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Abstract

Improved collaboration techniques for tasks executed collec-
tively by multiple agents can lead to increased amount of
information available to the agents, increased efficiency of re-
source utilization, reduced interference among the agents, and
faster task completion. An example of a multiagent task that
benefits from collaboration is Collective Transport with Obsta-
cle Avoidance: the task of multiple agents jointly moving an
object while navigating around obstacles. We propose a new
approach to sharing and aggregation of information among the
transporting agents that entails (1) considering all available
information instead of only their own most pressing concerns
through establishing objectively valued system needs and (2)
being persuadable instead of stubborn, through assessing how
these needs compare to the needs established by their peers.
Our system extends and improves upon the work in (Ferrante
et al. 2013), leading to better informed agents making efficient
decisions that cause less inter-agent interference and lead to
faster and more reliable completion of the collective task.

1 Introduction
In many domains, groups of collaborating agents have often
exhibited advantages over a single agent through the ability
to make better joint decisions and to perform more complex
tasks (Sycara 1998; Surowiecki 2004). For this to occur,
however, the decision making capabilities of multiple agents
and any available data must be combined in sensible ways,
allowing for the group to behave as a complex intelligent unit.
In this work, we focus on agent collaboration strategies in
the decentralized Collective Transport (CT) domain and pro-
pose several improvements to the way information and agent
opinions have been previously aggregated for CT. We test
our improvements against an alternative negotiation strategy
proposed in (Ferrante et al. 2013).

An example application for a collaborative Multi-Agent
System (MAS) is CT: the task of multiple agents jointly mov-
ing an object. Collaboration is necessary when an item is too
large, unwieldy, or otherwise impossible to move by a sin-
gle agent. Furthermore, collaboration can also be beneficial
even in domains where a single agent is physically capable
of performing the transporting task, but may struggle to do
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so adequately, such as when the transported object obscures
the agent’s view.

While this problem has sometimes been tackled by cen-
tralized leader-follower based approaches (Stilwell and Bay
1993; Kosuge et al. 1998; Wang et al. 2004), of particular
interest to us is the task of decentralized CT with limited com-
munication, as it necessitates effective agent coordination.
The existing decentralized strategies have largely been pro-
posed for and tested on CT in obstacle-free environments, e.g.
(Donald, Jennings, and Rus 1997; Yamada and Saito 2001;
Campo et al. 2006; Groß and Dorigo 2009), while (Ferrante
et al. 2013) tackled CT combined with Obstacle Avoidance
(OA) similar to the task of OA by a group of physically
connected agents addressed in (Trianni and Dorigo 2006)
and (Baldassarre, Parisi, and Nolfi 2006). We aim to improve
existing collaboration techniques for the CT domain and use
the method described in (Ferrante et al. 2013) as our baseline
since, to our knowledge, it is the only existing approach to
decentralized coordination for CT with OA.

In (Ferrante et al. 2013), the authors employ “stubborn”
and “social” agent behaviors: when an agent detects the goal
or any obstacles, the agent will form a goal-approaching or
an obstacle-avoiding movement preference, set its state to
“stubborn”, pass its preference to its peers (agents within its
line of sight), and execute a move according to the communi-
cated preference. Alternatively, if the agent’s sensors detect
no goal or obstacles, its state will be set to “social”, peers
will be notified of this fact, it will average the preferences
obtained from its peers, and then move in this averaged di-
rection. Each heading preference is an angle representing the
agent’s desired deviation from the common environment cue,
which was set to be the general direction of the goal, i.e. goal
beacon. The presented coordination scheme is role-based in-
stead of fully decentralized: the left and right agents located
at the rear of the group behave as the left and right wheels
located on a joint axis, thus limiting each other’s movements.
The OA behavior consists of moving in the direction directly
opposite to that of the nearest obstacle.

Although in some works in the CT domain agents are
allowed to reconfigure themselves by deciding when and how
to chose a different spot at which to hold the item (Kube and
Bonabeau 2000), in this work we focus on a team with static
formation. This means the team can rotate as a whole, but
agents cannot change their relative positions to each other nor
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to the cargo. While re-gripping capabilities may be generally
beneficial for CT, they are excluded from our experiments to
allow for a clear assessment of the benefits stemming solely
from information processing and propagation.

