
Iterative Weighted 2D Orientation Averaging
that Minimizes Arc-Length Between Vectors

Vera A. Kazakova and Annie S. Wu
Department of Computer Science, University of Central Florida

Abstract— The buildup of inaccuracies from frequent and
imperfect data averaging can negatively impact system behavior.
One potential culprit is improper orientation averaging, such
as when combining data from multiple sensors, or reconciling
preferences from multiple agents. In practice, the currently
prevalent methodology of averaging 2D orientations is that of
adding orientation vectors, which minimizes the Euclidean (or
chord) distance among the vectors, instead of the geodesic (or
arc) distance, resulting in inaccurate or even entirely incorrect
averages. While an arc-minimizing alternative exists, it is only
defined for angle averaging, posing an issue if orientations
also possess a meaningful magnitude within the domain. In
this work, we present an iterative weighted 2D orientation arc-
based averaging algorithm that minimizes squared arc-lengths
between points, incorporates orientation magnitudes as weights,
and allows for multiple equally valid averages to be produced
whenever applicable. We compare a vector sum approach and
the weighted arc-based approach as applied to collaborative
transport with obstacle avoidance, and showcase the behavioral
advantages of the arc-based weighted averaging.

I. INTRODUCTION

In this work, we discuss existing methods for averaging 2D
orientations, and propose a new computationally inexpensive
weighted 2D vector averaging algorithm, Weighted Arc-Based
Vector Averaging (WAVA). WAVA is based on un-weighted
angle averaging presented in [1] and does not require mapping
to higher dimensions nor employing gradient descent. While
orientation averaging has been studied for several decades,
the devised approaches are not widely known outside of the
field, and the simpler but suboptimal method of Vector Sum
(VSum) is still commonly employed [1]. Related to orientation
averaging is the problem of "single rotation averaging", where
a single measurement is computed from multiple potentially
noisy samples to improve accuracy [2]. Orientation averaging
is also suited for aggregating data whose variation stems from
differences in agent preferences or their local information,
such as when aggregating directional preferences within a
multiagent transport system [3], [4].

Some data is more naturally modeled as elements on the
curved space. Cyclical (2D) and angular (2D & 3D) data
is common to many scientific applications, such as brain
imaging [5], avian navigation and migration [6], pollutant
concentration [7], Circadian and yearly rhythms [8], and
temporal analysis of events [9]. The non-linear nature of this
data precludes the direct use of standard statistical methods.

Circular data such as 2D orientations can be visualized
as points on a circumference or unit vectors emanating
from the center of a unit circle. 2D orientations can also
be viewed as the group of rotations SO(2), since SO(n)

Fig. 1. Chord vs Arc between agent orientation vectors of:
a) same magnitude; b) differing magnitudes & unscaled avg directions

is the group of distance preserving transformations of the
Euclidean space of n-dimensions, Rn. For an overview of
rotation groups, refer to [10], [11]. The terminology varies
based on the chosen datatype and nature of the metric space,
but circular elements can be referred to as points on the
circumference, vectors, orientations, rotation matrices, Euler
angles, and unit quaternions [1], [2]. Note that although in
differentiable manifold literature (and in this work), rotations
and orientations are used interchangeably, in Euclidean spaces
"rotations" represent spinning, while "orientations" represent
static directions [12], [13]. While orientations (or angles)
reset every 360◦, rotations do not (consider that rotating 0◦,
360◦, and -360◦ are different actions, while their resulting
orientation is the same). In fact, this Euclidean distinction
places rotations in the ratio measurement scale (since rotations
of "zero" mean "none") and orientations in the interval
measurement scale (since the "zero" orientation direction
is purely arbitrary, making ratios meaningless), thus making
the two amenable to different statistical approaches [14].

In the literature, estimations of central orientation are
commonly based on non-Euclidean or Riemannian geometry,
such as the geometric mean (a.k.a. Karcher mean) [15]–[17]
and the geometric median [5]. Nevertheless, and possibly due
to the fact that much of the literature regarding curved spaces
revolves around higher dimensional geometry, convergence
proofs, and restrictions (e.g. [17]), in practice, orientations
are often averaged via the suboptimal but well known chord-
minimizing approach of VSum, where the chord is the
Euclidean (straight line) distance between points (e.g. [3]).
As orientation points and their average reside along the arc,
using the chord distance only approximates (but does not
equal) the more appropriate arc distance based metric (fig.1).

