
Improving File Compression Using Elementary Cellular Automata

John Albury
Computer Science

University of Central Florida
Orlando, FL 32816-2362
jalbury@knights.ucf.edu

Richard Wales
Computer Science

University of Central Florida
Orlando, FL 32816-2362

richard wales@knights.ucf.edu

Annie S. Wu
Computer Science

University of Central Florida
Orlando, FL 32816-2362

aswu@cs.ucf.edu

Abstract

We present a novel technique for pre-processing files that can
improve file compression rates of existing general purpose
lossless file compression algorithms, particularly for files that
these algorithms perform poorly on. The elementary cellular
automata (CA) pre-processing technique involves finding an
optimal CA state that can be used to transform a file into a
format that is more amenable to compression than the orig-
inal file format. This technique is applicable to multiple file
types and may be used to enhance multiple compression algo-
rithms. Evaluation on files that we generated, as well as sam-
ples selected from online text repositories, finds that the CA
pre-processing technique improves compression rates by up
to 4% and shows promising results for assisting in compress-
ing data that typically induce worst-case behavior in standard
compression algorithms.

Introduction
We present a novel technique for pre-processing files that
can improve the file compression rates of existing general
purpose lossless file compression algorithms. For a given
file, an exhaustive search of all elementary cellular automata
(CA) rules is used to find an optimal end state such that stor-
ing this end state in a transformed CA file results in better
compression than compressing the original file. While the
work in this paper focuses on the popular compression algo-
rithms gzip, bzip2, and xz, this approach can be generalized
to work with other compression algorithms.

File compression is a topic of growing importance in this
era of big data. Most text-based pre-processing techniques
tend to work with one or both of the following principles in
mind: (1) reducing the size of the file to be compressed (i.e.
by using a more efficient encoding) is likely to reduce the
size of the resulting compressed file, and (2) encoding the
information in a format that will allow greater compression
is likely to reduce the size of the compressed file. General
compression algorithms suffer when used on random strings
of characters as there are no sensible patterns that the file can
be easily reduced to. SSH keys are a commonly used item
that contain remarkably random data. Since the CA search
does not rely on any pattern seeking, we hope to improve

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Basic steps of the file pre-processing algorithm.
The CA encoded mask (gray box) is found by exhaustively
searching every possible CA rule.

the worst-case performance of standard compression algo-
rithms.

Our method differs from previous methods in that it oper-
ates at the bit level rather than at the character or word level.
Figure 1 shows how our pre-processing method is combined
with and used to enhance the capabilities of an existing com-
pression algorithm.

For each file to be compressed, a binary mask of the same
size as the original file is created. This mask is used to en-
code the original file into a transformed file by using a bit-
wise XOR operation to subtract the mask from the original
file. The transformed file is then compressed by the com-
pression algorithm to form the compressed file, and an en-
coding of the mask is added to the compressed file. Upon
decompression, the compressed file is decompressed into the
transformed file. The CA is run to obtain the mask that was
used to create the transformed file, then a bit-wise XOR op-
eration between the mask and the transformed file is used to
recover the original file.

The key to this method is finding a mask that effectively
transforms an original file into a transformed file that has
greater compression potential than the original file. In addi-
tion, the mask must be able to be stored efficiently with the
compressed file so that it does not increase the compressed
file size significantly. To store the mask efficiently, we take
advantage of the fact that a CA provides a space efficient
means of storing a complex pattern, such as the mask. By
encoding the CA with just a few bytes, upon decoding we



can recover the mask by executing the CA. We show that,
given a file to be compressed and enough computational
time, in many cases it is possible to find a CA rule and ini-
tial start state that will result in better compression. We test
our method on 10 randomly generated 2048-bit SSH pub-
lic keys, 10 randomly generated text files containing low-
ercase/uppercase letters and numbers, and 10 files selected
from online text file repositories (files were selected from
the Canterbury Corpus and textfiles.com). We compare the
results of using our pre-processing method with the results
of using the compression algorithms alone.

Approach
Given a file to be compressed, the CA pre-processing
method depends on the discovery of a mask that can effec-
tively transform the original file into a transformed file that
is more amenable to compression than the original file. We
use an exhaustive search of all 256 elementary CA rules to
find such a mask and describe the details of the search here.

File Compression and Decompression
Let L be the length in bits of the original file. Our CA search
is looking for a non-trivial binary string of the same size
to use as the CA mask. To be able to reconstruct the original
file from the transformed file, three pieces of information are
needed: the CA rule that is used, the number of time steps the
CA is run, and the starting configuration of the CA. These
pieces of information are used to run the CA and obtain the
mask that was used to generate the transformed file, then the
original file is recovered using a bit-wise XOR between the
mask and the transformed file.