In Wisdom of Crowds, diversity of information, indepen-
dence of individual judgments, decentralization, and ag-
gregation are listed as the criteria necessary for a “wise”
group (Surowiecki 2004). In this work, we propose sev-
eral behavioral adjustments to collaborative agents through
our Weighted-Average CT (W-Avg CT) and test these in
the decentralized CT domain. We contend that when mak-
ing a movement decision, each collaborating agent should
consider all information available from its sensors and from
its peers, while also balancing being persuasive with being
persuadable, which can be accomplished through weighted
aggregation. While we believe these behavioral rules can
prove beneficial in many domains, here we apply them to the
task of a decentralized MAS collectively transporting cargo
while avoiding obstacles. We show that the proposed behav-
ioral adjustments improve upon the baseline CT behavior,
represented by an MAS employing the negotiation strategy
described in (Ferrante et al. 2013).

2 Improvements to Collective Transport
Parting from the baseline approach (Ferrante et al. 2013),
we propose increasing the efficiency of CT through allowing
agents to prudently consider more information by aggregating
data from their individual sensors as well as from each other.
We also disallow stubborn behaviors, ensuring that agents
can be persuaded by one another according to the objective
relative importance of their information. In this section, we
describe our motivations for these changes, as well as the
details of their implementation for the CT domain.

Agents must attempt to be prudent. When choosing a
course of action, an agent should take into account all freely
available information, even though not all of it might be rel-
evant to said agent’s most pressing current concern. When
considering both the data directly related to the current sub-
task (such as OA) as well as data that may be helpful for com-
pleting the overall task (such as reaching the goal), agents
need a way to consolidate the available information sensibly.
Aggregation approaches deal with combining multiple pieces
of data into more concise informative units. Furthermore,
weighted aggregation allows placing more or less empha-
sis on each datum by assigning it a weight. (List 2012b;
Tyrrell 1993; Calvo, Mayor, and Mesiar 2002).

In (Ferrante et al. 2013) only the closest obstacle is consid-
ered at any given time for establishing the directly opposing
OA direction. In our W-Avg CT, we aggregate all obstacle
data available to an agent through an averaged weighted sum
of the normalized vectors from the agent to each obstacle
point detected by its range-finders, producing what we re-
fer to as a preliminary preference vector. Each vector is
weighted according to its magnitude prior to normalization,
with shorter vectors being given more weight since they rep-
resent the closest obstacles to be avoided. Algorithm details
are provided in figure 1. Note what instead of adding the
obstacle collision vectors and rotating the result by 180◦, we
simply subtract them instead.

Additionally, in (Ferrante et al. 2013), when an agent’s
sensors detect nothing, the assigned “social” state dictates
that the agent will average the data received from its peers
and move according to the outcome, which we call the fi-
nal preference. This causes agents to alternate between the
behavior of listening to its peers or “stubborn”ly ignoring
their data. While the goal beacon direction is always known,
only obstacle data is used if any are sensed by the agent or
its peers. When the goal becomes visible, a weighted sum
is used to combine the OA and goal approaching directions.
Thus, this method does not employ all of the data available at
any given time, leading to nearsighted and slower navigation.
W-Avg CT is designed to instead consider the obstacles as
well as the goal at all times, even when the actual goal is not
visible, in which case the beacon direction is used instead.

Prudently considering all available data also implies an
agent’s need to be persuadable by its peers, since some
of this data may come from the peers (in the form of their
preliminary vectors). Being “stubborn”, as defined in (Fer-
rante et al. 2013), results in the agent often ignoring the
information available indirectly through its peers. Deci-
sion making that disregards the opinions of others in tasks
requiring multiple agents can cause livelocks: cycles of
looping actions resulting from agent interaction (e.g. the
circular ant mill phenomenon) (Jensen and Lesser 2002;
Klein and Giese 2004). Larger teams and busier environ-
ments are especially susceptible to livelocks, leading to a
higher risk of “stubborn”-vs-“stubborn” interference (e.g. if
there are walls on both sides of the team, stubbornness can
cause a tug-of-war). Allowing agents to objectively evaluate
their preferences and compare them to the preferences of
their peers can prevent some of the potential pathological
behaviors by providing them with the means to individually
and intelligently decide which preference should be valued
higher.

