi-
cates how well its set of coefficients classify all of the data
points in a training set. Algorithm 2 gives the fitness func-
tion used in our GA. Given the 25 coefficients encoded by

Algorithm 2 Fitness function.
1: sum← 0
2: r ← 0
3: while r < training file size do
4: Qr =

∑24

i=0
civr,i

5: if Qr > 0 and Br > Bmedian then
6: sum← sum+ 1
7: else if Qr ≤ 0 and Br ≤ Bmedian then
8: sum← sum+ 1
9: end if

10: r ← r + 1
11: end while
12: fitness← sum/training file size

one individual, calculateQr as shown in Equation 1 for each
data point Pr. The fitness of the individual is the percentage
of data points for which Equation 2 holds true (percentage
of correct classifications).

Table 2 gives the GA parameter settings used in our ex-
periments. These values were empirically shown through a
series of tuning experiments to produce good performance.
In step 4 of Algorithm 1, the GA uses Tournament selection
with a tournament of size 10 to select a temporary popula-
tion of parents of the same size as the regular population. In
step 5 of Algorithm 1, the GA applies two-point crossover

Parameter Setting
Population size 100
Stopping condition 200 generations
Selection method Tournament, size=10
Crossover type Two point
Crossover rate 0.9
Mutation type Uniform random
Mutation rate 0.2

Table 2: GA parameter settings.

at a rate of 0.9 to each pair of parents in the temporary pop-
ulation. Two crossover locations are randomly selected and
the segment within those two locations are exchanged to cre-
ate two offspring. Each offspring then undergoes mutation.
Mutation rate indicates the probability with which each co-
efficient on an individual will be mutated. Values that are se-
lected for mutation are reset to a randomly generated floating
point value between -1.0 and 1.0. The offspring population
becomes the next generation and the cycle repeats until the
stopping condition is met. Each GA run executes for 200
generations and returns the best solution found.

Self adaptive genetic algorithm
One of the challenges in using the GA as a learning tool
is how to appropriately set the GA parameters. Tuning GA
parameters can be highly impactful on result quality but is
also a difficult and time consuming task (Eiben and Smit
2011). One method to alleviate this difficulty is through the
use of self-adaptation in a SAGA. A SAGA is a GA in which
a subset of the parameters are evolved over the course of
the execution instead of being manually set at a static value.
The SAGA is still fundamentally a GA and so adheres to
Algorithms 1 and 2.

In our SAGA configuration (Norat and Wu 2018), four
parameters are self-adaptive. These self-adaptive parameters
are: crossover type, crossover rate, mutation type, and muta-
tion rate. These parameters are encoded in each individual.
Each individual thus has unique values for the self-adaptive
parameters. In our SAGA, each individual has two chromo-
somes; the solution chromosome encodes the potential so-
lution of 25 coefficients and the parameter chromosome en-
codes the self-adaptive parameters. Both chromosomes are
modified by the genetic operators. The solution chromosome
representation is identical to that of the standard GA.

Self-adaptation of the mutation rate and crossover rate
allow the SAGA to vary the rate at which mutation and
crossover occur throughout a run. The mutation rate is ini-
tialized as a random floating point value between 0.0 and
0.5. The crossover rate is initialized as a random floating
point value between 0.5 and 1.0. Both rates can evolve
within the range of 0.0 to 1.0. The encoded mutation rate
directly represents the mutation rate of that particular in-
dividual. Crossover requires two or more individuals, thus
the effective crossover rate of any set of potential parents is
equal to the mean of the parents’ encoded crossover rates.

Self-adaptation of the crossover type and mutation type
allow the SAGA to vary which crossover and mutation oper-
ators are used during a run. Instead of using a single crosover



LR GA SAGA GA Standardized SAGA Standardized
Best Avg (95% CI)† Best Avg (95% CI)† Best Avg (95% CI)† Best Avg (95% CI)†

Training 80% 93.29 93.50 90.26 (±1.006) 93.64 78.20 (±3.599) 88.60 88.30 (±0.052) 89.26 89.07 (±0.034)
Validation 20% 93.32 93.44 90.19 (±1.035) 93.44 77.43 (±3.575) 88.86 88.61 (±0.073) 89.60 89.31 (±0.047)
Training 65% 93.07 93.51 89.52 (±0.828) 92.59 79.98 (±3.100) 88.87 88.20 (±0.057) 90.18 89.07 (±0.080)
Validation 35% 93.45 93.55 89.58 (±0.791) 92.56 79.32 (±3.050) 88.85 88.70 (±0.249) 89.65 89.38 (±0.045)
Training 50% 93.03 93.35 89.28 (±0.990) 92.57 79.85 (±3.190) 88.73 88.33 (±0.052) 89.27 89.07 (±0.048)
Validation 50% 93.39 93.59 89.58 (±1.014) 92.75 79.13 (±3.214) 88.68 88.52 (±0.068) 89.24 88.97 (±0.053)

Table 4: Percent correct classification with highest value in bold. †GA and SAGA average performance is averaged over 50
runs.