In this work, we discuss existing methods for averaging 2D

orientations and present WAVA, a new computationally inex-
pensive weighted 2D vector averaging algorithm producing
all distinct but mathematically equivalent averages through an
iterative application of arithmetic averaging. WAVA is based
on the un-weighted angle averaging presented in [1] and does
not require mapping to higher dimensions nor employing
gradient descent. We test WAVA against the widely known,
often employed, yet sub-optimal VSum on the domain of
Collective Transport with Obstacle Avoidance (CT-OA).

II. CIRCLE AS A 1-DIMENSIONAL MANIFOLD

To ground our discussion of 2D orientation averaging
within existing literature, we overview how different mani-
folds relate to Euclidean spaces. We also discuss Riemannian
vs. Euclidean distances and review how these are computed.

A manifold is a topological space that locally resembles
Euclidean space [2]. A sphere (a.k.a. 2-sphere) is a 2-
dimensional manifold that locally resembles a 2-dimensional
Euclidean space (a plane), while a circle (a.k.a. 1-sphere) is a
1-dimensional manifold that locally resembles a 1-dimensional
Euclidean space (a line). Riemannian manifolds possess the
notion of distance between two points on the manifold. This
distance is known as the geodesic [2] and corresponds to the
shortest curve between the points along the surface of the
manifold. In the context of a 1-sphere, the geodesic is the
minor arc between points on the circumference (fig.1).

In general, geodesic distance can be obtained by mapping
the points of an n-dimensional manifold to a to a higher
dimensional Euclidean space, calculating the Euclidean
distances in that space, and projecting the mean back to
the initial curved space, thus producing a projected (a.k.a.
induced or extrinsic) arithmetic mean [16], [18]. For example,
when 3D orientations are represented as SO(3) 3x3 rotational
matrices with determinant 1, thus having only 3 degrees
of freedom (appropriate for 3D), their projected arithmetic
mean can be computed in the Euclidean ambient spaceM(3),
which is comprised of all 3x3 matrices, thus representing a
higher dimensional space [19].

Alternatively, we may be able to compute the geodesics
directly on the initial curved space, producing an intrinsic
mean. In a 1-sphere (a circle) we can find the arc length using
the following ratios: ∠◦

360◦=
∠rad

2π = arcLength
circumference=

arcLength
2πR .

For the more general case of Riemannian manifolds, using
the Riemannian (geodesic) metric intrinsic to the group of
rotations leads to the geometric mean [18].

The projected approach is also used to map points to a lower
dimensional space instead, going from a curved 2D space of a
circle (1-sphere) down to a 1D line segment (0-sphere). This
allows for standard Euclidean arithmetic averaging, but incurs
the additional cost of recalculating the central statistic n times
given n orientations. Nevertheless, with some simplifications
the new complexity is reduced to O(n log n), dominated by
the need for a sorted list, but avoiding trigonometric operators,
resulting in runtimes similar to those of VSum [1].

III. BACKGROUND OF 2D ORIENTATION AVERAGING

Having introduced the circular space and its distances,
we now discuss averaging orientations in this space. We

first review the geometric interpretations of common center-
measures. We then discuss two orientation averaging methods:
the widely used VSum and the less common Arc-Minimizing
Angle Averaging [1], along with their shortcomings.

A. Distance minimization in Central Tendencies

When calculating central tendencies, the aim is to minimize
the sum of distances between the points and the center-
measure, raised to some power. The domain and the data
dictate the type of distance metric to be used (angular,
Euclidean, arc or geodesic, etc.), as well as the power (1
or 2) to which the distances will be elevated [2]

For metric data, central tendency is commonly estimated
via the mean or the median, minimizing inter-point distances
defined for the space. The arithmetic mean minimizes the sum
of squared Euclidean distances from each point to the mean,
while the median minimizes the sum of absolute Euclidean
distances from each point to the mean [14],

a.mean = argmin
x

n∑
k=1

dE(xk, x)2 (1)

median = argmin
x

n∑
k=1

|dE(xk, x)| (2)

where dE(x1, x2)=(x1−x2) corresponds to the linear distance
between two points in Euclidean space. When applied in the
context of a circle, dE corresponds to the length of the chord
between two points on the circumference [18].