A more sensible policy would thus require an agent with
information to be opinionated but also persuadable, which
can again be accomplished through aggregation: an agent’s
preliminary preference vector can be added to the prelimi-
nary preference vectors transmitted by its peers. In (Ferrante
et al. 2013), the system employs minimal communication,
consisting of exchanging a single angle with peer agents, i.e.
those within direct line of sight. This angle represents the
agent’s preferred deviation from a common cue, correspond-
ing to the goal beacon direction and pointing directly upward
(for reference, view the map in figure 2). In W-Avg CT,
each preliminary preference transmitted by a peer is instead
a 2D vector, thus possessing a magnitude in addition to an
angle. Since the preliminary preference vector from each
peer is obtained by taking into account the distance-based
importance of the perceived obstacles, the magnitudes of
these preliminary vectors represent the relative importance
of the course deviations they represent. As a result, these
preliminary peer vectors can be added without any additional
weighting, producing the final preference vector which the
agent will use to move (figure 1).

Note that only the direction (and not the magnitude) of
the final preference vector is considered, as agents travel at
constant speed. It should also be noted that although we are
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SENSING = true //loop: first sense, then act, then sense...
While not at goal, for each simulation step & each agent, do{

if goal has not been reached {
if (SENSING)// FORM PRELIMINARY PREFERENCE & NOTIFY PEERS

if (obstacles are perceived) {−−−−→
dirOA = −−→zero
for each rangefinder hitting an obstacle{

if (this is the nearest collision)
minDistToObstacle = distToCollision

weight = 1 − −−−−−−−−−−−−→
distToCollision/agentV isionRange−−−−→

dirOA −=
−−−−−−−−−→
dirCollision.norm ∗ weight

//subtract b/c agents move 180◦ away from obstacles
}−−−−→
dirOA /= obstacleCount //averaged

}
if (goal is percieved) {−−−−−→

dirGoal = −−→zero
for each rangefinder hitting the goal {

weight = 1 − disToCollision/agentV isionRange−−−−−→
dirGoal += (

−−−−−−−−−→
dirCollision.norm ∗ weight)

}−−−−−→
dirGoal /= goalCount //averaged

}
if (obstacles percieved AND goal perceived)−−−−−−−−−−−−−→

preliminaryPref = (
−−−−→
dirOA +

−−−−−→
dirGoal)/2

else if (obstacles perceived){ //but not the goal
weight = minDistToObstacle/agentV isionRange−−−−−−−→
dirBeacon =

−−−−−−−→
dirBeacon.norm ∗ weight−−−−−−−−−−−−−→

preliminaryPref = (
−−−−→
dirOA +

−−−−−−−→
dirBeacon)/2

}
else if (goal perceived)//but not the obstacles−−−−−−−−−−−−−→

preliminaryPref =
−−−−−→
dirGoal

else //no visible obstacles and no visible goal−−−−−−−−−−−−−→
preliminaryPref = ‘‘Social Marker’’

send
−−−−−−−−−−−−−→
preliminaryPref to peers

SENSING = false
}
else{// ACT: CALCULATE NEW ROTATION AND MOVE−−−−−−−→

sumPrefs =
∑

own & peers’
−−−−−−−−−−−−−→
preliminaryPref

//exclude from sum any ‘‘Social Markers’’, peers’ or own
if everyone sent ‘‘Social Markers’’

newRotation = 0◦ deviation from
−−−−−−−−→
goalBeacon

else
newRotation = ̸ between

−−−−−−−−→
goalBeacon &

−−−−−−−→
sumPrefs−−−−−−−−−−→

newDirection =
−−−−−−−−→
goalBeacon rotated by newRotation◦

move stepSpeed toward
−−−−−−−−−−→
newDirection

SENSING = true
}

}
}

Figure 1: Weighted-Average Coop. Transport Algorithm

incurring the added cost of transmitting a magnitude along
with each preferred deviation angle, taking a single additional
value into account can decrease the overall number of inter-
agent transmissions needed, due to faster task completion.
Additionally, more forward-looking decisions can lead to
navigational choices that take longer to become obsolete,
potentially allowing for less frequent agent communication.

3 Experimental Setup
In this section, we define and differentiate three approaches
for coordinating a team of agents tasked with CT. We also
describe the performance metric and the testing environment.

3.1 Tested Systems
To test the proposed modifications for the CT domain, we
reimplemented the system presented in (Ferrante et al. 2013)
to use as our baseline (Stubborn CT), created a second sys-
tem for the purpose of assessing the effects of the same
approach on a team of “stubborn”-less agents (Social CT),
and developed a third system to test the rest of the proposed
changes (W-Avg CT). In order to showcase how these com-

pare when coordinating a decentralized group of collaborat-
ing agents, we made all three tested systems truly decentral-
ized by removing the role-based aspects present in (Ferrante
et al. 2013), allowing all agents to move independently.