The starting configuration of our CA is specified by two
randomly generated integers, start one and interval one,
whose values are between 1 and L

5 . The starting configura-
tion is assumed to be all zeros initially, then a one is placed at
the index specified by start one. From there, ones are placed
in intervals of interval one until the end of the configuration
is reached. Starting from the initial configuration, each rule
is applied for M time steps or when the rows of the CA start
repeating, whichever comes first. Since in an elementary CA
a cell can only interact with the two cells adjacent to it at
each time step, it can take many time steps before each cell
has interacted with every other cell. For this reason, we set
M to be 4L, with the idea being that complex patterns in the
rows (that could result in better file compression) are more
likely to emerge after all cells have had a chance to interact
with one another several times. We use a Bloom filter (Blus-
tein and El-Maazawi 2002), a space-efficient probabilistic
data structure composed of multiple hash tables of varying
sizes, to detect whether a particular CA state has been seen
before. This allows us to terminate a CA search early if a
cycle in the CA has been reached, significantly reducing the
time required to run experiments in many cases.

To evaluate the fitness of a mask generated by a CA, a
percent compression improvement is calculated. This evalu-
ation is done by performing a bit-wise XOR on the current
CA row (the current mask) with the original file and writ-
ing the result to a transformed file, compressing this trans-

Figure 2: An example of how a transformed file is stored.

formed file, adding the encoding of the CA mask, then cal-
culating the percent difference between the size of this file
and the compressed size of the original file. This is done
for each compression algorithm used, where the compres-
sion improvement is only calculated for files compressed by
the same algorithm. For each file to be compressed, the best
compression improvement, and the time step T in the CA
where this improvement was found, for each compression
algorithm is saved.

Encoding of the Cellular Automaton Mask
In order to reconstruct the original file when decompressing,
the cellular automaton needs to be able to reconstructed us-
ing just the information encoded with the compressed trans-
formed file. Thus, the rule used, the values of start one and
interval one, and the final time step T to which the CA is
run must be encoded with the compressed transformed file.
The algorithm used to compress the transformed file must
also be included in the encoding, since our experiments use
three different compression algorithms. We accomplish this
via a variable-length encoding to allow for different encod-
ing lengths to be used for different file sizes. This encoding
is added to the beginning of the transformed file after it is
compressed. The size of this compressed file with the en-
coding added is the size we use to report our results. Since
the maximum values of start one, interval one, and T de-
pend linearly on the length of the file in bits L (the maximum
value for both start one and interval one is L

5 , and the maxi-
mum value of T is 4L), we let each of them be represented by
the same number of bytes to simplify the encoding process.
There are 256 possible rules in an elementary CA, so the
rule used can be represented by a single byte. We only test
three compression algorithms, so the algorithm used to com-
press the transformed file can be encoded using 2 bits. Thus,
our encoding of the CA mask is as follows: the first byte of
the encoding specifies the compression algorithm used and
the number of bytes that start one, interval one, and T will
each be represented by (let this value be represented by n);
the second byte represents the rule used; the next n bytes rep-
resent the value of start one; the next n bytes represent the
value of interval one; the next n bytes represent the value
T. Then, the compressed transformed file is appended to the
encoding.

An example of a possible encoding is shown in Figure 2.
The first 2 bits of the first byte indicate that the compression
algorithm used is bzip2 (bzip2, gzip, and xz are represented
by 0, 1, and 2, respectively). The last 6 bits of the first byte
indicate that start one, interval one, and T will each be rep-



resented by 2 bytes. The second byte indicates that the rule
used in the CA was rule 110. The third and fourth byte show
that the value of start one is 52. The fifth and sixth bytes
show that the value of interval one is 25. Finally, the sev-
enth and eighth bytes indicate that the value of T is 1,040.
Using just these values, the CA that was used to generate the
mask can be reconstructed and, thus, the original file can be
recovered. The length of the CA mask encoding (in bytes)
for a given file is given by the following equation: E(L) =
3d 1

8 log2(4L)e+ 2 , where L is the size (in bits) of the file to
be compressed.

Experimental Results
We evaluate the performance of the CA pre-processing tech-
nique by comparing the compression performance of the
standard compression algorithms with the compression per-
formance of these algorithms with CA pre-processing. The
algorithms used are gzip, bzip2, and xz.

The files on which we perform our experiments are given
in Table 1. The first group of files (key1 through key10) are
SSH keys (stored as text files), the second group files (ran-
dom1 through random10) are randomly generated text files
containing numbers and lowercase/uppercase letters, and the
last group of files are files selected from online text reposito-
ries. For the last grouping of files, all are text files, with the
exception that mind6 is an ASC file. The xargs file comes
from the Canterbury Corpus and the rest of the files in this
group come from the Science section of textfiles.com, an
online text repository. File sizes range from 0.7 KB to 4.2
KB. For each file, the CA is run with 10 different randomly
generated start states (by randomly choosing the values of
start one and interval one), and for each run the best com-
pression improvement for each of the compression algo-
rithms is stored. The results of these trials are averaged to
give the average compression improvement for each file.