For the geometric mean, aside from its usual definition,
g.mean= n

√∏n
k=1 xk, we can instead take the a.mean of

the logarithms of every value, and subsequently take the
antilogarithm of the result. This interpretation implies that
values near 1 are given higher weight than those further away
on either side [14].

g.mean = exp{
∑n

k=1 log(xk)

n
} (3)

The geometric mean minimizes the squared geodesic (a.k.a.
Riemannian or hyperbolic) distances from each point to the
mean[18], [20]. For an overview of the various geometric
mean characterizations, see [14] and [21]. Just as in Euclidean
spaces, the geometric median is a robust statistical estimator
designed to overcome the geometric mean’s sensitivity to
outliers. The difference between the two geometric statistics
lies in whether the Riemannian distances will be squared
or not [5]. Thus, mean is also known as the L1-norm and
median as L2-norm, with the integer representing the power
to which the distances are elevated [2], [22]. Gradient descent
algorithms for geodesic L1 and L2 means are available in [2].

g.mean = argmin
x>0

n∑
k=1

dR(xk, x)2 (4)

g.median = argmin
x>0

n∑
k=1

dR(xk, x) (5)

Here dR(x1, x2)=| log x1− log x2| corresponds to the non-
linear distance between two points in Riemannian space [20].
In the context of a circle, dR corresponds to the length of
the arc between two points on the circumference [18] (fig.1).

These formulas view orientation as points on a circum-
ference. If orientations are instead represented as rotation
matrices, the above definitions all have their corresponding
rotation-based formulations that closely parallel the point-
based definitions presented here. Rotation-based formulations
are available in [16]. An alternative angle-axis formulation
and the corresponding angular distance is provided in [2]. If
orientations are represented as quaternions, the quaternion dis-
tance metric can be used. This metric and the corresponding
quaternion L1 and L2 means are available in [2].

B. Vector Sum (VSum) Averaging

Among those not versed in non-Euclidean spaces, by far
the most ubiquitously known and used approach to orientation
averaging is VSum. Below we present its mathematical
definition, its geometric interpretation, and its potential
shortcomings.

VSum produces a component-wise sum of a set of n vectors,
which is subsequently averaged according to the following
equation:

−−−→mean = 〈
∑n

i=1 xi

n
,

∑n
i=1 yi

n
〉 (6)

which can be intuitively extended to averaging angles:

θ̄ = arctan2

(∑n
i=1 sin(θi)

n

/∑n
i=1 cos(θi)

n

)
(7)

The geometric interpretation of VSum is that of minimizing
the squared Euclidean distances (i.e. chord length in fig.1)
between vectors if we visualize them as points on the circum-
ference of a unit circle[1]. Consequently, VSum produces
inaccurate means in domains that require arc minimization.

For clarity, consider vectors 〈2, 0〉 and 〈1, 0〉, pointing
toward 0◦ and 90◦, depicted in fig.1(b). The expected average
is (2∗0◦+90◦)/3=30◦, which intuitively makes sense given
that the central measure is being pulled twice as hard toward
0◦ than toward 90◦, subdividing the entire interval into 1+2
parts, and placing the mean 2 parts away from 90◦ and 1 part
away from 0◦, with each part being 30◦ (as 90◦−0◦=part+
2part). However, VSum returns a −−−→mean= 〈 1+1+0

3 , 0+0+1
3 〉=

〈 23 ,
1
3 〉, pointing toward arctan2(1

3/
2
3)=26.565◦, and thus

does not match our expectation. Note that this scenario is
identical to that of averaging vectors 〈1, 0〉, 〈1, 0〉, and 〈0, 1〉.
Note also that average directions in fig.1(b) are left unscaled
for clarity, so their depicted magnitudes should be disregarded.
Unfortunately, the intuitive averaging employed above is
not generally applicable to circular quantities given their
wrap-around nature. For example, consider that averaging
orientations of 170◦ and -170◦ should result in 180◦, not 0◦.

While VSum does not directly cancel out angles, it does by
its nature cancel out positive and negative vector components,
which can be undesirable. Consider, for example, the directly
opposing vectors 〈1, 0〉 and 〈-1, 0〉, pointing toward 0◦ and
180◦, respectively. Under VSum, the mean direction is the
zero vector. However, the expected average orientation of
pointing toward 0◦ and 180◦ is to either point toward 90◦ or
toward -90◦=270◦, showcasing that sets of circular quantities
can possess multiple equivalent means. Depending on the

domain, the final mean can be chosen either by a domain-
specific heuristic (e.g. which mean is pointing closer to the
goal direction?), at random, or even left as a set of means.

