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Abstract

In this work, we investigate how the order in which tasks
are considered to be acted upon by probabilistic agents with
time-variant response thresholds within a fully decentralized
multiagent system may affect task allocation, task fulfillment
levels, specialization tendencies, and system robustness. The
tested ordering schemas are: (1) ascending subjective ac-
tion threshold, (2) descending objective task stimulus, (3)
descending action probability P as defined by (Theraulaz,
Bonabeau, and Deneubourg 1998) which combines both sub-
jective threshold and objective stimulus, and (4) a random or-
dering to serve as a baseline for comparison. As the behavior
of real-world systems tends to stem from complex interac-
tions of multiple system aspects, we expand our analysis by
further breaking down each of these ordering approaches into
positive vs. negative reinforcement under different learning
and forgetting rates for updating agent response thresholds.

Introduction

Multiagent systems (MAS) are often promoted as better al-
ternatives to complex single agent systems due to their dis-
tributed nature and amenability to simpler agents, poten-
tially allowing for increased robustness and decreased costs.
However, there are also tasks that simply cannot be accom-
plished by a single agent, necessitating a cooperative multi-
agent approach. For example, large scale herding or flank-
ing problems require multiple agents due to the sheer size
and number of the elements being herded. Similarly, prob-
lems such as perimeter protection, cooperative transport, and
cooperative collection are examples of domains that may
require the concurrent activity of multiple agents because
of spatial demands or limitations of individual agent’s ca-
pabilities. In such problems, effective coordination among
the agents is crucial to successful task completion, but in
scalable solutions direct communication among the agents
often must be limited or even non-existent. Consequently,
real world problems often necessitate solutions that rely on
implicit coordination and carefully studied and predictable
system-wide emergent behavior.

In this paper, we examine how task consideration or-
der may affect distributed task allocation in a decentralized
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multiagent system. Specifically, we are interested in prob-
lems in which a decentralized MAS must achieve an ef-
fective division of labor for group tasks and team tasks,
as defined by (Anderson and Franks 2003), where multi-
ple agents are needed to act concurrently on one or more
tasks. Team tasks are similar to the coalition formation
problem in the MAS literature (Gerkey and Mataric 2004;
Shehory, Sycara, and Jha 1998; Shehory and Kraus 1998).
Agents are the resources available to satisfy task demands,
each working on a single task per time step, the system goal
being to maximize task completion through the appropriate
allocation of resources/agents to demands/tasks at any given
moment.

Much of the work in this area is inspired by social in-
sect societies, given their elegant and decentralized multi-
agent solutions to sophisticated large-scale survival prob-
lems such as ant colony defense and foraging, bee hive
thermo-regulation, etc. Our system is based on the response
threshold model proposed by (Bonabeau, Theraulaz, and
Deneubourg 1998), which has been shown to correlate with
experimental observations of division of labor in insect soci-
eties. Extending their fixed response threshold model to in-
clude dynamic adaptation of agent threshold values results in
specialization among agents within the system (Theraulaz,
Bonabeau, and Deneubourg 1998). The resulting response
threshold reinforcement model has been studied extensively
including, but not limited to, examination of colony size ef-
fects on worker specialization (Gautraist et al. 2002); the im-
pact of task demands, age, and mortality on worker special-
ization (Merkle and Middendorf 2004); and the evolution
of specialization in systems of reproducing agents (Duarte
et al. 2012). While many of these models assume globally
available stimuli, e.g. all insects in a nest can see how big
the food pile is, specialization has also been shown to occur
on the basis of local information (Agassounon and Marti-
noli 2002). Variations of the response threshold reinforce-
ment model have been applied to a variety of task allocation
problems (Castello et al. 2013; Cicirello and Smith 2003;
Ferreira Jr., Boffo, and Bazzan 2007; Nouyan 2002).

Most applications of the response threshold reinforcement
model appear to assume that agents are offered one task at
a time and their job is to decide whether or not to take (or
bid for) the available task. If multiple agents want a task,
the task “offeror” decides who “wins” the task. However, in
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many real world problems agents may sense multiple system
demands at the same time, and if an agent has more than one
response threshold lower than the corresponding task stimu-
lus value, then it will need to choose one from among mul-
tiple tasks in demand. While some studies do allow for the
possibility of agents having to choose from among multi-
ple tasks, the choice is made randomly (Jeanson et al. 2007;
Duarte et al. 2012; Goldingay and Mouric 2013). We con-
tend that the strategy by which agents select a task from
among the available choices is likely to affect the ability of
the MAS as a whole to meet all task demands. Additionally,
a centralized approach requiring an entity to select a win-
ner from among multiple bids may limit the scalability of
the system due to: (1) requiring communication between the
central unit and the other agents, (2) the central agent being
a likely bottleneck and a source of vulnerability, (3) larger
teams would result in numerous bids to be assessed, and
(4) potentially complex bid supporting arguments could re-
quire argumentation methodologies to be incorporated into
the centralized task assignment algorithm. These issues can
be circumvented through a decentralized approach in which
task choice decisions lie within each individual agent.

