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Abstract

Specializing on a subset of tasks available within a system al-
lows agents to more efficiently fulfill system demands. When
demands change, agents need to Re-Specialize. Since Re-
Specialization inherently requires undoing some prior Spe-
cialization, the opposing effort often results in agents set-
tling on a worse task allocation than after Specialization,
even when presented with similar demands. In this work,
we demonstrate these task allocation differences by look-
ing at how well demands are fulfilled, as well as how much
task switching is happening within the system. We analyze
what causes the observed differences and discuss potential
approaches to improving Re-Specialization in the future.

1 Introduction
In this work, we show how threshold reinforcement Special-
ization dynamics can hinder Re-Specialization in decentral-
ized MultiAgent Systems (MAS). We apply a well-known,
biologically inspired Specialization model by Theraulaz,
Bonabeau, and Deneubourg (1998) (from here on denoted as
TBD) to decentralized task allocation within a multi-task en-
viroment where each task in unlimited supply but has limited
and varying demand. We present the differences between
the resulting Specialization and Re-Specialization behaviors
and investigate the underlying reasons.

In fully decentralized, multi-task, dynamic environments,
where each task is in unlimited supply but has limited de-
mand subject to change over time, threshold reinforcement
is the dominant approach to Specialization. In this unlimited-
supply-limited-demand (USLD) domain, each agent can
work on up to one task during each time step, but all agents
can choose the same task or even no task at all, regardless
of system needs. This differs from the domain tackled by
market-based approaches, which assume that each task can
only be taken up by a single agent, who must win it based on
some dominance metric. In USLD, each task’s demand can
be fulfilled at any point throughout a simulation day, by any
number of agents, based solely on the total amount of daily
work on the task. Without the added domain-specific costs
and task availability constraints, USLD is a more general
and complex domain. To minimize switching among tasks,
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it is most efficient to allow agents to develop an affinity for
some tasks and an aversion toward others, i.e. to Special-
ize. Threshold reinforcement uses task stimuli to elicit agent
action and develop preferences based on Hebbian learning:
when agents act on a task, they becomes more likely to act
on it again (Cicirello and Smith 2003; Campos et al. 2000;
Price and Tiňo 2004; Kittithreerapronchai and Anderson
2003). When demands change, a commensurate change in
agents’ affinities and aversions (i.e. agents’ task-specific
thresholds) is needed. Following the same threshold rein-
forcement process, previously Specialized agents begin to
adjust their preferences again and Re-Specialize. The most
commonly used threshold reinforcement model is TBD.

Although Specialization and Re-Specialization follow the
same threshold reinforcement model, the resulting behaviors
differ. When unspecialized agents are first presented with a
set of tasks with various demands, agents begin to self task
allocate. For agents to Re-Specialize, however, means to un-
specialize from existing tendencies, i.e. to develop an aver-
sion to the same tasks the agents had been developing an
affinity for during Specialization. As the underlying mecha-
nism is identical throughout, Re-Specialization efforts are at
a disadvantage, battling the draw of existing Specialization.
As a result, Re-specialized agents can present notably more
switching among tasks than Specialized agents, even when
the Re-Specialization needs are a mirror image of the Spe-
cialization task demands (Wu and Kazakova 2017). Addi-
tionally, Re-Specialization may be required for reasons other
than changes in demand, such as a change in the total num-
ber of agents, a replacement of some agents, or a change
in available tasks. Thus, threshold reinforcement can lead to
suboptimal task allocation in dynamic environments.