C. Arc-Minimizing Angle Averaging (AMAA)

To address the inaccuracy of the VSum results discussed in
the previous section, we now turn to an alternative averaging
approach: the Arc-Minimizing Angle Averaging (AMAA)
algorithm, originally proposed in [1]. While this method does
produce the intuitive arc-minimizing average angles, it is
not directly applicable for averaging vectors. In this section,
we review AMAA, discuss its geometric interpretation, and
analyze its shortcomings.

AMAA maps angles to the interval [0,2π), linearly sorts
them, finds the mean and variance of the sorted list, then shifts
the smallest angle to last place by adding 2π to its value,
and repeats the process. After every shifted arrangement
has been considered, the mean with the lowest variance
is returned. Note that M1 and M2 in [1] do not match to
standard definitions of first and second raw moments, but
rather the un-averaged sums of the angles and angles squared,
respectively [23]. The alternative definition simplifies the
adjustments needed on each iteration, although perhaps a
renaming would have been more suitable. We leave the
reasoning details to the original work, but do include the
standard moment definitions (w.r.t. averaging n angles) and
their relation below, to clarify the concepts instrumental to
the angle averaging approach.

1st raw moment:
(mean) M1−raw =

∑n
k=1 θk

n
(8)

2nd raw moment: M2−raw =

∑n
k=1 θ

2
k

n
(9)

1st central moment: M1−central =

∑n
k=1(θk − θ̄)

n
(10)

2nd central moment:
(variance) M2−central =

∑n
k=1(θk − θ̄)2

n

= M2−raw − (M1−raw)2 (11)

The geometric interpretation of this approach is the
minimization of the arc-lengths between the angles, making
it appropriate for angle-based orientation averaging, given
that differences between angles are proportional to arc
length [1]. Minimizing squared arc lengths is optimal when
measurements are at most π radians away from the mean, as
is the case with orientations, which reset every 2π radians. As
a result, AMAA does indeed produce the intuitively expected
orientation averages (e.g. 0◦, 0◦, and 90◦ average to 30◦, as
opposed to 26.565◦ produced by VSum).

As AMAA is designed for angles, it is only directly appli-
cable to unit vectors (or vectors with equivalent and therefore
negligible magnitudes). There are instances, however, where
vector magnitudes may indicate useful information, such as
directional preferences of multiple agents (e.g. the closer the
obstacle, the larger the preferred OA orientation vector) [4],
and thus angle averaging would not suffice. Additionally,
the algorithm does not explicitly handle cases of multiple

equivalent solutions (such as when the averaged directions
are directly opposed, discussed in sec. III-B).

IV. WEIGHTED 2D ORIENTATION AVERAGING
PROJECTED TO LOWER DIMENSIONS

We propose a new Weighted Arc-Based Vector Averaging
(WAVA) approach that addresses the discussed shortcomings
of VSum and AMAA. The WAVA algorithm (1) represents a
new optimal and computationally inexpensive weighted 2D
vector averaging, employing an iterative application of arith-
metic averaging, without mapping to higher dimensions nor
employing gradient descent, (2) generates all mathematically
equivalent average orientations, and (3) augments AMAA
with the ability to take vector magnitudes into account, thus
transforming an angle-based orientation averaging into a more
informed vector-based orientation averaging.

Unweighted and weighted geometric mean and median
algorithms already exist [5], [16], and generally employ
a steepest descent on the distances, proposed in [24] and
translated in [25], which imposes restrictions on the data
and involves higher dimensional concepts and convergence
proofs. The reason for higher dimensional considerations is
that projected metrics are mapped from an n-dimensional
manifold to a space of more than n dimensions [16], [18].
In creating an n-dimensionally applicable methodology, the
approach is complicated through concepts and constraints
somewhat excessive for the 2D domain, likely diminishing
general accessibility, and possibly explaining the popularity
of VSum orientation averaging in 2D applications.

In this work, we combine the un-weighted projection of
angles to a lower dimensional space employed in AMAA [1]
with a weighted arithmetic mean (w.a.mean):
w.a.mean = [

∑n
k=1 (wk∗∠k)]/[

∑n
k=1 wk], where wk is |

−→
k |

The AMAA is optimal for 2D orientation averaging while
also being computationally cheaper and conceptually simpler
than mapping to higher dimensions. The main idea behind
the weighting augmentation is that, due to mapping to a
1D Euclidean space (thus this is also a projected mean),
we can perform standard weighted averaging, barring some
small adjustments to get the iterative and reordering nature
of the original un-weighted approach. As vector magnitudes
correspond to weights of the vector direction, the new method
can be more generally regarded as a vector averaging method.