In this work, we examine the effect of task consideration
order on the ability of a decentralized MAS to meet the de-
mands of one or more tasks. Task order refers to the order in
which tasks are considered by the agents during probabilistic
action selection: given a random value rVal in the range [0.0-
1.0), and some ordered set of tasks, if rVal is higher than the
probability of selecting the first task, the following task is
considered, and so on until a probability above rVal is found
and the corresponding task is acted upon. Consequently, the
order of task consideration is important because once a task
is selected, any tasks yet to be considered are ignored by that
agent until some future point (e.g. end of time-step, selected
task completion, etc.). As a result, tasks which come later
in the ordering for many agents may rarely if ever receive
consideration, which can lead to some tasks monopolizing
the agents’ time while others get systematically neglected.
As task demands increase with respect to available system
resources, it is likely that the negative effects resulting from
such improper resource allocation will be magnified.

The task order can be a function of numerous system
specifics and requirements. The agents may focus on the sys-
tem’s overall need for that task’s completion or a local need
for the task, and the level of the need may even be dictated
by the nature of the task itself (e.g. if there is a fire, it might
be wise to disregard any other considerations); the agents
may be guided by reinforcement learned behaviors leading
them to prefer tasks they’ve performed before; agents may
also be guided by a predilection toward becoming a special-
ist (by focusing on a single task) or a generalist (by ensur-
ing their time is spread among multiple tasks). In (Ther-
aulaz, Bonabeau, and Deneubourg 1998), authors combine
a task’s stimulus value and the agent’s learning/forgetting-
based threshold for that task into a single probability, allow-
ing agents to be simultaneously guided by their own experi-
ences as well as by the system’s demands.

For our investigation, we employ the widely used prob-
ability formula proposed by (Theraulaz, Bonabeau, and

Deneubourg 1998). We assess how the order in which
available tasks are considered by probabilistic agents af-
fect task allocation, task fulfillment levels, specialization
tendencies, and system robustness. Our fully decentral-
ized multiagent system is composed of probabilistic agents,
with reinforcement-based response thresholds. The ordering
schemas tested here are: (1) ascending agent action thresh-
old for the task, (2) descending system stimulus for the task,
(3) descending action probability P as defined in (Theraulaz,
Bonabeau, and Deneubourg 1998) that combines both the
agent’s task threshold and the system’s task stimulus level,
and (4) a random ordering to serve as a baseline for the com-
parison. As the behavior of real-world systems tends to stem
from complex interactions of multiple system aspects, we
expand our analysis by further breaking down each of these
ordering approaches into that based on positive (+R) vs. neg-
ative reinforcement (-R) techniques for agents’ threshold up-
dates. This distinction allows for the investigation of the ef-
fects task orderings have in systems where agents are en-
couraged to or discouraged from repeatedly focusing on the
same tasks. Additionally, we incorporate a parameter to vary
how likely agents are to consider switching to a new task
on each time step, effectively incorporating a probabilis-
tic response duration, which has been previously defined
as a parameter of natural probabilistic behavior, alongside
response thresholds and probabilistic action (Weidenmüller
2004). Note, however, that unlike in (Weidenmüller 2004),
our threshold and action probability are not decoupled, but
instead the probability depends on the threshold, as defined
in (Theraulaz, Bonabeau, and Deneubourg 1998).

Borrowed System Specifications

The basic structure of our system is the same as that
of the original variable response threshold reinforcement
systems (Gautraist et al. 2002; Theraulaz, Bonabeau, and
Deneubourg 1998).

Our agent-based system consists of n agents ai, i ∈
[0, n−1], who jointly attempt to satisfy the needs of m glob-
ally available tasks. Each task Tj , j ∈ [0,m− 1], has an as-
sociated stimulus value Sj which is perceived by all agents
and indicates the current level of need for that task. Higher
stimulus values indicate a greater system need for the task
to be acted upon. Each agent has m thresholds, one for each
task, such that θij is agent ai’s threshold for task Tj .