In this work, we first overview the TBD behavioral model
used in our system. We then conduct experiments to show-
case performance differences between Specialization and
Re-Specialization under identical task demands. We discuss
the reasons for the observed differences by: (1) overviewing
the behavior driving task thresholds, task stimuli, and action
probabilities; (2) observing how these values change during
Specialization; and (3) how the values change during Re-
Specialization. We then take a closer look at behavior near
low-stimulus-low-threshold values, which appear to nega-
tively affect Re-Specialization, and discuss some potential
avenues for improvement.
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Figure 1: TBD Action Probability: Pa,t = s2t/(s
2
t + θ2a,t)

(Theraulaz, Bonabeau, and Deneubourg 1998)

2 TBD Threshold Reinforcement
Before we analyze the behavioral differences under Special-
ization vs. Re-Specialization, we first review the main be-
havioral driver employed in our tests: TBD. In this section,
we review the TBD model: its probability formula, the dis-
tribution of probabilities it generates, and the redefined dis-
continuity where st= θa,t=0.0. We also discuss how TBD
agents behave based on the combination of task thresholds
and task stimuli, as well as how these thresholds and stimuli
are initialized and changed over time through agent actions.

TBD combines task stimulus with agents’ affinity for
tasks to produce behavior approximating what has been ob-
served in complex natural societies (Theraulaz, Bonabeau,
and Deneubourg 1998). Responding to higher stimuli en-
sures agents prefer to act on the most needed tasks. Respond-
ing to lower thresholds ensures agents prefer to act on tasks
they’ve acted on before. Thus, focusing on one or the other
represents a trade-off between responsiveness and special-
ization, respectively. To balance out these tendencies, the
current stimulus for a task and an agent’s affinity for that
task are combined into a probability to act on that task:

Pa,t=s2t/(s
2
t+θ2

a,t) where s ∈ [0.0,1.0],θ∈ [0.0,1.0]

Pa,t=0.5 where undefined(θa,t=st=0.0)

where Pa,t is the probability of agent a to act on task t, given
a current stimulus st for task t and the agent’s affinity thresh-
old θa,t for task t. Note the redefinition of Pa,t to avoid
division-by-zero when st and θa,t are both zero. The map
of resulting probabilities is shown in Fig. 1. In the rest of
this work, we refer to the corners of this map as: ! (top-left),
" (top-right), # (bottom-right), and $ (bottom-left).

On every time step, agents consider the available tasks
one at a time, in descending Pa,t order, as this is shown

to work well for specialization (Wu and Kazakova 2017).
When one task is not chosen, the agent moves on to consid-
ering the next, and so on until all tasks have been consid-
ered, in which case the agent defaults to idling (T0). Given
a set of 4 tasks (T1-T4), each agent a compares a randomly
generated valuea,t to Pa,t, t ∈ [1, 4]. If this value is below
Pa,t, the task is acted on during this step. Otherwise, the fol-
lowing task is considered. Note that this differs from TBD,
where only one task is available for consideration at a time.

Agents are unaware of actual task demands. Their per-
ceived task t need, termed stimulus st in TBD, can perhaps
be more accurately defined as task deficit, since st remains
unchanged when agents do the exactly sufficient amount of
work to keep up with demand. Calculated as:

deficitt=st =
dailyDemandt−currentAmountt

dailyDemandt

,

truncated as needed, to remain within the range [0.0,1.0].
Specialization in TBD employs threshold reinforcement

akin to Hebbian learning: when agent a acts on task t, its
θa,t decreases, increasing the agent’s future probability to
act on task t again. When agent a chooses task t, it Special-
izes toward task t (θa,t → 0.0) and against all other tasks
(θa,t′ ̸=t→1.0) according to the following update rules:

θa,t=θa,t−ξ (where ξ is the affinity rate)
θa,t′ ̸=t=θa,t′+φ (where φ is the aversion rate),

with θ truncated as needed to remain within range [0.0,1.0].
We use ξ = 0.01 and φ = ξ / (number of tasks − 1).

In TBD, aversion rate is only 0.1*ξ for a setup of 2 tasks.
We feel, however, that it is more generally justifiable to
assume that aversion increases at the rate of 1/(number
of other tasks), such that however much affinity is gained
in one task, is simultaneously lost by all the other tasks
combined. This increase in aversion rate should make Re-
Specialization faster. Consequently, showing that it is still
slower than Specialization even with this higher aversion
rate is an even more meaningful result. Note that we avoid
the terminology of “learning” and “forgetting” used in TBD,
as these terms may imply skill acquisition and loss, respec-
tively, while in actuality we are only discussing building a
preference toward some tasks and against others.