The proposed algorithm linearly sorts orientation vectors
in increasing angle order (where angles are computed as
arctan2(vector.xvector.y)), finds the weighted mean of the sorted
list, computes the variance, shifts the vector with the smallest
angle to the end by adding 2π|−→v | to its value, and repeats the
process. After every shifted arrangement has been considered,
the means with the lowest variance are reviewed and a
preferred mean is selected using some domain-specific criteria
(note that multiple means may be of interest in some domains).
A vector corresponding to the chosen mean angle is computed
and scaled by the mean magnitude of the averaged vectors.
Fig.2 presents the iterative WAVA algorithm.

In addition to the new weighting capabilities, we also
include an ability to consider multiple equally valid averages,

M1 = 0, M2 = 0, sumMagnitudes = 0, σ2 =∞
for (i=1 to N){

//working with vectors so no need to mod angles by 2π
sumMagnitudes+= |−→vi |
M1+= −→vi .angle ∗ |−→vi |
M2+= (−→vi .angle ∗ |−→vi |)2
//vector.angle = arctan2 (vector.y / vector.x) radians }

[sort vectors in ascending angle order]
create empy list of bestMeanAngles
for (i=1 to N){ //where N is number of vectors to be averaged

if (i > 1){
//transform current smallest angle to largest (add 2π)

[store first of sorted vectors as
−−−−−−−→
minAngle]

M1+= 2π ∗ |
−−−−−−−→
minAngle|

M2+= (4π
−−−−−−−→
minAngle.angle+ (2π)2) ∗ |

−−−−−−−→
minAngle|

[move
−−−−−−−→
minAngle to end of sorted vector list] }

θ̄i = M1/sumMagnitudes
σ2
i = M2 − 2M1θ̄i + sumMagnitudesθ̄2i

if (σ2
i < σ2){ //new best mean found

bestMeanAngles.empty()
bestMeanAngles.add(θ̄i)
σ2 = σ2

i }
else if ((σ2

i == σ2)//new equivalent mean found
bestMeanAngles.add(θ̄i) }

if (bestMeanAngles.count > 1)
θ̄ = [use a domain specific heuristic or pick at random]

else
θ̄ = bestMeanAngles.elementAt(0)

//get vector corresponding to θ̄, scaling components by avg|−→vi |
return new vector (cos(θ̄ sumMagnitudes

N),sin(θ̄ sumMagnitudes
N))

Fig. 2. Weighted Arc-Based Vector Averaging (WAVA)

if more than one is found. An infinite number of values
can represent a single rotation, thus allowing for infinite
averages. However, since vector directions are restricted 0−2π
or 0◦−360◦, we can ensure that only unique values are
generated. Multiple mathematically equivalent averages may
in fact exist, although they may not be equally suitable given
some domain (e.g. two directly opposing averages where one
points in direction of current motion, while the other requires
a complete turn-around). In contrast, AMAA chooses the first
squared arc length minimizing mean angle it encounters [1].
It is possible, however, that all means are useful for a given
domain, or that domain-specific knowledge can be used to
pick a subjectively best mean. In the case of orientation
averaging in CT-OA, it is sensible to choose the output vector
that forms the smallest angle with the goal beacon direction.

V. TESTING DOMAIN: CT-OA

To showcase the benefits and small costs of the new
approach, we apply both the new WAVA and VSum to the
task of Cooperative Transport with Obstacle Avoidance (CT-
OA), consisting of multiple agents jointly moving an object.
In this section, we overview the task of CT-OA, existing
work, and how domain behavior can be improved.

The majority of existing CT work has focused on obstacle-
free environments (e.g. [26]–[29], but two recent works have
tackled CT combined with obstacles: [3], [4]). Performance
of CT-OA is directly affected by orientation averaging: an
agent’s OA behavior is predicated on directions to obstacles,
thus direction aggregation dictates behavior in the presence
of multiple obstacles or multiple sources of obstacle data.
In [4], each sensed obstacle creates an OA vector in the
opposing direction, with a magnitude inversely proportional

to the distance between agent and obstacle. All such vectors
are aggregated into an agent’s preferred direction vector, to
be shared with its peers (i.e. agents within line of sight,
within some communication radius, or even all agents in the
group). Every time step, each agent will receive its peers’
preference vectors and aggregate them with its own preference,
producing a final movement direction. This approach is shown
to outperform the alternative of agents only considering
their own nearest obstacle (without considering its distance)
and, if any are present, disregarding peer preferences, and
“stubbornly” moving away from said obstacle [3].