Below we briefly define the differences among these ap-
proaches, as well as the motivation for testing each one.

1. Stubborn CT: a reimplementation of (Ferrante et al. 2013),
modified to be fully decentralized, and used as a baseline.
Motivation: to be used as a performance baseline and to
test the existing approach on a fully decentralized team.

2. Social CT: similar to Stubborn CT, except all agents are
“social” (Ferrante et al. 2013) at all times, thus averaging
information received from peers with their own.
Motivation: to assess the differences between stubbornness
and sociability, as well as to diminish the wasteful mutual
interference among stubborn agents.

3. W-Avg CT: similar to Social CT, except obstacle data is
combined through distance-based weighted averaging.
Motivation: to improve agents’ information intake and
sharing in order to capitalize on the capabilities of a fully
collaborative team.

3.2 Performance Metric
Since all three approaches require similarly negligible com-
putation, “ time to reach the goal” is not the most informative
metric for comparison of the coordination techniques tested
in a step-wise simulated environment. Instead, we measure
the number of movements it takes to reach the goal (table 1).

Agents are controlled by their internal sense-act loop to
best approximate real-world simultaneous action in our sim-
ulated environment that processes the agents sequentially;
i.e. first each agent senses, then each agent acts, then each
senses again, etc. Given that agents have to move every other
time step, measuring the number of movements to reach the
goal is an adequate metric for comparison. Note that the re-
ported values are per agent, where all agents take an identical
number of steps before the team reaches the goal.

Since using a physics engine causes the number of steps
to vary slightly among the test runs, the presented values are
the averages obtained from 30 runs of each system, along
with their respective standard deviations, and success rates
indicating in how many of the runs the team successfully
made it to the goal instead of getting stuck along the way.

3.3 Testing Environment
The solutions are implemented in C# within a 2D environ-
ment on the Unity physics engine (v. 4.5.5f1). All agents
are implemented using a single script, thus producing a ho-
mogeneous team excepting each agent’s list of peers with
whom it can communicate, determined by a line-of-sight of
radius 2.0∗agentDiameter (measured from agents’ center).
Motion is implemented using AddForce(), but inertia is elim-
inated to ensure clear assessment of navigational decisions.

Our tests included a variety of maps designed to establish
the capabilities and shortcomings of the approaches. For
conciseness, we include results from a single comparatively
complex scenario representative of our findings (figure 2).
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vision = 2.0 ∗ agentDiameter vision = 1.5 ∗ agentDiameter

Small Cargo Long Cargo Long Cargo Small Cargo Long Cargo Long Cargo
Uniform Distr. Uniform Distr. Head-Tail Distr. Uniform Distr. Uniform Distr. Head-Tail Distr.

Stubborn - - - 1681.3 (sd:115.9 ) - -
Social - - - 1719.8 (sd:156.3 ) - -
W-Average 408.8 (sd:17.4) - 950.1 (sd:35.6) 447.5 (sd:18.2) - 1872.9(sd:140.6)

Table 1: Movements from start to goal: average (st. dev.) with varying vision range, cargo size/shape, and agent distribution.
Missing data represents scenarios where the team is never able to reach the goal.

(Stubborn CT) (Social CT) (W-Avg CT)

Figure 2: Small-cargo movement trails of the three systems
Each line corresponds to a single agent on the 3-agent team.

While this map is more complex than those used in (Ferrante
et al. 2013), it does not require backtracking, as the tested
systems are reactive and have no path-planning capabilities.

4 Results & Discussion
To assess the implemented systems, we first test them on a
team and cargo similar to those in (Ferrante et al. 2013), re-
peating each test 30 times to account for variations stemming
from the physics engine environment. We then conduct two
more experiments with differing agent placement around a
more challenging cargo to further test the capabilities, short-
comings, and relative performance of the CT approaches.
Results are presented in table 1.

4.1 Small Cargo & Small Team
Our first experiment imitates the setup in (Ferrante et al.
2013): a small cargo transported by a 3-agent team, as
depicted in figure 3(a). Agent vision radius is set to
2 ∗ agentDiameter, counted from an agent’s center.

The Stubborn and Social teams are unable to navigate the
maze with this vision, while the W-Avg method succeeds
consistently, requiring on average 409 steps (table 1, col.1).
The cause is the navigational behavior from (Ferrante et
al. 2013) employed by the Stubborn and Social approaches.
By not taking distance to obstacle into account, OA behavior
essentially considers agents to be the size of the area visible to
them, as obstacles detected at any distance result in identical

(a) Small Cargo (b) Long Cargo (c) Long Cargo
Uniform dist. Uniform dist. Head/Tail dist.