Crossover Mutation
Two point Uniform random
Uniform (Syswerda 1989) Gaussian
Arithmetic (Michalewicz 1992) Polynomial
Linear (Wright 1991) (Deb and Deb 2014)
Simulated Binary (Deb 1995) Swap
Blend (Kita et al (2000)) (Norat and Wu 2018)
Simplex (Tsutsui et al (1999))

Table 3: SAGA crossover and mutation operators.

and mutation operator throughout a run as occurs with a
canonical GA, SAGA selects from among a pool of poten-
tial operators each time crossover or mutation occurs. The
genetic operators from which our SAGA selects are listed
in Table 3. Every operator is encoded in each individual as
a floating point value. These values are initialized between,
and can evolve between, 0.0 and 1.0. These encoded values
are treated as the fitness of each operator. Every time mu-
tation occurs, one mutation operator is probabilistically se-
lected using tournament selection of size 3 with a win proba-
bility of 0.9. Crossover uses this same tournament selection
scheme. Again, since crossover requires two or more indi-
viduals, the effective crossover operator fitness values of any
set of parents is equal to the mean of the parents’ crossover
operator fitness values.

Logistic regression
LR is commonly used to model the relationship between a
binary response variable (e.g., yes and no) and a set of ex-
planatory or independent variables (Hosmer and Lemeshow
1989). Suppose that Y is a binary response variable that can
take on one of two possible values, denoted by 1 and 0 for
example, and x is a set of independent variables which can
be categorical or continuous. The probability that the re-
sponse variable will be 1 given the independent variables,
Pr(Y = 1|x), can be modeled as

Pr(Y = 1|x) = 1

1 + e−(β0+xβ)
(5)

where β0 is the intercept and β represents the vector of re-
gression coefficients.

Our logistic regression analysis is performed in the SAS
software, Version 9.4 for Windows (SAS Institute, Inc.,
Cary, North Carolina, USA). In this study, the response or
outcome variable equals 1 if a PT receives an above median
Medicare payment and equals 0 otherwise. The independent

variables (shown in Table 1) include a combination of PT de-
mographic, practice, and market level factors. We estimate a
separate LR model for each training data set tested by the
GA and SAGA, and measure the percent correct prediction
rates of the model on both the training data set and corre-
sponding validation data set.

Results
Using the 40,662 data points aggregated from the PUF and
AHRF, we compare the ability of the GA, SAGA, and LR to
generate a model that will correctly classify data points as
being above or below the industry median. In order to evalu-
ate the effectiveness of the learned model on unseen data, we
randomly assign the data points into a training set and a val-
idation set. We perform three experiments, each using a dif-
ferent training:validation ratio: 80:20, 65:35, and 50:50. Be-
cause the GA and SAGA are pseudorandom algorithms, we
perform 50 runs of each and report the best solution found
in all 50 runs as well as the average performance over all 50
runs and its 95% confidence interval.

Table 4 gives the percent correct classification for the
three training:validation data sets. The leftmost column
gives the results from LR analysis on the original data file.
The next four columns give the GA and SAGA results when
learning using the original raw data. The last four columns
give GA and SAGA results when learning on standardized
data. Each pair of rows gives results for the training and val-
idation results for one experiment. The best result in each
row is highlighted in bold text.

In all but one instance, the GA running on the raw data
generates the best solution, with classification percentages
ranging from 93.44% to 93.59%. On the 80:20 training set,
the SAGA running on the raw training data generates the
best solution, with a classification percentage of 93.64%.
LR classification percentages range from 93.03% to 93.39%.
There is little difference between the training and validation
results for all algorithms. In several experiments, the valida-
tion set performance exceed training set performance.

Both the GA and SAGA perform significantly better on
the raw data sets than on the standardized data sets. In the
raw data experiments, the GA exhibits slightly better per-
formance than SAGA in terms of the best solution found
over multiple (50) runs; the GA shows a significant improve-
ment over SAGA in terms of the average solution quality
over multiple runs; and SAGA runs produce a significantly
wider confidence intervals than GA runs, indicating greater



variability across runs. In the standardized data experiments,
SAGA performs better than the GA but the performance dif-
ference between the GA and SAGA is much less apparent.

Although the standardized data produces worse results
than the non-standardized raw data, the standardized data
appears to generate more consistent results across multiple
runs in both the GA and SAGA, as indicated by the nar-
rower confidence intervals. Examination of the individual
solutions generated supports this conclusion. Figure 1 shows
the coefficients of the best solution found in each of 50 train-
ing runs. The top row shows GA results; the bottom row
shows SAGA results. The left column shows results using
raw data; the right column shows results using standardized
data. All data is from training runs that use 80% of the data.