Discussion
Table 1 shows the results for each of the compression algo-
rithms tested.

%Imp. is the percentage of trials (out of the 10 that are run
for each file) where our method results in a net positive ef-
fect on compression. The results reported take into account
the extra length that the CA mask encoding adds. Out of
the algorithms we test, bzip2 is the most responsive when
looking at this measurement. Aggregating across groups of
files, our method improves bzip2 compression in 69.5% of
trials for the random files tested (both the SSH keys and ran-
domly generated text files) and in 35% of trials for the non-
random files tested. In many cases, compression improve-
ments are found, but these improvements are outweighed by
the length of the CA mask encoding. If we ignore the length
of the CA mask encoding that is added to the compressed
file, compression improvements are found in 66.6% of tri-
als overall, compared with 28.1% when taking the encoding
into account.

∆avg is the average percent improvement in compression
when using our method compared with using the standard
compression algorithm alone, and ∆best is the best percent

improvement in compression for any individual trial. When
looking at these measurements, the xz algorithm shows the
most promising results. For the randomly generated text
files compressed with the xz algorithm, our method shows
improvements of up to 4.492%. The bzip2 algorithm also
shows promising results in this aspect. For most of the files
compressed with bzip2, using our method results in a net
improvement in compression, although these improvements
rarely are more than 1%.

Tbest is the time step at which the best individual com-
pression improvement is found (that is, the value of T when
∆best is found). A value of ”N/A” means that no CA masks
are found that improved compression. Interestingly, values
of Tbest as high as 26,000 are observed, showing that the
CA masks being generated are generally non-trivial.

When analyzing the improvement that our method yields
for each of the algorithms tested, one trend that stands out is
that the compression improvement our method offers has an
inverse relationship with the compression ratio of the stan-
dard compression algorithm for the file being tested. This
could help explain why our method shows such poor results
when used with the gzip algorithm compared to the other
algorithms. For most of the files we test, gzip produces the
best compression. This relationship also seems to hold true
from file-to-file when using the same algorithm. Files that,
when compressed, have lower compression ratios seem to
respond better to our pre-processing technique. The SSH
keys and randomly generated text files exhibit this behavior;
typically, standard compression algorithms perform poorest
on random-like data like these files and this holds true for the
files we test as well. These random-like files also show the
highest and most consistent improvements when using our
pre-processing method compared to the non-random files.
This relationship is shown in Figure 3. For each file and
compression algorithm pairing, the original compression ra-
tio (without using our method) and the compression im-
provement when using our method are plotted. As shown in
the figure, there is a general trend downward as compression
ratio increases. Thus, this method could have intriguing im-
plications for compressing random-like data and other types
of data that typically induce worst-case behavior in standard
compression algorithms.

Time cost
While these initial results are promising for compressing
random-like data, the time taken to run the program is less
than desirable and is impractical for large files at this time.
Although the time it takes to compress and decompress a
file once a CA solution is found is reasonable, the time re-
quired to find a CA solution can be very long in the present
system. The runs typically take several days to complete,
which is unfeasible for most applications. This will need to
be improved by narrowing the search to a subset of rules, as
opposed to performing the exhaustive search that the present
system uses.

Conclusions
In this work, we present a new method for pre-processing
files to enhance the performance of standard compression



bzip2 gzip xz
File Original Size %Imp. ∆avg ∆best Tbest %Imp. ∆avg ∆best Tbest %Imp. ∆avg ∆best Tbest

key1 1,675 bytes 100% +0.573% +0.990% 21,628 0% -0.444% -0.307% N/A 0% -0.557% -0.557% N/A
key2 1,675 bytes 80% +0.398% +0.781% 11,104 0% -0.545% -0.461% N/A 0% -0.334% -0.279% N/A
key3 1,679 bytes 10% -0.246% +0.071% 9,686 0% -0.536% -0.383% N/A 0% -0.418% -.279% N/A
key4 1,675 bytes 60% +0.028% +0.711% 11,759 0% -0.513% -0.307% N/A 0% -0.559% -0.559% N/A
key5 1,675 bytes 100% +0.572% +0.919% 10,317 0% -0.545% -0.537% N/A 0% -0.306% -0.279% N/A
key6 1,675 bytes 50% +0.007% +0.284% 10,084 0% -0.467% -0.383% N/A 0% -0.278% -0.278% N/A
key7 1,675 bytes 60% +0.106% +0.709% 3,098 0% -0.567% -0.460% N/A 0% -0.557% -0.557% N/A
key8 1,679 bytes 90% +0.404% +0.780% 4,101 0% -0.514% -0.383% N/A 0% -0.599% -0.559% N/A
key9 1,675 bytes 90% +0.220% +0.711% 13,817 0% -0.383% -0.307% N/A 0% -0.599% -0.559% N/A