Figure 3: Agent, positioning, peer relations, sensors, & cargo
White agents surround a hexagonal cargo; gray lines are the
rangefinder-vision; black arrows depict peer communication.

push away responses. Consequently, Stubborn and Social
teams get stuck, never reaching the goal. Note that having
blind spots (regions without range-finders in figure 3(a)) may
allow teams to navigate tight areas by chance rotation.

To provide a more detailed view of how the approaches
compare, agent vision is decreased to 1.5 ∗ agentDiameter,
with peer communication maintained at previous range (ta-
ble 1, col.4). With decreased vision, Stubborn and Social
teams consistently make it to the goal, without any statis-
tically significant difference between them, while W-Avg
achieves a much better performance, taking on average 26%
of the steps required by the other approaches.

To ground our results, we calculate a free-of-sensing, way-
point based estimate of the optimal number of steps needed
by the small-cargo team to reach the goal to be 225. As
the CT approaches must first sense a wall before deviating
from the goal beacon direction, it is natural that the observed
performances are not optimal.

4.2 Longer Cargo & Larger Team
To test how the approaches fare in situations with more dis-
parate agent preferences, we conduct a second set of experi-
ments with an elongated, inflexible cargo and a larger team of
agents. Given a few agents surrounding a small cargo, there
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is limited sensor reading disparity within the team, and thus
limited preference disparity, which could simplify the team’s
task of behaving as a coherent single unit. A longer object
allows the task to be assigned to a larger team, with the po-
tential for agents to be located further away from one another.
Given the additional space available around the longer cargo,
we can also analyze the effects of agent distribution around
the object. Below we compare the effects of a uniform and
head/tail agent distributions around an elongated cargo.

Since much of the agents’ view is obstructed by the long
cargo, we remove explicit blind-spots via full 360◦ agent
vision (figures 3(b)&(c)). Both vision ranges are tested and
results are presented in table 1. Note that this scenario com-
plicates CT through decreased object maneuverability. We
omit the longer cargo way-point based optimum because cal-
culating it is not trivial: pivoting behavior must implemented,
since simply following waypoints gets the team stuck.

Uniform Distribution For the uniformly-distributed agent
team test, we position 9 agents around the long cargo, as de-
picted in figure 3(b). Results are provided in table 1, col.2&5.

None of the approaches are able to complete the task given
a uniform agent distribution, which is explained by the way
information propagates through the team. Consider a line of
agents A-B-C-D-E, where dashes represent peer communica-
tion. If edge agents A and E sense obstacles, their peers B
and D will take this information into account when forming
their final preferences. Central agent C, however, will receive
only social opinions from its peers B and D, which don’t
actually sense anything. As a result, this uninformed central
agent will choose to move directly toward the goal beacon,
potentially interfering with the movements chosen by the
informed agents A, B, D, and E. In this way, having more
agents in more areas of the transported cargo may in fact be
detrimental to performance under current CT methodologies.

Head-Tail Distribution For the head-tail distributed team
test, we position 5 agents at the front and 4 agents at the
back of the long cargo, depicted in figure 3(c). Results are
presented in table 1, col.3&6.

The head-tail distributed team is significantly affected by
the choice of vision range. The smaller vision complicates
the task considerably given the cargo length, producing near-
sighted behavior in all systems, ultimately leading the Stub-
born and Social teams to consistently fail to reach the goal.
W-Average team succeeds in all trials, averaging 1873 steps
due to the extra pivoting and maneuvering required to trans-
port the long cargo. Having a larger vision range, however,
allows the teams to begin turning sooner, which is valuable
in the long-cargo scenario. With increased vision, the W-
Average team completes the task in half the time required
given shorter vision, averaging 950 steps. Stubborn and So-
cial CT are hindered by increased vision (for the reasons
discussed earlier) and unable to complete the task once again.