In each plot of Figure 1, each line represents one coeffi-
cient value. All values (each from a different run) for each
coefficient are grouped together. We see that, in the plots in-
volving raw data, there is often significant variation within
each group of lines indicating significant variation from one
run to the next as to what is a good value for most coeffi-
cients. In the plots involving standardized data, there is sig-
nificantly more agreement across GA and SAGA runs as to
the evolved value for each coefficient. These plots in com-
bination with the data from Table 4 show a correlation be-
tween the stability of the GA and SAGA search process and
the quality of the solutions found. When learning on stan-
dardized data, both the GA and SAGA runs generate more
consistent solutions, but solutions of lesser quality. When
learning on raw data, the GA and SAGA results are less pre-
dictable but, over multiple runs, may achieve significantly
higher quality. Such behavior is common when the problem
fitness landscape is rugged and multi-modal.

Conclusions and Future Work

We examine the ability of a GA to learn a predictive model
that can estimate the likelihood that a PT will receive annual
Medicare payments above or below the median based on the
PT’s practice parameters. We compare the performance of a
canonical GA and a self adaptive GA with the performance
of traditional LR. Both GA approaches are tested on the raw
data and on the same data after it has been standardized.

Results indicate that both GA approaches are competi-
tive with LR when learning on the raw data. The canonical
GA consistently outperforms LR while SAGA performance
varies slightly from experiment to experiment. When learn-
ing on the standardized data, both the GA and SAGA per-
form worse than LR.

Because the GA and SAGA are pseudorandom algo-
rithms, we also examine the performance of these algo-
rithms over multiple runs. The standardized data results in
more consistent but slightly worse performance in both al-
gorithms. The raw data results in less consistent but more
competitive results in both algorithms. The SAGA exhibits
more variation of results across multiple runs when com-
pared to the canonical GA. Despite this variation, the best
SAGA runs are still competitive while requiring less manual
tuning than a canonical GA.

References
Brennan, N.; Conway, P. H.; and Tavenner, M. 2014. The Medi-
care physician-data release – context and rationale. New England
Journal of Medicine 371(2):99–101.
Chaurasia, V., and Pal, S. 2014. Data mining techniques: to pre-
dict and resolve breast cancer survivability. Int’l Journal of Com-
puter Science and Mobile Computing 3:10–22.
Ciresan, D.; Meier, U.; Masci, J.; and Schmidhuber, J. 2012.
Multi-column deep neural network for traffic sign classification.
Neural Networks 32:333–338.
de Vasconcelos, M. J. P.; Silva, S.; Tomé, M.; Alvim, M.; and
Pereira, J. M. C. 2001. Spatial prediction of fire ignition proba-
bilities: comparing logistic regression and neural networks. Pho-
togrammetric Engineering & Remote Sensing 67(1):73–81.
Deb, K., and Deb, D. 2014. Analysing mutation schemes for real-
parameter genetic algorithms. International Journal of Artificial
Intelligence and Soft Computing 4(1):1–28.
Deb, K. 1995. Simulated binary crossover for continuous search
space. Complex Systems 9:115–148.
Dehuri, S.; Patnaik, S.; Ghosh, A.; and Mall, R. 2008. Application
of elitist multi-objective genetic algorithm for classification rule
generation. Applied Soft Comp. 8(1):477–487.
Eiben, A. E., and Smit, S. K. 2011. Evolutionary algorithm
parameters and methods to tune them. In Autonomous Search.
Springer. 15–36.
Fernández, A.; Garcı́a, S.; Luengo, J.; Bernadó-Mansilla, E.; and
Herrera, F. 2010. Genetics-based machine learning for rule in-
duction: state of the art, taxonomy, and comparative study. IEEE
Trans. Evol. Computation 14(6):913–941.
Fidelis, M. V.; Lopes, H. S.; and Freitas, A. A. 2000. Discovering
comprehensible classification rules with a genetic algorithm. In
Proc. Congress on Evol. Comp., 805–810.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison Wesley.
Guvenir, H. A., and Erel, E. 1998. Multicriteria inventory clas-
sification using a genetic algorithm. European Journal of Opera-
tional Research 105(1):29–37.
Höglund, H. 2017. Tax payment default prediction using genetic
algorithm-based variable selection. Expert Systems with Applica-
tions 88:368–375.
Holland, J. H. 1975. Adaptation in Natural and Artificial Systems.
University of Michigan Press.
Hosmer, D. W., and Lemeshow, S. 1989. Applied Logistsic Re-
gression. Wiley.
Jefferson, M. F.; Pendleton, N.; Lucas, S. B.; and Horan, M. A.
1997. Comparison of a genetic algorithm neural network with lo-
gistic regression for predicting outcome after surgery for patients
with nonsmall cell lung carcinoma. Cancer: Interdisciplinary
Int’l Journal of the American Cancer Society 79(7):1338–1342.
Kita, H.; Ono, I.; and Kobayashi, S. 2000. Multi-parental exten-
sion of the unimodal normal distribution crossover for real-coded
genetic algorithms. Transactions of the Society of Instrument and
Control Engineers 36(10):875–883.
Kovačič, M., and Dolenc, F. 2016. Prediction of the natural
gas consumption in chemical processing facilities with genetic
programming. Genetic Programming & Evolvable Machines
17(3):231–249.
Liu, X.; Oetjen, R. M.; Hanney, W. J.; Rovito, M. J.; Masaracchio,
M.; Peterson, R. L.; and Dottore, K. 2018. Characteristics of