Aggregating OA orientation preferences from multiple
peers should leverage all available information. While
CT has been tackled by decentralized leader-follower ap-
proaches ([30]–[32]), we focus on a fully decentralized
approach (such as used in [3], [4]), given its need for effective
collaboration through orientation aggregation. A decentralized
group must collaborate to efficiently move an item too heavy
or unwieldy for a single agent, while navigating around
obstacles that may be obscured from view of any one agent
by the transported object itself. If agents on a CT team signal
different preferred movement directions (i.e. new orientations)
based on their individually perceived obstacles, each team
member needs to aggregate these peer preferences with its
own before choosing its final movement direction.

The CT algorithm in [4] aggregates orientations on two
levels: it averages OA vectors when forming a directional
preference, and it averages the received peer preferences to
produce a final movement direction. These two steps are
repeated for every agent, on every time step, assuming one
move per time step. As these averages are the driving force
behind the team’s movement, they need to be as accurate as
possible, making CT-OA an ideal candidate for comparing
orientation averaging methods.

In [4], un-weighted VSum averaging is shown to perform
similarly to no averaging, and thus substantially worse than
weighted VSum presented , which requires, on average, 41%
of the steps required by averaging-free system from [3]. Since
AMAA cannot account for distance-based orientation mag-
nitudes, we do not compare WAVA to AMAA’s unweighted
approach. Weighted VSum also improves the team’s ability to
navigate through an obstacle ridden map even while carrying
a complex-to-maneuver cargo. Consequently, the basic system
specifications in this work follow those in [4].

VI. EXPERIMENTAL SETUP

To demonstrate the quantitative and qualitative differences
between the VSum and WAVA methods, we test two CT
systems that differ solely in their approaches for orientation
averaging. Agents are homogeneous across all physical
aspects and possess a 360◦ vision span. The tested systems
are implemented in a 2D environment, using C# within
the Unity physics engine. Performance is measured in the
number of time-steps it takes the team to reach the goal. Each
system+scenario combination is tested 30 times to account
for randomness resulting from employing a physics engine in
our simulations. To assess the orientation averaging effects in

Fig. 3. Testing Setups: maps and team arrangements

(colored lines are agents paths from a sample run of the W.Arc-Based Avg system)
(1) 3 agents, all peers (black arrows = peers), vision = 2.0∗agentDiameter
(2) same as setup (1) but on a narrower map
(3) same map & vision as (1); 5 agents in front, 4 at rear; peers within line of sight

CT-OA, we setup five testing scenarios, varying agent vision
range, map difficulty, team size, and cargo maneuverability.

Vision range variations are tested with a team of 3 agents,
where everyone is everyone’s peer. This environment is shown
in fig.3(1), while the team itself is shown in top-right corner
of fig.3. Additionally, we test the systems on two more
challenging scenarios: (fig.3(2)) an identical but narrower
map to test system robustness when navigating tighter turns;
and (fig.3(3)) the original wider map, but this time with a
longer and thus more complex-to-maneuver cargo, as well
as a larger team of 9 agents, whose peer assignments are
determined by line of sight, thus grouping the agents into two
neighborhoods of communicating sub-teams. For these two
tests the agent vision radius is kept at 2.0∗agentDiameter.
Note that these scenarios represent the maximum complexity
that the employed simplistic OA can handle (i.e. moving
directly away from sensed obstacles), as discussed in [4], but
it nevertheless allows for testing the improvements stemming
from sensible orientation averaging alone.

VII. RESULTS AND DISCUSSION

Table I compares the effects of orientation averaging
methods within CT-OA. WAVA consistently outperforms
VSum, although benefits vary across scenarios.

In the simplest scenario (fig.3(1)), WAVA outperforms
VSum but only by roughly one st.dev. (table I, col.1-3).
Predictably, with increasing vision radii, teams’ performances
improve. These tests show that both approaches are able to
take advantage of vision increases, unlike the non distance-
based VSum method presented in [3] and discussed in [4].