3 Threshold Reinforcement Performance:
Specialization vs. Re-Specialization

The TBD threshold reinforcement model is often used in its
original or adapted forms as the driving force behind decen-
tralized Specialization in MAS. We hypothesize that under
TBD and similar approaches, agents can generally Special-
ize faster to a set of demands than they can Re-Specialize
given new demands. In this section, we test our hypothe-
sis by comparing how agents behave when presented with
different demands under one of two setups: new demands
are presented to (1) agents with randomly distributed task
thresholds or (2) agents who are each fully Specialized on
any one of the tasks (θa,i=0.0) and fully Specialized away
from the other tasks (θa,j ̸=i=1.0). These setups correspond
to Specialization and Re-Specialization, respectively.
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Daily task completion statistics allow agents to do suf-
ficient work over the course of a day, without regard for
when in the day, by how many agents, or over how many
of the day’s steps. Daily task demand percentage indicates
what portion of agents must be working full time on this task
or, equivalently, what portion of the total available working
hours must be spent on this task. Each day is broken into
steps, symbolizing how often agents reconsider the stimuli
and select an action. We test with teams of 20 agents, but
as task demands scale with number of agents, team size is
inconsequential; TBD demonstrates identical behavior with
10 and with 100 agents (Wu and Kazakova 2017)).

Unspecialized agents begin Specialization with uniformly
distributed random thresholds θa,t assigned to each agent a
for every task t. Re-Specializing agents face new demands
(or rather the resulting new st) while already Specialized
on previous demands. Consequently, they must act against
existing specialization in order to develop new preferences.

We conduct 6 experiments during every run and repeat
these for 32 runs. Each run consists of 300 days of 10 steps
each, subdivided into 6 groups of 50 days, one for each ex-
periment. The 6 experiments correspond to 3 sets of task De-
mand Periods (DP) for Specialization, followed by 3 identi-
cal DP for Re-Specialization. Table 1 lists the 6 experiments
along with task demands for each. Percentages correspond
to how much work must be dedicated to a task throughout
the day to achieve 100% task completion (e.g. DP I requires
35% of all daily work possible to be done on T1).

On the first 150 days of each run, we test how unspecial-
ized agents Specialize during each DP. For this, we convert
Re-Specialization behavior into Specialization by resetting
agents’ θa,t when demands change, i.e. on days 0, 50, and
100, to simulate identical unspecialized initial conditions.
On the following 150 days, we test how pre-specialized
agents (each having one θa,t=0 and three θa,t=1.0) Re-
Specialize to new demands. Agents’ thresholds are not reset
over this period: when Re-Specializing to DP I (day 150),
θa,t correspond to how they had Specialized over days 100-
149; when faced with DP II (day 200), agents keep their θa,t
from days 150-199, and when entering DP III (day 250),
agents begin with θa,t developed over days 200-249.

Performance over a DP is measured by daily task comple-
tion, daily task switches, and when the last task switch oc-
curred. Daily task completion represents how close agents
get to the required amount activity on that task. Specifi-
cally, we track deviations: how much task completion de-
viates from 100% each day, calculated as the absolute value
of the difference between the achieved task completion and

Demand Period Days T1 T2 T3 T4
Specialization I 0-49 35% 20% 30% 15%

Specialization II 50-99 40% 25% 25% 10%
Specialization III 100-149 10% 25% 25% 40%

Re-Specialization I 150-199 35% 20% 30% 15%
Re-Specialization II 200-249 40% 25% 25% 10%

Re-Specialization III 249-299 10% 25% 25% 40%

Table 1: Task Demands for each Demand Period

Figure 2: Sample run: tasks’ T0-T4 demand completion.
T0 has no line, as without a demand, % task completion is n/a.

100%.Daily task switches indicate the number of times
agents switch tasks each day, with more switching indicat-
ing lower efficiency due to lower specialization. Timing of
last time switch within a DP indicates how quickly agents
are able to settle on a new stable task assignment.