All agents are capable of working on all tasks, at most one
task per time step. In each time step, every agent that is not
continuing on its current task will select a task on which to
work. For any given task Tj , the probability that agent ai
will choose to work on it is Pij = S2

j /(S
2
j + θ2ij)

1.
During each timestep, task stimulus values Sj are ad-

justed by the task demand, σj , and by agent contributions
from the previous time step. Agents engaged in a task Tj

can each contribute α to that task’s goal, causing the fol-
lowing update to its stimulus value on any one timestep:
Sj = Sj + σj − α ∗ Ej , where Ej is the number of agents
engaged in task Tj during that timestep.

1Note that the probability that agent ai will choose to work on
task Tj increases as θij decreases and as Sj increases.
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Updated Model Specifications

Where our system diverges from previous works (Gautraist
et al. 2002; Theraulaz, Bonabeau, and Deneubourg 1998) is
in the dynamics of the agent’s action selection process at
each timestep.

In most previous studies using the a variable response
threshold reinforcement method, agents sense or are offered
at most one task in each timestep. Given a task, an idle agent
selects or bids for the task with probability Pij . If more than
one agent wants to work on the task, a “winning” agent is
chosen by the system.

In our approach, agents can simultaneously sense the de-
mands for all system tasks, and thus multiple task-specific
probabilities may be triggered in any one timestep. As a re-
sult, idle agents may need to choose from among multiple
tasks which one, if any, to act upon. The model in (Ther-
aulaz, Bonabeau, and Deneubourg 1998) corresponds to +R,
since the threshold for an action/task becomes lower as that
action/task is performed, thus making it more likely to be
chosen again in the future. In this work, we augment the
model by also assessing its characteristics under -R.

An agent, ai, deciding on a new task will compare a ran-
domly selected rval∈ [0.0, 1.0) to its own set of task spe-
cific Pij values in some predefined order, stopping as soon
as rval < Pij and performing the corresponding task Tj . If
rVal exceeds all Pij values, agent ai will remain idle for the
current time step. While higher probabilities Pij will always
be more likely to be chosen, the order in which task prob-
abilities are considered will affect overall task assignment
and fulfillment. We test several ordering strategies and ana-
lyze how they affect task allocation, task completion, agent
conditioning and specialization levels, system robustness to
agent replacement, and efficiency of resource utilization.

We implement basic +R and -R strategies to simulate an
agent’s propensity to prefer some tasks (or types of tasks)
over others. Specifically, we investigate how an agents’ in-
clination toward repeated action achieved through +R may
lead to agent specialization within the system while in the
presence of other system aspects such as the various task
order consideration approaches considered in this work. We
compare our findings with agent generalization stemming
from -R, which increases agents’ propensity to diversify
their actions.

+R is implemented through decreasing the agent’s re-
sponse threshold for a task when said task is acted upon,
while increasing the thresholds for the other available tasks
(thus making them less likely to be selected in the future).
Each time an agent acts on a task, it increases its propensity
to act on that task in the future by a learning factor, ξ, and
decreases its propensity to act on other tasks in the future
by a forgetting factor, ψ. This adaptation occurs through ad-
justment of the agents’ thresholds. Each time an agent ai
is engaged in task Tj , the threshold is decremented by the
learning factor: θij = θij − ξ, and the thresholds for all
other tasks are each incremented by the forgetting factor:
θik = θik + ψ, ∀k �= j. This matches threshold updates
in (Theraulaz, Bonabeau, and Deneubourg 1998).

-R is implemented identically, with the increments and
decrements reversed, thus acting on a task will increase the

threshold for said task, making it less likely to be selected
in the future, while decreasing the thresholds for the other
tasks and making each of them a more likely future choice.

In addition to response probability and response thresh-
olds, an additional parameter called response duration has
been identified in biological systems which refers to how
long an agent remains on a given task after taking it up (Wei-
denmüller 2004). While response duration is considered an
agent specific characteristic in biological systems, we imple-
ment it as a system-wide parameter representing the proba-
bility that any given agent will consider switching tasks. We
employ the same probability across all agents in order to
more clearly see the effects of specific response durations
on the system behavior.

Experimental Setup

Inspired by complex interaction of system characteristics
in natural systems, we examine how the discussed proba-
bilistic threshold-based actions shape overall behavior given
variation in task consideration order, reinforcement type,
learning-to-forgetting ratios, heterogeneous task require-
ments, dynamic task requirements, frequency of task re-
consideration, and resource availability. The tests were con-
ducted for teams of 10 and 100 agents, with no differences
observed between the two.