On the narrower map (fig.3(2)), WAVA greatly outperforms
VSum (table I, col.4), requiring on average less than half
of the time steps to reach the goal (455.5/975.2 = 46.7%).
Additionally, st.dev. for WAVA is a mere 15%(123.1/665.5)
of the VSum st.dev., indicating higher system predictability
and reliability. In fact, we observe the VSum team often
getting temporarily stuck on the last bend in the path (fig.3(2)),
resulting in a st.dev of more than the total steps required by
the Weight Arc-Based method (665.6 vs 455.5).

small rounded cargo, 3 agents long narrow cargo, 9 agents
vis=1.5*aDiam vis=2.0*aDiam vis=5.0*aDiam tighter map, vis=2.0*aDiam vis=2.0*aDiam

W. VSum Avg 430.4 (sd 14.4) 380.5(sd 15.3) 334.5(sd 8.9) 975.2 (sd 665.5) 872.6 (sd 39.7)

W. Arc-Based Avg 391.7 (sd 12.3) 362.7(sd 13.0) 318.5 (sd 11.8) 455.5 (sd 123.1) 681.8 (sd 14.4)

TABLE I
TIME STEPS TO GOAL (LOWER VALUES INDICATE BETTER PERFORMANCE IN CT-OA).

AVG. & ST.DEV. FROM 30 RUNS FOR EACH SCENARIO: VARYING AGENT VISION, CARGO SIZE/SHAPE, TEAM SIZE & FORMATION, AND TWO MAPS.

In the last and most complex testing scenario, more
agents carry a longer cargo (fig.3(3)). Both teams reach
the goal, but WAVA takes the lead (table I, col.5), re-
quiring 78.1%(681.4/872.6) of VSum’s time steps, and a
14.4/39.7 = 36.3% of the VSum st.dev. Thus, the unwieldy
cargo scenario reinforces the maneuverability findings from
the narrow map, while demonstrating that WAVA produces
better navigational decisions even in larger groups of agents.

VIII. CONCLUSIONS

In this work, we present a new computationally inexpensive,
weighted 2D orientation averaging algorithm, WAVA, capable
of producing all distinct but mathematically equivalent
averages through an iterative application of simple arithmetic
averaging. WAVA finds average 2D orientations that minimize
arc-lengths between orientation vectors, while weighting
the directional values according to vector magnitudes. The
approach is based on un-weighted angle averaging [1] and
does not require mapping to higher dimensions, employing
gradient descent, or even trigonometric functions. Through
an iterative application of basic arithmetic averaging, the
algorithm can generate multiple distinct but mathematically
equivalent optimal averages, when applicable.

We apply WAVA to CT-OA to demonstrate its general
properties and advantages. WAVA consistently outperforms
VSum, although the benefits are not always equally dramatic.
Since vector averaging is an integral part of many construction,
robotic and AI domains (e.g. CT), Computer Vision (e.g. hue
averaging), as well as physics, geometry, and mathematics
in general, the simplicity and efficiency of the proposed
weighted averaging algorithm is of value for any domain
with meaningful vector magnitudes and where the mean is
expected to minimize arc distances between vectors.

REFERENCES

[1] E. Olson, “On computing the average orientation of vectors and lines,”
in IEEE Int’l Conf. Robotics and Automation, 2011, pp. 3869–3874.

[2] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” Int’l J
Computer Vision, vol. 103, no. 3, pp. 267–305, 2013.

[3] E. Ferrante, M. Brambilla, M. Birattari, and M. Dorigo, “Socially-
mediated negotiation for obstacle avoidance in collective transport,” in
Distributed Autonomous Robotic Systems, 2013, pp. 571–583.

[4] V. A. Kazakova and A. S. Wu, “Smarter sharing is caring: Weighted
averaging in decentralized collective transport with obstacle avoidance,”
in Proc. 29th FL Artificial Intelligence Research Conf., 2016.

[5] P. T. Fletcher, S. Venkatasubramanian, and S. Joshi, “The geometric
median on Riemannian manifolds with application to robust atlas
estimation,” NeuroImage, vol. 45, no. 1, pp. S143–S152, 2009.

[6] S. T. Emlen, “Migratory orientation in the indigo bunting, passerina
cyanea: part i: evidence for use of celestial cues,” The Auk, vol. 84,
no. 3, pp. 309–342, 1967.

[7] R. A. Johnson and T. Wehrly, “Measures and models for angular
correlation and angular-linear correlation,” J Royal Statistical Society.
Series B (Methodological), pp. 222–229, 1977.

[8] D. S. Minors and J. M. Waterhouse, “Mathematical and statistical
analysis of circadian rhythms,” Psychoneuroendocrinology, vol. 13,
no. 6, pp. 443–464, 1988.