-1

-0.5

 0

 0.5

 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Coefficient

GA, Raw data, 80:20 ratio

-1

-0.5

 0

 0.5

 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Coefficient

GA, Standardized data, 80:20 ratio

-1

-0.5

 0

 0.5

 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Coefficient

SAGA, Raw data, 80:20 ratio

-1

-0.5

 0

 0.5

 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Coefficient

SAGA, Standardized data, 80:20 ratio

1

Figure 1: Coefficients of the best solution from each of 50 GA (top row) and SAGA (bottom row) training runs using raw (left
column) and standardized (right column) data on the 80:20 training:validation sets.

physical therapists serving Medicare fee-for-service beneficiaries.
Unpublished manuscript.
Michalewicz, Z. 1992. Genetic Algorithms Data Structures =
Evolution Programs. Springer.
Min, S.-H.; Lee, J.; and Han, I. 2006. Hybrid genetic algorithms
and support vector machines for bankruptcy prediction. Expert
Systems with Applications 31(3):652–660.
The Centers for Medicare and Medicaid Services, Office of Enter-
prise Data & Analytics. Medicare Fee-For-Service Provider Uti-
lization & Payment Data Physician & Other Supplier Public Use
File: A Methodological Overview 2016.
Ning, F.; Delhomme, D.; LeCun, Y.; Piano, F.; Bottou, L.; and
Barbano, P. E. 2005. Toward automatic phenotyping of de-
veloping embryos from videos. IEEE Trans. Image Processing
14(9):1360–1371.
Norat, R., and Wu, A. S. 2018. Improving genetic algorithm
usability through self adaptation. Technical Report CS-TR-CS-
18-02, University of Central Florida.
Paul, D.; Su, R.; Romain, M.; Sébastien, V.; Pierre, V.; and Is-
abelle, G. 2017. Feature selection for outcome prediction in
oesophageal cancer using genetic algorithm and random forest
classifier. Computerized Medical Imaging & Graphics 60:42–49.
Syswerda, G. 1989. Uniform crossover in genetic algorithms. In
Proc. 3rd Int’l Conference on Genetic Algorithms.
Thornblade, L. W.; Flum, D. R.; and Flaxman, A. D. 2018. Pre-
dicting future elective colon resection for diverticulitis using pat-

terns of health care utilization. Journal for Electronic Health
Data and Methods 6(1):1–8.
Tsutsui, S.; Yamamura, M.; and Higuchi, T. 1999. Multi-parent
recombination with simplex crossover in real coded genetic algo-
rithms. In Proc. Genetic and Evolutionary Computation Conf.,
volume 1, 657–664.
Vandewater, L.; Brusic, V.; Wilson, W.; Macaulay, L.; and Zhang,
P. 2015. An adaptive genetic algorithm for selection of blood-
based biomarkers for prediction of Alzheimer’s disease progres-
sion. BMC Bioinformatics 16(18):S1.
Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; and Lang,
K. J. 1989. Phoneme recognition using time-delay neural net-
works. IEEE Trans. Acoustics, Speech, and Signal Processing
37(3).
Wright, A. H. 1991. Genetic algorithms for real parameter opti-
mization. In Foundations of Genetic Algorithms, volume 1. Else-
vier. 205–218.
Zamuda, A.; Zarges, C.; Stiglic, G.; and Hrovat, G. 2017. Stabil-
ity selection using a genetic algorithm and logistic linear regres-
sion on healthcare records. In Proc. Genetic and Evolutionary
Computation Conf., 143–144.
Zhang, Z.; Trevino, V.; Hoseini, S. S.; Belciug, S.; Boopathi,
A. M.; Zhang, P.; Gorunescu, F.; Subha, V.; and Dai, S. 2018.
Variable selection in logistic regression model with genetic algo-
rithm. Annals of Translational Medicine 6(3).