Task Consideration Ordering Schemas are the main as-
pect varied across our experiments. We expect that the order
in which tasks are considered by the agents will affect the
system’s ability to effectively distribute and utilize the avail-
able resources (i.e. the agent workforce). We consider the
following task ordering paradigms:

• Oθt: Descending Preference
tasks ordered from lowest to highest agent preference θij .

• OSt: Descending Urgency
tasks are ordered from highest to lowest task stimulus Sj ;
this ordering is independent of θij .

• OP−val: Descending Probability Value (Combination of
Preference & Urgency)
tasks are ordered from highest to lowest probability Pij .

• ORand: Random Order
this ordering is random and used as a baseline.

For each of these ordering schemas, we test and analyze
the system dynamics resulting from: (1) +R encouraging re-
peated actions, thus encouraging specialization, and (2) -R
discouraging repeated actions, thus encouraging diversifica-
tion. As a result, we review a total of eight different setups
composed of four different task ordering strategies of two
reinforcement types each.

Learning-to-Forgetting Ratios tested here are as follows:
(1) learning ξ=0.01, forgetting ψ=0.0033 and (2) learning
ξ=0.01, forgetting ψ=0.0016. The reasoning behind the ra-
tios these choices represent is as follows. For the first ratio,
given a 1% learning speed, we distribute forgetting evenly
across all the other tasks not currently being acted on (ex-
cluding T0: idling), leading to a 0.33% forgetting per task
in our 4-task setup (again excluding T0). This simulates a
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finite memory where learning something new requires an
equal overall forgetting of something else. Note that this 1-
to-3 forgetting-to-learning ratio represents faster forgetting
than any of the values tested in (Theraulaz, Bonabeau, and
Deneubourg 1998), which ranged from 0-to-3 to 0.5-to-3.
To further assess the system’s capabilities, we lower the for-
getting rate to match a 0.5-to-3 ratio in our second set of
experiments (ψ = 0.0016).

Heterogeneous Task Requirements are employed to test
the system’s capacity to appropriately allocate the avail-
able resources. We test its performance with a 4 task setup
(T1,T2,T3,T4), plus an idling task (T0). The initial demand
ratios for the four tasks are 8:5:5:2. These ratios represent
the consumption of goods within the system that agents need
to fully replenish over the course of a ”simulation day”. To
assess the system’s capacity to adapt to a changing environ-
ment, we conduct a second set of experiments that begin
with the task demand ratios of 8:5:5:2, but change to 2:5:5:8
after half of the allotted time (namely 10 simulation days).

Response Duration is implemented through a probabil-
ity of reconsidering an agent’s current task choice. Thus, a
probability of 1.0 leads to choosing a new task on every time
step, while a probability of 0.25 only causes reconsideration
during one in every four time steps. The tested re-assignment
probabilities are: 1.0, 0.75, 0.5, and 0.25.

Resource Availability and their utilization are crucial in
decentralized systems. A successful division of labor may
have to resolve having insufficient overall resources, as well
as not over-reacting to demand when provided with plentiful
resources (as idling conserves resources). We test system be-
havior given the following available-to-needed resource (i.e.
agents) ratios: 0.8, 1.0, 1.3, and 2.0.

Experimental Results and Discussion
We first assess the ordering schemas using the following
setup: ξ = 0.01, ψ = 0.0033, and a static task require-
ment ratio of 8:5:5:2. We’ll refer to this as our “basic setup”.
Each setup is tested for all four orderings, and both rein-
forcement mechanics, leading to eight tested systems . Each
such group of eight is tested with the four possible resource
availabilities (80%, 100%, 130%, and 200%), as well as with
the four possible task-switching probabilities (1.0, 0.75, 0.5,
and 0.25). Twenty runs are performed on each setup.

Ordering Schemas As expected, use of +R vs. -R has a
significant effect on the resulting system behavior.

Under R+, task ordering appears to have the greatest ef-
fect on the likelihood that agents will specialize on one or
more tasks. Oθt and OP−val orderings result in significantly
more stable task allocation than OSt and ORand (see Fig-
ure 1). These differences are due to Oθt and OP−val being
based on the θt values. Under R+, performing an action will
decrease θt for said action, while increasing it for the other
actions. As a result, θt values tend to converge toward 0.0
and 1.0, respectively, making θt and, consequently, the Oθt
and OP−val task orderings relatively stable.