[9] D. R. Cox, P. A. W. Lewis, P. A. W. Lewis, and P. A. W. Lewis, The
statistical analysis of series of events., ser. Methuen’s monographs on
applied probability and statistics. London, Methuen, 1966.

[10] C. Triola, “Special orthogonal groups and rotations,” Ph.D. dissertation,
University of Mary Washington, 2009.

[11] S.-H. Dong, Wave Equations in Higher Dimensions. Springer
Netherlands, 2011, ch. 2: Special Orthogonal Group SO(N), pp. 13–38.

[12] T. Bajd, M. Mihelj, and M. Munih, Introduction to Robotics. Springer
Science & Business Media, 2013.

[13] L. Vicci, “Averages of rotations and orientations in 3-space,” UNC
Chapel Hill, Department of Computer Science, Tech. Rep., 2001.

[14] H. Weisberg, Central Tendency and Bariability. Sage, 1992.
[15] A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,”

SIAM J Control and Optimization, vol. 48, no. 1, pp. 56–76, 2009.
[16] M. Moakher, “Means and averaging in the group of rotations,” SIAM

J Matrix Analysis and Applications, vol. 24, no. 1, pp. 1–16, 2002.
[17] J. H. Manton, “A globally convergent numerical algorithm for com-

puting the centre of mass on compact Lie groups,” in 8th Control,
Automation, Robotics and Vision Conf., vol. 3, 2004, pp. 2211–2216.

[18] B. A. Stanfill, Statistical Methods for Random Rotations. ProQuest
LLC, Ann Arbor, MI, 2014.

[19] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley, 2000.
[20] M. Moakher, “A differential geometric approach to the geometric mean

of symmetric positive-definite matrices,” SIAM J Matrix Analysis and
Applications, vol. 26, no. 3, pp. 735–747, 2005.

[21] J. D. Lawson and Y. Lim, “The geometric mean, matrices, metrics,
and more,” The American Mathematical Monthly, vol. 108, no. 9, pp.
797–812, 2001.

[22] R. Hartley, K. Aftab, and J. Trumpf, “L1 rotation averaging using
the Weiszfeld algorithm,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2011, pp. 3041–3048.

[23] J. F. Kenney and E. S. Keeping, Mathematics of Statistics Part 1. D.
Van Nostrand Company Inc, 1939.

[24] E. Weiszfeld, “Sur le point pour lequel la somme des distances de
n points donnés est minimum,” Tohoku Mathematical Journal, First
Series, vol. 43, pp. 355–386, 1937.

[25] E. Weiszfeld and F. Plastria, “On the point for which the sum of
the distances to n given points is minimum,” Annals of Operations
Research, vol. 167, no. 1, pp. 7–41, 2009.

[26] B. R. Donald, J. Jennings, and D. Rus, “Information invariants for
distributed manipulation,” The Int’l J Robotics Research, vol. 16, no. 5,
pp. 673–702, 1997.

[27] S. Yamada and J. Saito, “Adaptive action selection without explicit
communication for multirobot box-pushing,” IEEE Trans. Syst., Man,
Cybern. C, vol. 31, no. 3, pp. 398–404, 2001.

[28] A. Campos, S. Nouyan, M. Birattari, R. Groß, and M. Dorigo,
“Negotiation of goal direction for cooperative transport,” in Ant Colony
Optimization and Swarm Intelligence. Springer, 2006, pp. 191–202.

[29] R. Groß and M. Dorigo, “Towards group transport by swarms of robots,”
Int’l J Bio-Inspired Computation, vol. 1, no. 1/2, p. 1, 2009.

[30] D. J. Stilwell and J. S. Bay, “Toward the development of a material
transport system using swarms of ant-like robots,” in Proc. IEEE Int’l
Conf. Robotics and Automation, 1993, pp. 766–771.

[31] K. Kosuge, T. Oosumi, M. Satou, K. Chiba, and K. Takeo, “Transporta-
tion of a single object by two decentralized-controlled nonholonomic
mobile robots,” in Proc. IEEE Int’l Conf. Robotics and Automation,
vol. 4, 1998, pp. 2989–2994.

[32] Z.-D. Wang, Y. Takano, Y. Hirata, and K. Kosuge, “A pushing
leader based decentralized control method for cooperative object
transportation,” in Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and
Systems, vol. 1, 2004, pp. 1035–1040.