Fig. 2 shows a representative sample run with task com-
pletions (not deviations) plotted in a different color line
for each task. Left half of the timeline shows Specializa-
tion on DP I, II, and III; right half of the timeline shows
Re-Specialization on DP I, II, and III. Specializing agents
quickly find a task allocation that fulfills all tasks, stabiliz-
ing completion lines to 100% soon after days 0, 50, and 100.
Despite identical demands and resources, Re-Specializing
agents struggle to fulfill the tasks: completion lines fluctu-
ate above and below 100% throughout all three DP.

Table 2 shows performance averaged over 32 runs: task
deviations per DP, daily task switches (t.s.), and per-
cent of DP steps before last task switch. Average devia-
tions are lower for Specialization (blue column) than Re-
Specialization (yellow column) across all 3 DP, for most of
the tasks, indicating that more time is spent near 100% com-
pletion by Specializing agents. For example, the average de-
viation for T1 for DP I is 2.193±0.443% for Specialization
and 6.18±0.267% for Re-Specialization. Note that although
for DP II and DP III, T3 and T4 have slightly lower devi-
ations during Re-Specialization, T1 and especially T2 are
sufficiently worse so as to keep Specialization in the perfor-
mance lead (e.g. 1.216% vs. 11.925% for T2 during DP II).
Daily task switching is approximately 4 times lower for DP
II (3.141% vs. 13.515%) and 10 times lower DP I (3.453%
vs. 34.406%) and DP III (2.813% vs. 25.813%) for Spe-
cializing vs. Re-Specializing. The last task switch happens
around 30-35% into each Specialization period, while dur-
ing Re-Specialization agents never stop switching tasks (val-
ues for last t.s. in yellow column are 94-100%).

For a visual comparison, we plot average daily devia-
tions (Fig. 3) and daily task switch averages (Fig. 4). In
Fig. 3, Specialization DPs quickly reach near-zero devia-
tions, while Re-Specialization DPs remain at higher levels.
In Fig. 4, Specializing agents quickly settle on some task af-
ter a change in demands, while Re-Specializing agents con-
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SPECIALIZING RE-SPECIALIZING
average (± 95% C.I.) average (± 95% C.I.)

days 0-49 days 150-199
last t.s. 34.394% (0.783%) 99.763% (0.838%)

daily t.s. 3.453% (0.795%) 34.406% (0.614%)
T1 dev. 2.193% (0.443%) 6.180% (0.267%)

DP I T2 dev. 0.828% (0.335%) 6.600% (0.438%)
T3 dev. 1.955% (0.743%) 8.407% (0.640%)
T4 dev. 1.359% (0.704%) 4.020% (0.151%)

days 50-99 days 200-249
last t.s. 35.400% (0.397%) 94.375% (0.752%)

daily t.s. 3.141% (0.820%) 13.516% (1.802%)
T1 dev. 1.690% (0.387%) 2.774% (0.315%)

DP II T2 dev. 1.216% (0.314%) 11.925% (1.495%)
T3 dev. 1.558% (0.661%) 0.908% (0.512%)
T4 dev. 1.910% (0.484%) 0.250% (0.372%)

days 100-149 days 250-299
last t.s. 30.650% (0.573%) 99.781% (0.883%)

daily t.s. 2.813% (0.535%) 25.813% (1.733%)
T1 dev. 1.670% (0.457%) 4.606% (0.193%)

DP III T2 dev. 1.422% (0.361%) 15.507% (1.158%)
T3 dev. 0.995% (0.310%) 0.780% (0.435%)
T4 dev. 1.853% (0.500%) 0.244% (0.287%)

Table 2: Specialization vs. Re-Specialization DP Deviations
Averages are over 32 runs; in parenthesis we provide the standard
error values for a 95% confidence interval (± 95% C.I.)
daily t.s. = daily task switches (out of 200 = 20 agents*10 steps);
last t.s. = how far into that DP the last task switch occurred.

tinuously switch tasks throughout each 50-day period. These
results show that adjusting to demands is significantly easier
when agents are not pre-Specialized on different demands.