While vision range did not affect performance with uni-
form agent distribution, we believe head-tail distribution fairs
differently for two reasons: (1) agents are positioned closely
to each other, and thus sensor-disparity is present among the
groups (head-group and tail-group) but not within the groups;
(2) having an area devoid of agents creates blind-spots that

allow pivoting near walls and making tight turns.
Since the head-tail distributed team outperforms the uni-

formly distributed team, we see that having uninformed
agents can be worse than having fewer agents. A related
aspect is the evaluation of agents’ position around the cargo.
Consider that applying a force toward an end of a long object
produces a larger torque than doing so at its center. On the
other hand, relocating the center of the cargo is substantially
different from rotating it by pushing one end. Consequently,
it may be necessary to further weight agent opinions by tak-
ing into account their position around the cargo, as well as
the specifics of the cargo shape. These investigations should
make use of the existing research regarding agent reposition-
ing around a cargo, such as (Kube and Bonabeau 2000).

One way to ensure that agents at key locations are never
left uninformed is to increase communication range. Another
solution is radial peer communication, which would allow
agents to communicate across the cargo or even around an
obstacle. This allows for some interesting dynamics, since
navigational adjustments of the entire collective are the result
of the collaboration of small agent neighborhoods (groups of
communicating peers) formed on the perimeter of the cargo.

4.3 Additional Observations
It is apparent that the W-Avg CT approach outperforms the
other two, and that the “stubborn” agent behaviors in the Stub-
born CT do not offer a statistically significant advantage over
a fully cooperative Social CT team. In this section, we further
discuss the behavioral differences of these approaches.

Although the W-Avg approach does not achieve optimal
time-step efficiency, not only does it outperform the other
approaches, but it is also considerably closer to the optimum
behavior than it is to its Social and Stubborn counterparts. Its
inability to reach the optimum is explained by the simplistic
OA behavior (presented in (Ferrante et al. 2013) and imple-
mented here) that ultimately causes agents to move along
walls in ascending triangle formation. Not only is this type
of back and forth movement wasteful, it also causes agents
to always navigate upward along an obstacle even when navi-
gating downward would result in a shorter path to the goal,
or to even get stuck behind obstacles perpendicular to the
direction of the goal beacon, in cul-de-sacs (which require
the team to move away from the goal in order to advance), or
in“doorways” (where agents’ preferences could cancel out).

The behavioral differences of the systems can be seen in
figure 2. The lines correspond to the paths taken by each
of the three agents in the small-cargo scenario, chosen for
clarity as the larger teams create busier paths. Note the differ-
ences in line width resulting from the number of movements
per section of the path. It is clear that the Stubborn and So-
cial approaches make decisions with shorter term usefulness,
requiring more adjustments along the way, and resulting in
more jagged and busier paths than those of W-Avg CT.

If a team employed all-to-all communication, then a Stub-
born system would behave similarly to a W-Avg system,
with the former averaging the preferences through physical
movement, and the latter averaging them mathematically and
moving after. Nevertheless, an added benefit of mathematical
averaging is a decrease in wasted effort. For example, if all
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agents wish to go in directly opposing directions, a stubborn
team will waste effort and incur wear and tear on the system
while fighting agent interference. A W-Avg team will in-
stead determine which resistances are futile and only produce
part of the originally intended movements, thus decreasing
unnecessary physical work in the system.

5 Conclusions
In this work, we devise and test improvements for coordi-
nating collaborative agents in the domain of CT with OA.
Experimentally, we show that the proposed changes are ben-
eficial to a team’s performance. These improvements revolve
around the following agent characteristics: (1) collaborative
agents should be prudent in their data assessments, taking
into account all available information and combining it in a
sensible manner intended to value the team’s short- and long-
term goals; (2) agents should be persuadable by their peers,
as stubbornness ignores potentially valuable information.

It is evident that aggregation is as instrumental for suc-
cessful CT as it is for many other domains, e.g. (Riggs
and Wu 2012; List 2012a; Wang, Yang, and Xu 2005;
Major and Ragsdale 2000; Conradt and Roper 2005). How-
ever, as showcased by the failed experiments and discussed
pathologies of simplistic the OA of the three systems, the
outcome also largely depends on how agents perceive and
process their environment. Seeing farther allows detecting
more obstacles, but it can also lead to a higher chance of
inter-agent interference. Without taking distance to obstacles
into account, the walls closest to any one agent are all equally
import, making it difficult to make team-wide smart naviga-
tional choices. With 360◦ sensor range, the walls left behind
are still detected, so taking the goal-beacon into account is
instrumental in avoiding getting stuck.

Despite having achieved better performance than the only
other known to us approach for decentralized CT with
OA (Ferrante et al. 2013), it is clear that there is much room
left for improvement. Since aggregation is a highly malleable
approach, as we learn more about how to interpret, share, and
rate the importance of data, we can incorporate these new
insights, further improving CT behavior.
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