Whenever θt reaches zero, the probability becomes Pt =
S2
t /S

2
t = 1.0. Consequently, any time a task with θt = 0.0

is selected, the action will follow, regardless of stimulus
level. In Oθt and OP−val tasks with lowest thresholds are
considered first, likely causing them to be selected given
the aforementioned Pt = 1.0, and increasing their θt fur-
ther, leading them to be selected again. The resulting feed-
back loop leads to specialization tendencies, decreased task
switching, and increased efficiency.

Under -R, no significant differences in stability are ob-
served for any of the orderings. Under -R, performing an
action will increase θt for said action, while decreasing it
for the other actions. As a result, on the following iteration
a different action would be more likely chosen, since prob-
ability will be higher for lower θt values. Based on system
need, some tasks will still be selected more often, increasing
their θt to a maximum of 1.0. The resulting Pij ∈ [0.0, 0.5]
allows tasks that are not first in the ordering to be acted on
as well. This results in a decreased importance of the task
consideration order.

Learning-to-Forgetting Ratios When forgetting rate is
lowered to match 0.5-to-3 ratio (fastest forgetting tested
in (Theraulaz, Bonabeau, and Deneubourg 1998)), special-
ization is also achieved in the other task consideration order-
ings, namely OSt and ORand, but only when extra agents
are available (again, 130% aned 200%).

Dynamic Task Requirements Altering our basic setup,
we switch task demands half way through the simulation,
from 8:5:5:2 to 2:5:5:8, thus reversing the demands for T1
and T4 (see Figure 1). Note that there is never any demand
for T0:idling. As expected, any setup that settles toward
some specialization is temporarily disturbed by the new de-
mands, but settles to a new stable distribution soon after. Se-
tups in which agents continuously switch among tasks (those
under OSt and ORand, for -R and +R, as well as Ot and OP-
val for -R only) begin switching even more often, creating
more inefficiencies as the system attempts to keep up with
the altered demand. Note that because demand is reversed
but not actually increased, the additional task switching is
unnecessary and is less efficient than swapping the earlier
T1 and T4 patterns. This showcases that (1) meeting system
needs does not imply optimal resource utilization and (2)
upon adjusting to new demands, final action selection pat-
tern depends on initial pattern when demands first changed.

Response Duration Variation To vary system-wide re-
sponse duration, we vary the task re-assignment probabil-
ity. Starting with a baseline of re-considering the current as-
signment on every time step (i.e. 100% probability to recon-
sider), the rate of re-consideration is lowered (to 75%, 50%,
and finally 25%), increasing the average duration of individ-
ual task assignments. While this decreases the computation
required from each agent per time step, it can also lead to
decreased responsiveness to system changes, such as when
other agents switch between tasks through chance thus alter-
ing system needs.

Resource Availability Variation While performance is
expected to increase with increasing resources and decrease
otherwise, we test different resource levels to assess over-
all system behavior. The observed general trend is that spe-
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Figure 1: Task on which each agent works in each timestep. The vertical space is subdivided to show the task choices for each of
ten agents. The vertical space for each agent is further divided into the five possible tasks, T0-T4. The horizontal axes indicate
time steps. The plotted lines show the task choice for each agent in each timestep. Task demands change at step 400.

cialization is most prominent with lowest resources (80%
of required agents are available), gradually dissipating as
resources increase, and disappearing entirely at the high-
est tested level (200% of needed agents are available). This
trend suggests that the system is capable of leveraging re-
quirement with spreading experience across the population,
when efficiency is less crucial.

Given excess resources (130% and 200%), task fulfill-
ment levels are consistently higher for all four orderings
using -R than those using +R. This is especially prominent
with the highest amount of extra resources/agents. The rea-
son is that under -R, thresholds for all the tasks evolve to-
ward 0.0, except for idling, which instead grows toward 1.0
as a result of all the extra agents choosing to idle. Conse-
quently, when selecting an action, the agents will have a
strong preference toward anything but idling, continuously
doing work. With +R, thresholds evolve in the opposite di-
rection: θ0 = 0.0, θ∀t�=0 = 1.0, thus leading the agents to
idle more, to the point of coming near but not actually ful-
filling the task demands despite the additional resources.