4 Specialization Over Time
We look at the emergent agent Specialization in an environ-
ment with sufficient resources for each agent to focus on
one task and given sufficient time to settle into a stable task-
assignment based on the given threshold update rates.

Emergent Specialization can be tracked over time by
looking at activations: ⟨s, θ⟩ value pairings that agents plug
into their TBD action probability calculations, given the sys-
tem’s stimuli and agents’ affinities. We choose the term
“activations” to represent that these are the pairings ac-
tive within the system. Fig. 5 shows the total activations
present on day zero of a single representative simulation run,
summed over all 10 steps of that day. We group activations
into buckets of 10% increments, from 0.0 to 1.0 for both
st and θa,t. Additionally, as many of the activations involve
edge values, we add two more rows dedicated to st=0 and
st = 1, as well as two columns dedicated to θa,t = 0 and
θa,t=1. Thus, we get a 12x12 matrix where rows represent
θa,t buckets, columns represent st buckets, and color repre-
sents the number of activations for a given ⟨s, θ⟩ pairing.

All activations are used to calculate Pa,t values by each
agent to order the tasks prior to action selection. If a task
is considered but not chosen for action, the next task with
largest Pa,t is considered. Only a subset of all activations are
considered, because once a task is chosen for action, tasks
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Figure 3: Average deviation from 100% task completion
Specializing (day0-149) vs. Re-Specializing (day150-299)

Figure 4: Average Daily Task Switches Specializing
(day0-149) vs. Re-Specializing (day150-299)

Lower values are best; max possible: 200 task switches per day.

further down in the ordering are not considered. Similarly,
only a subset of the considered activations are ultimately
chosen for action. Thus, we can look at activations as three
sets: those “present” in the system, a subset of these that get
“considered” during action selection, and a subset of the
considered activations which get “acted on”. Fig. 6 shows
these three sets of activations mapped for DP I. Columns
1-3 represent the present, considered, and acted on activa-
tions, respectively, for Specialization (days 0-49). Columns
4-6 represent the same sets for Re-Specialization (days 150-
199). Rows correspond to a subset of the fifty days in DP
I, due to space limitations. Each large square is a matrix
of activation buckets, just like the one in Fig. 5, contain-
ing the sum of activations of one type (present, considered,
or acted on) over the 10 steps of a single day, with amounts
color-coded via a heatmap. Since matrix axes are oriented
identically to the probability map axes (Fig. 1), the matrices
in Fig. 6 show which activations are happening during each
day, while the Pa,t values resulting from these activations
are shown in the same area on the probability map in Fig. 1,
although the 20x20 map has higher ⟨s, θ⟩ pair granularity.

Before Specialization agents have uniformly random ini-
tial θa,t. Every day has 10 steps so, on every step st in-
creases by 10% of the tasks’ daily demands, growing from
0.0 to 1.0 over the course of a day if task t is left untouched
by the agents. Given no demands, activations are uniformly
distributed along the top-edge of the matrix. As soon as de-
mands are introduced, deficits increase from st = 0.0 to
st=0.1 (Fig. 6, day 0, col.1-3).
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Figure 5: Activations ⟨s, θ⟩ present on day 0 of a single run
(omitted θa,t bucket labels mirror those of st buckets)

Total daily activations: 800 = 1 day * 10 steps * 20 agents * 4 tasks

During Specialization, newly increased st cause activa-
tions to move down from the top-edge (Pa,t = 0.0) and
agents begin to act. Given TBD probabilities (Fig. 1), θa,t
randomly initialized to lower values lead to more actions,
causing further decrease of these θa,t (“acted on” pairs
quickly shift to the left-edge (col.3, Fig. 6). By day 8, agents
settle into Specializations, i.e. all work by each agent over
each day is on a single task. Thresholds, however, do not yet
show full Specialization: activations are spread across multi-
ple θa,t columns (day 8, col.1-3, Fig. 6). Four rows of stimuli
quickly form, corresponding to the four tasks. Some tasks
stay at their initial low st (higher rows), while others shift
downward over time, taking longer to stop incurring deficit.
Once all four tasks get sufficient agents, all deficits st stabi-
lize and activations settle into a final four rows (colored rows
on days 8-49, Fig. 6). Note that the final st depend only on
which agents settled on what task quicker and do not reflect
demand values, or the quality of the final task distribution.