key10 1,679 bytes 70% +0.282% +0.777% 4,750 0% -0.420% -0.306% N/A 0% -0.556% -0.556% N/A
random1 2,048 bytes 90% +0.144% +0.241% 16,377 0% -0.429% -0.390% N/A 100% +2.12% +2.404% 13,306
random2 2,048 bytes 40% +0.024% +0.543% 8,145 10% -0.416% +0.325% 8,145 100% +4.16% +4.492% 9,122
random3 2,048 bytes 90% +0.241% +0.543% 19,694 10% -0.312% +0.391% 15,875 10% -0.149% +0.248% 15,874
random4 2,048 bytes 20% -0.199% +0.302% 8,161 20% -0.201% +0.715% 26,789 100% +2.727% +2.871% 1,256
random5 2,048 bytes 50% +0.054% +0.361% 2,082 0% -0.416% -0.260% N/A 100% +3.741% +4.471% 22,515
random6 2,048 bytes 100% +0.331% +0.781% 16,321 10% -0.280% +0.780% 16,321 100% +4.222% +4.481% 2,956
random7 2,048 bytes 100% +0.211% +0.362% 8,156 20% -0.189% +0.783% 8,719 100% +0.827% +1.217% 15,951
random8 2,048 bytes 80% +0.228% +0.541% 9,248 0% -0.429% -0.325% N/A 0% -0.247% 0.000% N/A
random9 2,048 bytes 50% +0.018% +0.422% 13,456 10% -0.377% +0.260% 13,456 0% -0.025% 0.000% N/A
random10 2,048 bytes 60% +0.174% +0.421% 1,876 0% -0.324% -0.259% N/A 100% +0.538% +0.733% 3,790
ast500hr 786 bytes 70% +0.389% +1.296% 1,340 0% -1.733% -1.556% N/A 0% -1.186% 0.000% N/A

fs417 2,018 bytes 70% +0.177% +1.027% 1,787 0% -0.762% -0.684% N/A 0% -0.571% -0.357% N/A
genetic 1,873 bytes 90% +0.581% +1.378% 14,242 0% -0.732% -0.610% N/A 0% -0.746% -0.746% N/A
mind6 3,216 bytes 0% -0.741% -0.370% N/A 0% -0.770% -0.660% N/A 0% -0.264% -0.208% N/A
unifid 1,200 bytes 0% -1.581% -1.581% N/A 0% -1.649% -1.461% N/A 0% -1.439% -1.439% N/A
xargs 4,227 bytes 20% -0.068% +0.227% 9,512 0% -0.572% -0.515% N/A 0% -0.607% -0.607% N/A

goddard 896 bytes 0% -0.968% -0.538% N/A 0% -1.288% -0.947% N/A 0% -1.203% -0.6329 N/A
ast-dorn 2,613 bytes 60% +0.149% +0.908% 4,775 0% -0.627% -0.512% N/A 0% -0.674% -0.674% N/A
ast-prog 1,672 bytes 20% -0.361% +0.425% 12,091 0% -0.785% -0.664% N/A 0% -0.440% -0.400% N/A

taxonomy 3,271 bytes 20% -0.076% +0.254% 24,613 0% -0.643% -0.531% N/A 0% -0.693% -0.693% N/A

Table 1: Compression improvement results for each of the compression algorithms tested.

1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Original Compression Ratio

C
om

pr
es

si
on

Im
pr

ov
em

en
t

y(x) = −0.89x + 1.19

Figure 3: The relationship between the compression ratio on
the original file using the standard compression algorithm
and the compression improvement that is gained when using
the CA pre-processing method.

algorithms. Unlike previous methods which operate at the
character and word level, the CA operates at the bit level.
As a result, this method can be generalized to multiple file
types beyond just text files. We test the ability of the CA pre-
processing method to enhance gzip, bzip2, and xz compres-
sion results on randomly generated text files, SSH keys, and
selected files from online text repositories. A small range
of file sizes were tested due to the computation necessary
to explore the massive search space available. Initial results
show that in many cases our method improves compression,
with some results showing up to a 4% improvement com-
pared to the standard compression algorithm, but in other
cases it can actually worsen compression due to the inability
of our method to find an effective CA mask and the over-
head of encoding the CA with the compressed file. Inter-
estingly, this method seems to provide the most benefit in
cases where the standard compression algorithm performs
the worst. Thus, if the computational cost of the method can
be reduced, our method could be used to improve the worst-
case performance of widely used compression algorithms.

References
Blustein, J., and El-Maazawi, A. 2002. Bloom filters – a
tutorial analysis, and survey. Technical report, Dalhousie
University.