Analysis of Probabilistic Response

If an agent has only one task to consider, the original proba-
bility formula from (Theraulaz, Bonabeau, and Deneubourg
1998) appears to lead to desirable behavior: the closer an
agent’s threshold is to zero the higher the probability that
the agent will act regardless of stimulus level; as threshold
increases, the actual need for the task becomes more rele-
vant. When stimulus and threshold are equal, the probability

is exactly half, which is sensible since probability increases
when stimulus increases and/or threshold decreases, e.g.
Sj = 0.25 and θij = 0.25 correspond to a 25% task need
and a threshold that translates to 75% of an agent’s maxi-
mum action propensity (maximum propensity is θij = 0%),
averaging out to a 50% probable response. This model, how-
ever, can result in undesirable behavior in domains where
multiple tasks are being considered simultaneously.

When stimulus and threshold are inverted, the underly-
ing task need and propensity match, e.g. Sj = 0.25 and
θij = 0.75 correspond to a 25% need and a 25% propensity.
Assuming equal weighting of stimulus and threshold values,
the discussed model appears to emphasize action propensity
and undervalue system need (25% need and 25% propen-
sity lead to 10% probable response, instead of a more sensi-
ble 25% probable response). This valuation leads the system
away from utilizing its resources efficiently by not placing
enough value on current system need and over-emphasizing
propensity to act (threshold). See Table 1 for examples.

Since considering any task with a low threshold will lead
to a high probability of acting, an agent may end up neglect-
ing the actual system needs expressed through the stimulus
values. An extreme case of this is when θij = 0, which re-
sults in action probability of 1.0 regardless of stimulus level.
As a result, the order of task consideration becomes crucial
to the task-selection behavior: starting with highest thresh-
old will lead to nothing else being considered, but starting
with a task stimulus could lead to a higher responsiveness to
system needs.
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Task need %Max propensity Sj θij P-value (Pij)
0% 0% 0.0 1 0.0

25% 0% 0.25 1 0.05882
50% 0% 0.5 1 0.2
75% 0% 0.75 1 0.36

100% 0% 1 1 0.5
75% 25% 0.75 0.75 0.5
50% 50% 0.5 0.5 0.5
25% 75% 0.25 0.25 0.5
10% 90% 0.1 0.1 0.5

0% 100% 0.0 0.0 0.5
25% 100% 0.25 0.0 1
50% 100% 0.5 0.0 1
75% 100% 0.75 0.0 1

100% 100% 1 0.0 1
99% 99% 0.99 0.01 0.9999
90% 90% 0.9 0.1 0.9878
75% 75% 0.75 0.25 0.9
25% 25% 0.25 0.75 0.1
10% 10% 0.1 0.9 0.0122

1% 1% 0.01 0.99 0.0001

Table 1: Sample [stimulus, threshold] ([Sj ,θij]) value pair-
ings and the resulting probability (P−value), calculated as
Pij = S2

j /(S
2
j + θ2ij).

Consequently, we suggest that a new model may be
needed for systems where multiple tasks are available at any
given time, thus requiring (1) some choice of task consider-
ation order and (2) a probability function that is not liable to
ignore the current system need for completing said task in
the face of low task threshold values.

Conclusions

In this work, we examine how the order in which tasks are
considered for selection in a distributed task allocation prob-
lem can affect the resulting task allocation and overall be-
havior of a decentralized MAS. We hypothesize that the
magnitude of effects will be more evident when task de-
mand is high with respect to available resources and show
that to be the case, as highest specialization is found in sys-
tems provided with only 80% of the required agents. Ex-
perimental results are obtained using an agent-based simu-
lation in which agent act independently, do not communi-
cate, and select tasks using the response threshold reinforce-
ment model employing positive or negative reinforcement
techniques. Results indicate that when resources/agents are
plentiful, task ordering strategy has little effect on the perfor-
mance of the MAS. Learning to forgetting ratio appears to
have a greater effect, allowing for specialization even under
less static ordering approaches, such as random.

Positive reinforcement approaches drive probability of
acting toward 1.0 for any commonly selected tasks (i.e. those
with high θij), leading to specialization in task consideration
orderings relying on threshold values. Negative reinforce-
ment keeps probability between 0.0 and 0.5, increasing the
likelihood of items further down the task ordering list to be
selected, promoting generalization.

Interestingly, the simple response threshold reinforcement

decision process used in our system appears to produce a
very efficient decentralized task allocation behavior. The
percent effort devoted to each task over an entire run is ap-
proximately proportional to the task demands in all exper-
iments and an appropriate proportion of agents remain idle
when available resources exceed task demand.
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