After Specializing for some time, since agents are remain-
ing on their selected tasks across many days, θa,t move to-
ward 0.0 for the preferred task of each agent, and toward
1.0 for every other task. In Fig. 6, the preferred tasks of all
agents reach θa,t=0.0 by day 11. Since building aversion is
(number of tasks - 1) times slower than building affinity, un-
preferred task thresholds take until day 33 to reach θa,t=1.0.
This maximal Specialization is seen on days 33-49 in that all
activations fall within lowest and highest possible θ (first and
last columns). There are three times as many activations for
θa,t=1 (right-most column) than θa,t=0 (left-most column),
as agents are Specialized on one task and Specialized against
three other tasks (yellow/orange buckets represent 50-100
activations, while red represent 150-300). Despite higher ac-
tivation counts for the right column and that activations near
# have a 50% chance to be acted on when “considered”, none
of these θa,t=1 activations ever become “considered”, and
thus none can be “acted on”. Since agents consider tasks
starting with highest Pa,t value, left-edge tasks with Pa,t=1
prevent others from being considered, regardless of st, un-
less it drops to st=0.0 (see left edge of Fig. 1). Deficits,
however, are now stabilized, so st remains unchanged.

Figure 6: TBD ⟨s, θ⟩ pairings over time during
Specialization and Re-Specialization

Each large square is a day containing bucketed activation counts
for ⟨s, θ⟩ pairings. For axes and bucket definitions see Fig. 5.

5 Re-Specialization Over Time
The mechanism behind Re-Specialization is identical to that
behind Specialization, but the startinfg points are different.
In Re-Specialization, instead of uniformly random θa,t, re-
sponses to new demands come from agents with θa,t=0.0
for one task and θa,t=1.0 for the others.

Before Re-Specialization a population of Specialized
agents is faced with changed demands. With the introduc-
tion of new demands, task deficits are reset, and are incre-
mented by (1/ daily steps)% on every step (in our setup st
becomes 0.1 on the first step of new demands). We see this
in the activations spreading downward from the top row (day
150, Fig. 6). Activations are more frequent near the top row
given that all st values are lowered, but only some of the
st immediately begin to increase (move downward) again,
indicating insufficient workers. As with Specialization, we
do see more activations on the right-edge, as we again have
a higher total number of agents with an aversion to a task
(θa,t=1.0 )than those with an affinity for it (θa,t=0.0).

During Re-Specialization, the tasks with insufficient
workers soon reach max st = 1.0 (day 158). At this point
we again see only 4 rows of activations, one per task, indi-
cating that st values have stopped changing throughout the
day. At st=1.0, activations for tasks to which the agents are
averse move into the #, causing the most probable action of
the entire right-edge (Pa,t = 0.5) (see Fig. 1). Since activa-
tions in the ! are only 50% likely to cause action, the next
highest Pa,t task in # will have a 50%x50%=25% chance to
lead to action on the newly needed tasks with high aversion
(see “acted on” activations near # on days 151-199, Fig. 6).
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After Re-Specializing for some time only minor changes
are observed. Overall, we see that Re-Specialization takes
considerably longer, although the specific pre-existing and
new demand needs do play a role in the exact resulting be-
havior. Since there is a relatively small chance to take on
the tasks with # activations, threshold adjustments are much
slower than during Specialization (we see activations shift-
ing across the rows over the period 183-199). In the end,
the 50 days are not enough for agents to adjust to this de-
mand change. In fact, we see on days 183-199 that one of
the deficits begins to reduce (one of the rows begins moving
upward), indicating that extra work is being done. In Fig. 2
we can see that toward the end of period 150-200, the green
line of T2 is in fact above 100% completion, indicating ex-
cess work on that task, to the detriment of the others.

6 Discussion: Low vs. High Threshold Tasks
We see that Re-Specializing causes agents to arrive at sub-
optimal task allocation, marked by decreased task com-
pletion and increased task switching. The ability to Re-
Specialize hinges on the ability to stop doing what agents
have Specialized on doing thus far, a behavior that is prob-
lematically opposed to Specialization tendencies. In this sec-
tion, we generalize the behavior observed through ⟨s, θ⟩ ac-
tivations and consider possible Re-Specialization improve-
ments in systems with dynamic task allocation needs.

Specialization and Re-Specialization behavioral differ-
ences stem from differences in initial agents’ task thresh-
olds. When Specializing, agents begin with a random set of
task thresholds, corresponding to having random task affini-
ties and aversions, and thus resulting in random action se-
lection. When Re-Specializing, agents’ thresholds begin at
values near/at 0.0 and1.0, indicating maximal and minimal
affinity (i.e. minimal and maximal aversion), respectively.
Thus, in order to Re-Specialize, agents not only have to
change their existing thresholds, but also to actively over-
come how pre-existing thresholds cause them to act.

The issue with threshold-reinforcement models is that
they focus on allowing agents to Specialize, which by its
very nature hinders Re-Specialization. As agents develop
affinities toward certain tasks, they develop aversions for
others. This favoritism later slows or prevents agents from
adjusting to changes requiring a new task assignment. In
TBD, in particular, we see that the old preferred tasks cause
high probability activations on the left-edge opposing low
probability activations for the newly needed tasks all along
the right-edge, putting new demands at a disadvantage. For
tasks with newly increased demands, there are insufficient
agents acting on them (θa,t=1.0), causing st to grow, indi-
cating that the previous task-assignment is now unsuitable.
For tasks with newly decreased demands, continued actions
from previously Specialized agents decrease st to 0.0. While
every other st along the left-edge causes certain action, prob-
ability to act at st = 0 is 50%, allowing other tasks to be
considered half of the time. These tasks are the ones agents
have grown averse to, with activations of θa,t=1, along the
right-edge of Fig. 1. Probabilities along this edge are low:
Pa,t∈ [0.0, 0.5]), so even when these tasks are considered,
defaulting to idling is likely, further preventing much needed

actions. Additionally, as soon as the preferred tasks are not
acted on for a step, corresponding st increases slightly above
zero, again causing certain action. Thus, agents cannot intel-
ligently prioritize among the high and low deficit tasks.

One way to improve Re-Specialization is to randomly
reinitialize agents θa,t when existing task allocation should
be re-assessed. However, to make such resets possible,
agents must know when to give up their existing Specializa-
tion. One possible heuristic is to assume that drastic changes
in st should trigger a reset in θa,t. An added benefit is that if
st values vary throughout the system, threshold resets take
place only where warranted. Additionally, the drastic change
from Pa,t =0.5 for st =0.0 to Pa,t =1.0 for any infinitesi-
mally larger st goes against the intuition that changes in Pa,t

should be commensurate with changes in st. Consequently,
a less drastic shift in probabilities near ! may be beneficial.

Alternatively, a new model that places equal value on Spe-
cialization and Re-Specialization may be needed. If agents
have no explicit signal to Re-Specialize, the model must al-
low for balancing personal preferences with system needs.
In TBD, when θ = 0, any st>0 results in Pa,t = 1.0, caus-
ing agents to overvalue their preferences to the detriment of
performance. We hypothesize that a model that is commen-
surately sensitive to both stimulus and threshold variations
would be more responsive to Re-Specialization needs.

7 Conclusions
In this work we show that Re-Specialization can be prob-
lematic even when agents can easily Specialize to initial de-
mands. The same forces that drive agents to Specialize, can
get in the way of Re-Specialization, causing slow adjust-
ment as probabilities along for preferred tasks disregard task
deficit levels (except when st=0.0). As demands are likely
to fluctuate throughout in real-world domains, it is of inter-
est to further investigate the conditions causing agents to fail
to Re-Specialize, as well as to devise potential solutions.
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